Practica Calificada 1

Juan Alberto Zapata May 27, 2020

1. Importe los datos de la serie de precios desde con fecha inicio ’2019-01-01’ y fecha de fin ’2020-01-01’.(1pt)

## [[1]]
## [1] "pdfetch"   "stats"     "graphics"  "grDevices" "utils"     "datasets" 
## [7] "methods"   "base"     
## 
## [[2]]
## [1] "tseries"   "pdfetch"   "stats"     "graphics"  "grDevices" "utils"    
## [7] "datasets"  "methods"   "base"     
## 
## [[3]]
##  [1] "forcats"   "stringr"   "dplyr"     "purrr"     "readr"     "tidyr"    
##  [7] "tibble"    "ggplot2"   "tidyverse" "tseries"   "pdfetch"   "stats"    
## [13] "graphics"  "grDevices" "utils"     "datasets"  "methods"   "base"     
## 
## [[4]]
##  [1] "forecast"  "forcats"   "stringr"   "dplyr"     "purrr"     "readr"    
##  [7] "tidyr"     "tibble"    "ggplot2"   "tidyverse" "tseries"   "pdfetch"  
## [13] "stats"     "graphics"  "grDevices" "utils"     "datasets"  "methods"  
## [19] "base"
NASDAQdata <- pdfetch_YAHOO("^IXIC",from = as.Date("2019-01-01"),to = as.Date("2020-01-01"), interval = '1d')  #DATOS DE S&P500

tsNASDAQ <- ts(NASDAQdata$`^IXIC.close`,start = c(2019,1),frequency=356.25)

2. Calcule los retornos: 1) Continuos 2) Discretos.(1pt)

Retornos *(Discretos)

diff(tsNASDAQ)/tsNASDAQ[-length(tsNASDAQ)]
## Time Series:
## Start = 2019.00280701754 
## End = 2019.70456140351 
## Frequency = 356.25 
##           ^IXIC.close
##   [1,] -0.03036930167
##   [2,]  0.04260228406
##   [3,]  0.01255558859
##   [4,]  0.01077601025
##   [5,]  0.00871104509
##   [6,]  0.00416694154
##   [7,] -0.00208841944
##   [8,] -0.00940403733
##   [9,]  0.01707377979
##  [10,]  0.00154614546
##  [11,]  0.00707494153
##  [12,]  0.01027178069
##  [13,] -0.01912333646
##  [14,]  0.00077063813
##  [15,]  0.00678785967
##  [16,]  0.01292152674
##  [17,] -0.01105111454
##  [18,] -0.00809945349
##  [19,]  0.02202385476
##  [20,]  0.01373507673
##  [21,] -0.00245409977
##  [22,]  0.01151864236
##  [23,]  0.00742289783
##  [24,] -0.00362064348
##  [25,] -0.01178662905
##  [26,]  0.00135148516
##  [27,]  0.00132905466
##  [28,]  0.01460340405
##  [29,]  0.00077681202
##  [30,]  0.00088544146
##  [31,]  0.00612094599
##  [32,]  0.00192171785
##  [33,]  0.00030718240
##  [34,] -0.00392036177
##  [35,]  0.00909285728
##  [36,]  0.00357619114
##  [37,] -0.00068306087
##  [38,]  0.00069012506
##  [39,] -0.00290951785
##  [40,]  0.00833986918
##  [41,] -0.00234094199
##  [42,] -0.00015967665
##  [43,] -0.00929733306
##  [44,] -0.01125244632
##  [45,] -0.00179477139
##  [46,]  0.02023718764
##  [47,]  0.00436219423
##  [48,]  0.00690029844
##  [49,] -0.00163539569
##  [50,]  0.00755082000
##  [51,]  0.00337518300
##  [52,]  0.00122758955
##  [53,]  0.00064992910
##  [54,]  0.01423084097
##  [55,] -0.02504031657
##  [56,] -0.00067121609
##  [57,]  0.00706771823
##  [58,] -0.00625885870
##  [59,]  0.00337416685
##  [60,]  0.00784307854
##  [61,]  0.01288474721
##  [62,]  0.00252650556
##  [63,]  0.00597040581
##  [64,] -0.00047748670
##  [65,]  0.00594417955
##  [66,]  0.00191340663
##  [67,] -0.00560733864
##  [68,]  0.00694885634
##  [69,] -0.00211952057
##  [70,]  0.00463050543
##  [71,] -0.00102081995
##  [72,]  0.00303663294
##  [73,] -0.00051872284
##  [74,]  0.00024761896
##  [75,]  0.00215176691
##  [76,]  0.01316858992
##  [77,] -0.00231627575
##  [78,]  0.00205756479
##  [79,]  0.00341431432
##  [80,]  0.00189656734
##  [81,] -0.00814275688
##  [82,] -0.00565136445
##  [83,] -0.00159884377
##  [84,]  0.01583098430
##  [85,] -0.00498652144
##  [86,] -0.01963862822
##  [87,] -0.00256661961
##  [88,] -0.00412044091
##  [89,]  0.00080273369
##  [90,] -0.03409397103
##  [91,]  0.01143847064
##  [92,]  0.01133360640
##  [93,]  0.00970320231
##  [94,] -0.01035319123
##  [95,] -0.01457213727
##  [96,]  0.01082007552
##  [97,] -0.00448004424
##  [98,] -0.01581248761
##  [99,]  0.00114442328
## [100,] -0.00388367554
## [101,] -0.00789237228
## [102,]  0.00270429542
## [103,] -0.01513934312
## [104,] -0.01611800159
## [105,]  0.02646932594
## [106,]  0.00642474974
## [107,]  0.00528941072
## [108,]  0.01661735479
## [109,]  0.01047129629
## [110,] -0.00007670778
## [111,] -0.00381583158
## [112,]  0.00569886596
## [113,] -0.00516384539
## [114,]  0.00620263844
## [115,]  0.01387630149
## [116,]  0.00420423007
## [117,]  0.00801520678
## [118,] -0.00243808899
## [119,] -0.00323838462
## [120,] -0.01511173002
## [121,]  0.00320239645
## [122,]  0.00730591259
## [123,]  0.00482952161
## [124,]  0.01060671670
## [125,]  0.00221596009
## [126,]  0.00753970386
## [127,] -0.00103301144
## [128,] -0.00776914815
## [129,]  0.00535293449
## [130,]  0.00746773636
## [131,] -0.00079124780
## [132,]  0.00586864007
## [133,]  0.00170433576
## [134,] -0.00428551815
## [135,] -0.00457141666
## [136,]  0.00269147317
## [137,] -0.00740200095
## [138,]  0.00707659524
## [139,]  0.00576059709
## [140,]  0.00849548024
## [141,] -0.00996935180
## [142,]  0.01112696201
## [143,] -0.00442724531
## [144,] -0.00237778140
## [145,] -0.01186790601
## [146,] -0.00786501557
## [147,] -0.01319796667
## [148,] -0.03473605192
## [149,]  0.01387903511
## [150,]  0.00377365493
## [151,]  0.02242577752
## [152,] -0.00995377844
## [153,] -0.01202767879
## [154,]  0.01945081128
## [155,] -0.03024064864
## [156,] -0.00094158484
## [157,]  0.01665719644
## [158,]  0.01352836336
## [159,] -0.00677886887
## [160,]  0.00901419898
## [161,] -0.00359340019
## [162,] -0.02998478524
## [163,]  0.01315444263
## [164,] -0.00341111855
## [165,]  0.00382392723
## [166,]  0.01482907410
## [167,] -0.00131816628
## [168,] -0.01114166336
## [169,]  0.01304516608
## [170,]  0.01754447817
## [171,] -0.00169527437
## [172,] -0.00192888416
## [173,] -0.00040554057
## [174,]  0.01057871422
## [175,]  0.00303433555
## [176,] -0.00216728679
## [177,] -0.00283364851
## [178,]  0.00398354345
## [179,] -0.00105422207
## [180,]  0.00067133228
## [181,] -0.00796907225
## [182,] -0.00064180498
## [183,] -0.01464784770
## [184,]  0.01047709254
## [185,] -0.00578402003
## [186,] -0.01133534121
## [187,]  0.00752049678
## [188,] -0.01133339373
## [189,] -0.01560692470
## [190,]  0.01117623275
## [191,]  0.01399984913
## [192,] -0.00327970857
## [193,] -0.01665477922
## [194,]  0.01022018145
## [195,]  0.00595155580
## [196,]  0.01336475879
## [197,] -0.00104134235
## [198,]  0.01243190600
## [199,] -0.00301026606
## [200,]  0.00402131923
## [201,] -0.00825196714
## [202,]  0.00907965034
## [203,] -0.00718981982
## [204,]  0.00191135994
## [205,]  0.00812949173
## [206,]  0.00700240824
## [207,]  0.01005324632
## [208,] -0.00590207574
## [209,]  0.00327792110
## [210,] -0.00139934301
## [211,]  0.01134056348
## [212,]  0.00558043998
## [213,]  0.00017543672
## [214,] -0.00285130033
## [215,]  0.00284041128
## [216,]  0.00483608329
## [217,] -0.00130134444
## [218,]  0.00257665983
## [219,] -0.00047020890
## [220,] -0.00036312684
## [221,]  0.00728982246
## [222,]  0.00106668227
## [223,]  0.00242337665
## [224,] -0.00512558965
## [225,] -0.00240660920
## [226,]  0.00160705203
## [227,]  0.01321736369
## [228,]  0.00178852841
## [229,]  0.00662008158
## [230,] -0.00456164748
## [231,] -0.01124918742
## [232,] -0.00552645191
## [233,]  0.00540220874
## [234,]  0.00047045970
## [235,]  0.01001436009
## [236,] -0.00400855700
## [237,] -0.00065535854
## [238,]  0.00439523297
## [239,]  0.00731108665
## [240,]  0.00201433117
## [241,]  0.00908433625
## [242,]  0.00103581169
## [243,]  0.00049639614
## [244,]  0.00673779375
## [245,]  0.00424657375
## [246,]  0.00231826586
## [247,]  0.00080815723
## [248,]  0.00776395595
## [249,] -0.00174782199
## [250,] -0.00673170204
## [251,]  0.00297444713

Retornos *(Continuo)

diff(log(tsNASDAQ))
## Time Series:
## Start = 2019.00280701754 
## End = 2019.70456140351 
## Frequency = 356.25 
##           ^IXIC.close
##   [1,] -0.03084000335
##   [2,]  0.04171978408
##   [3,]  0.01247742080
##   [4,]  0.01071836282
##   [5,]  0.00867332285
##   [6,]  0.00415828389
##   [7,] -0.00209060322
##   [8,] -0.00944853448
##   [9,]  0.01692966094
##  [10,]  0.00154495141
##  [11,]  0.00705003155
##  [12,]  0.01021938444
##  [13,] -0.01930855256
##  [14,]  0.00077034134
##  [15,]  0.00676492588
##  [16,]  0.01283875606
##  [17,] -0.01111263175
##  [18,] -0.00813243225
##  [19,]  0.02178483276
##  [20,]  0.01364160548
##  [21,] -0.00245711600
##  [22,]  0.01145280786
##  [23,]  0.00739548370
##  [24,] -0.00362721388
##  [25,] -0.01185664206
##  [26,]  0.00135057273
##  [27,]  0.00132817225
##  [28,]  0.01449780121
##  [29,]  0.00077651045
##  [30,]  0.00088504969
##  [31,]  0.00610228909
##  [32,]  0.00191987372
##  [33,]  0.00030713523
##  [34,] -0.00392806653
##  [35,]  0.00905176615
##  [36,]  0.00356981177
##  [37,] -0.00068329426
##  [38,]  0.00068988704
##  [39,] -0.00291375872
##  [40,]  0.00830528462
##  [41,] -0.00234368628
##  [42,] -0.00015968940
##  [43,] -0.00934082303
##  [44,] -0.01131623406
##  [45,] -0.00179638392
##  [46,]  0.02003513716
##  [47,]  0.00435270744
##  [48,]  0.00687660034
##  [49,] -0.00163673441
##  [50,]  0.00752245525
##  [51,]  0.00336949985
##  [52,]  0.00122683668
##  [53,]  0.00064971799
##  [54,]  0.01413053308
##  [55,] -0.02535915917
##  [56,] -0.00067144145
##  [57,]  0.00704285898
##  [58,] -0.00627852747
##  [59,]  0.00336848712
##  [60,]  0.00781248147
##  [61,]  0.01280244506
##  [62,]  0.00252331931
##  [63,]  0.00595265356
##  [64,] -0.00047760073
##  [65,]  0.00592658261
##  [66,]  0.00191157840
##  [67,] -0.00562311878
##  [68,]  0.00692482431
##  [69,] -0.00212176993
##  [70,]  0.00461981762
##  [71,] -0.00102134135
##  [72,]  0.00303203168
##  [73,] -0.00051885742
##  [74,]  0.00024758830
##  [75,]  0.00214945518
##  [76,]  0.01308263780
##  [77,] -0.00231896246
##  [78,]  0.00205545090
##  [79,]  0.00340849878
##  [80,]  0.00189477113
##  [81,] -0.00817609019
##  [82,] -0.00566739383
##  [83,] -0.00160012329
##  [84,]  0.01570698128
##  [85,] -0.00499899562
##  [86,] -0.01983402857
##  [87,] -0.00256991903
##  [88,] -0.00412895332
##  [89,]  0.00080241167
##  [90,] -0.03468872800
##  [91,]  0.01137354596
##  [92,]  0.01126986226
##  [93,]  0.00965642857
##  [94,] -0.01040715833
##  [95,] -0.01467935372
##  [96,]  0.01076195735
##  [97,] -0.00449010971
##  [98,] -0.01593883871
##  [99,]  0.00114376893
## [100,] -0.00389123659
## [101,] -0.00792368189
## [102,]  0.00270064539
## [103,] -0.01525511292
## [104,] -0.01624930944
## [105,]  0.02612507484
## [106,]  0.00640419901
## [107,]  0.00527547092
## [108,]  0.01648079729
## [109,]  0.01041685200
## [110,] -0.00007671072
## [111,] -0.00382313044
## [112,]  0.00568268886
## [113,] -0.00517722411
## [114,]  0.00618348126
## [115,]  0.01378090709
## [116,]  0.00419541699
## [117,]  0.00798325563
## [118,] -0.00244106597
## [119,] -0.00324363953
## [120,] -0.01522707574
## [121,]  0.00319727970
## [122,]  0.00727935369
## [123,]  0.00481789689
## [124,]  0.01055086010
## [125,]  0.00221350847
## [126,]  0.00751142236
## [127,] -0.00103354536
## [128,] -0.00779948521
## [129,]  0.00533865846
## [130,]  0.00743999086
## [131,] -0.00079156100
## [132,]  0.00585148668
## [133,]  0.00170288503
## [134,] -0.00429472731
## [135,] -0.00458189754
## [136,]  0.00268785764
## [137,] -0.00742953170
## [138,]  0.00705167364
## [139,]  0.00574406830
## [140,]  0.00845959674
## [141,] -0.01001937855
## [142,]  0.01106551277
## [143,] -0.00443707458
## [144,] -0.00238061281
## [145,] -0.01193889180
## [146,] -0.00789610794
## [147,] -0.01328583381
## [148,] -0.03535369372
## [149,]  0.01378360329
## [150,]  0.00376655255
## [151,]  0.02217801708
## [152,] -0.01000364849
## [153,] -0.01210059659
## [154,]  0.01926406199
## [155,] -0.03070732965
## [156,] -0.00094202841
## [157,]  0.01651998694
## [158,]  0.01343767208
## [159,] -0.00680194977
## [160,]  0.00897381360
## [161,] -0.00359987196
## [162,] -0.03044352228
## [163,]  0.01306867429
## [164,] -0.00341694968
## [165,]  0.00381663461
## [166,]  0.01472019841
## [167,] -0.00131903582
## [168,] -0.01120419660
## [169,]  0.01296081073
## [170,]  0.01739235057
## [171,] -0.00169671297
## [172,] -0.00193074685
## [173,] -0.00040562282
## [174,]  0.01052315114
## [175,]  0.00302974125
## [176,] -0.00216963876
## [177,] -0.00283767089
## [178,]  0.00397563015
## [179,] -0.00105477816
## [180,]  0.00067110704
## [181,] -0.00800099502
## [182,] -0.00064201103
## [183,] -0.01475618668
## [184,]  0.01042258817
## [185,] -0.00580081225
## [186,] -0.01140007585
## [187,]  0.00749235883
## [188,] -0.01139810604
## [189,] -0.01572999493
## [190,]  0.01111424013
## [191,]  0.01390275638
## [192,] -0.00328509861
## [193,] -0.01679502946
## [194,]  0.01016830853
## [195,]  0.00593391525
## [196,]  0.01327623823
## [197,] -0.00104188492
## [198,]  0.01235526440
## [199,] -0.00301480602
## [200,]  0.00401325534
## [201,] -0.00828620310
## [202,]  0.00903867814
## [203,] -0.00721579114
## [204,]  0.00190953562
## [205,]  0.00809662542
## [206,]  0.00697800523
## [207,]  0.01000304859
## [208,] -0.00591956183
## [209,]  0.00327256043
## [210,] -0.00140032300
## [211,]  0.01127674136
## [212,]  0.00556492701
## [213,]  0.00017542133
## [214,] -0.00285537303
## [215,]  0.00283638494
## [216,]  0.00482442701
## [217,] -0.00130219193
## [218,]  0.00257334594
## [219,] -0.00047031949
## [220,] -0.00036319278
## [221,]  0.00726338013
## [222,]  0.00106611377
## [223,]  0.00242044501
## [224,] -0.00513877055
## [225,] -0.00240950974
## [226,]  0.00160576211
## [227,]  0.01313077647
## [228,]  0.00178693089
## [229,]  0.00659826507
## [230,] -0.00457208354
## [231,] -0.01131293807
## [232,] -0.00554177924
## [233,]  0.00538766915
## [234,]  0.00047034907
## [235,]  0.00996454867
## [236,] -0.00401661280
## [237,] -0.00065557338
## [238,]  0.00438560214
## [239,]  0.00728449021
## [240,]  0.00201230512
## [241,]  0.00904332188
## [242,]  0.00103527561
## [243,]  0.00049627297
## [244,]  0.00671519627
## [245,]  0.00423758250
## [246,]  0.00231558283
## [247,]  0.00080783084
## [248,]  0.00773397154
## [249,] -0.00174935121
## [250,] -0.00675446214
## [251,]  0.00297003222
l_NASDAQ<-diff(log(tsNASDAQ))

3. Haciendo uso de los retornos continuos. Realice un analisis descriptivo: media (mu), varianza (s2) y desviacion estandar s de la distribucion de los datos.(3pts)

media (mu)

Indica que la media se aproxima a cero y es significativamente acercandose a la media general.

mu <- mean(l_NASDAQ)
mean(l_NASDAQ)
## [1] 0.001183922

varianza (s2)

la varianza muestra una confirmacion significativa diferente a la media.

s2<-var(l_NASDAQ)
var(l_NASDAQ)
##              ^IXIC.close
## ^IXIC.close 0.0000978898

Desviacion estandad (s)

La desviacion estandar muestra un volatilidad de 0.009893928, esto quiere decir que el precio puede moverse hacia arriba o abajo.

s<-sd(l_NASDAQ)
sd(l_NASDAQ)
## [1] 0.009893928

4. Realice un grafico de la distribucion de los retornos (continuos) y comparelo con una distribucion normal simulada a partir de la media y varianza de los retornos obtenidos en la pregunta anterior: ¿La distribucion de los datos, se asemeja a una distribucion normal? Analice sus resultados.(3pts)

El histrograma muestra una dispersionmenor de lo esperado. tambien presenta una probable una asimetria, en cuanto a los valores atipicos no se obserba. No presenta datos multimodales y su distribucion ajustada en forma de linea siguen la altura de las barras. y por ultimo su dispersion no es amplia esto indica que las barras esta llenas de forma consistente.

x<-seq(-0.1,0.1,by=0.01)
hist(
     l_NASDAQ,prob=TRUE,ylim=c(0,80),xlim = c(-0.1,0.1),breaks = 50,col = "grey94",
     main = c("Histograma de los retornos"),
     xlab = expression(r==ln(P[t]/P[t-1])),
     ylab=c("Densidad"),
    )
lines(density(l_NASDAQ),lwd=1.5,lty=2)
curve(dnorm(x,mean=mu,sd=s),lwd=2,lty=2,col="red",add = T)

5. Realice tres test de normalidad

5.1) Jarque-Bera,

5.2) Kolmogorov,

5.3) Spahiro-Wilk, ¿Cual es la hipotesis nula de cada uno de estos test? Interprete sus resultados.(3pts)

  1. Spahiro-Wilk: la hipotesis nula de normalidad es la normalidad de la serie, el resultado es unp-value = 0.000001278 es menor al 5% por lo tanto se rechaza la hipotresis nula. se tiene que identificar el periodo donde esta la observacion atipica y crear una varible de impulso.
shapiro.test(l_NASDAQ)
## 
##  Shapiro-Wilk normality test
## 
## data:  l_NASDAQ
## W = 0.95853, p-value = 0.000001278
  1. Kolmogorov-Smirnov: la hipotesis nula de normalidad es la normalidad de la serie, el resultado es un p-value = 0.1032 por lo tanto se rechaza la hipotresis nula. se tiene que identificar el periodo donde esta la observacion atipica y crear una varible de impulso.
ks.test(l_NASDAQ, "pnorm", mean=mu, sd=s)
## 
##  One-sample Kolmogorov-Smirnov test
## 
## data:  l_NASDAQ
## D = 0.076839, p-value = 0.1032
## alternative hypothesis: two-sided
  1. Jarque-Bera: la hipotesis nula de normalidad es la normalidad de la serie, el resultado es un p-value = 0.00000000000000022 es menor al 5% por lo tanto se rechaza la hipotresis nula. se tiene que identificar el periodo donde esta la observacion atipica y crear una varible de impulso.
jarque.bera.test(l_NASDAQ)
## 
##  Jarque Bera Test
## 
## data:  l_NASDAQ
## X-squared = 74.388, df = 2, p-value < 0.00000000000000022

6. Para un nivel de significancia de α1 = 0.01, α2 = 0.05, α3 = 0.1 Calcule el Value at Risk, con los siguientes metodos (Exprese sus resultados en terminos monetarios para para una cartera de 100 000 dolares).(6pts)

a Value at Risk de con datos historicos para cada

alpha1 = 0.01

W<-100000

alpha1 <- 0.01
q1 <- quantile(x=l_NASDAQ, alpha1)
mean(exp(q1)-1)
## [1] -0.03030498
VAR1 <- W*(exp(q1)-1)

El Value at Risk es de -3030.498 dolares

alpha2 = 0.05

W<-100000

alpha2 <- 0.05
q1 <- quantile(x=l_NASDAQ, alpha2)
mean(exp(q1)-1)
## [1] -0.01512554
VAR2 <- W*(exp(q1)-1)

El Value at Risk es de -1512.554 dolares

alpha3 = 0.1

W<-100000

alpha3 <- 0.1
q1 <- quantile(x=l_NASDAQ, alpha3)
mean(exp(q1)-1)
## [1] -0.01105111
VAR3 <- W*(exp(q1)-1)

El Value at Risk es de -1105.111 dolares

b Value at Risk asumiendo una que los datos se distribuyen como una normal con media

###alpha1 = 0.01

set.seed(100000)
simulacion <- rnorm(100000,mean = mu,sd = s)
VARsim<-quantile(simulacion,0.01);VARsim
##          1% 
## -0.02180821
VAR1b <-  W*(exp(VARsim)-1)

El Value at Risk es:

VAR1b
##        1% 
## -2157.213

alpha1 = 0.05

set.seed(100000)
simulacion <- rnorm(100000,mean = mu,sd = s)
VARsim<-quantile(simulacion,0.05);VARsim
##          5% 
## -0.01503324
VAR2b <-  W*(exp(VARsim)-1)

El Value at Risk es:

VAR2b
##       5% 
## -1492.08

alpha1 = 0.1

set.seed(100000)
simulacion <- rnorm(100000,mean = mu,sd = s)
VARsim<-quantile(simulacion,0.1);VARsim
##         10% 
## -0.01153218
VAR3b <-  W*(exp(VARsim)-1)

El Value at Risk es:

VAR3b
##       10% 
## -1146.593

c Value at Risk - Montecarlo Para cada, realice las siguiente simulacion:

Realice 10 000 simulaciones de un proceso browniano con media y varianza (A partir de los retornos continuos de la pregunta 2)

Calcule el VaR de cada simulacion y guarde su resultado en un vector de datos.

Grafique la distribucion de los VaR simulados.

Calcule el promedio, y su intervalo de confianza con los percentiles 0.025 y 0.975 de los datos simulados.

# Creando tabla de datos
id.VaR <- data.frame(
  Nomb.VaR= c("VAR1c","VAR2c","VAR3c"),
  ALPHA = c(0.01,0.05,0.1), 
  percentil_2.5  = c(-0.02551162,-0.01747768,-0.01355481), 
  percentil_97.5 = c(-0.01733742,-0.01245654,-0.009383086), 
  VaR = c(-1899.853,-1756.778,-1009.18), 
  stringsAsFactors = FALSE
)
# Print the data frame.         
print(id.VaR) 
##   Nomb.VaR ALPHA percentil_2.5 percentil_97.5       VaR
## 1    VAR1c  0.01   -0.02551162   -0.017337420 -1899.853
## 2    VAR2c  0.05   -0.01747768   -0.012456540 -1756.778
## 3    VAR3c  0.10   -0.01355481   -0.009383086 -1009.180

alpha1 = 0.01

VAR.mc <- numeric()
for (i in 1:10000) {
  changes <- rnorm(length(l_NASDAQ),mean=1+mu,sd=s)
  sim.ts <- cumprod(c(as.numeric(tsNASDAQ[1]),changes))
  sim.R <- diff(log(sim.ts))
  sim.q1 <- quantile(sim.R,0.01,na.rm = T)
  sim.VAR1 <- exp(sim.q1)-1
  VAR.mc[i] <- sim.VAR1
}
mean(VAR.mc)
## [1] -0.02114664
sd(VAR.mc)
## [1] 0.002070564

El Value at Risk es:

VAR1c <-  100000*sim.VAR1
VAR1c
##        1% 
## -1899.853

Grafica de la distribucion de los VaR simulados

plot(density(VAR.mc))

percentiles 0.025

quantile(VAR.mc,0.025)
##        2.5% 
## -0.02551162

percentiles 0.975

quantile(VAR.mc,0.975)
##       97.5% 
## -0.01733742

alpha1 = 0.05

VAR.mc <- numeric()
for (i in 1:10000) {
  changes <- rnorm(length(l_NASDAQ),mean=1+mu,sd=s)
  sim.ts <- cumprod(c(as.numeric(tsNASDAQ[1]),changes))
  sim.R <- diff(log(sim.ts))
  sim.q2 <- quantile(sim.R,0.05,na.rm = T)
  sim.VAR2 <- exp(sim.q2)-1
  VAR.mc[i] <- sim.VAR2
}
mean(VAR.mc)
## [1] -0.01489754
sd(VAR.mc)
## [1] 0.001286669

El Value at Risk es:

VAR2c <-  100000*sim.VAR2
VAR2c
##        5% 
## -1756.778

Grafica de la distribucion de los VaR simulados

plot(density(VAR.mc))

percentiles 0.025

quantile(VAR.mc,0.025)
##        2.5% 
## -0.01747768

percentiles 0.975

quantile(VAR.mc,0.975)
##       97.5% 
## -0.01245654

alpha1 = 0.1

VAR.mc <- numeric()
for (i in 1:10000) {
  changes <- rnorm(length(l_NASDAQ),mean=1+mu,sd=s)
  sim.ts <- cumprod(c(as.numeric(tsNASDAQ[1]),changes))
  sim.R <- diff(log(sim.ts))
  sim.q3 <- quantile(sim.R,0.1,na.rm = T)
  sim.VAR3 <- exp(sim.q3)-1
  VAR.mc[i] <- sim.VAR3
}
mean(VAR.mc)
## [1] -0.01141814
sd(VAR.mc)
## [1] 0.001069744

El Value at Risk es:

VAR3c <-  100000*sim.VAR3
VAR3c
##      10% 
## -1009.18

Grafica de la distribucion de los VaR simulados

plot(density(VAR.mc))

percentiles 0.025

quantile(VAR.mc,0.025)
##        2.5% 
## -0.01355481

percentiles 0.975

quantile(VAR.mc,0.975)
##        97.5% 
## -0.009383086

7. Estime un modelo GARCH(1, 1), a partir de los resultados obtenidos calcule la varianza incondicional y la prevalencia. Interprete sus resultados.(3pts)

En la ecuacion de los parametros podemos observar que los tres son estadisticamente significativo.

La varianza incondicional es constante y son las betas de los errores igual a 0.925105482, < 1.

La prevalecencia es 0.000007323.

R1 <- diff(log(tsNASDAQ))
ts.garch <- garch(R1, c(1,1), cond.dist="norm", include.mean = FALSE, trade = FALSE)
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     8.810082e-05     1.000e+00
##      2     5.000000e-02     1.000e+00
##      3     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1 -1.036e+03
##      1    7 -1.036e+03  2.86e-04  9.48e-04  1.0e-04  9.8e+09  1.0e-05  4.66e+06
##      2    8 -1.036e+03  7.05e-05  9.59e-05  9.3e-05  2.0e+00  1.0e-05  1.55e+00
##      3   16 -1.039e+03  2.81e-03  4.85e-03  4.7e-01  2.0e+00  8.8e-02  1.56e+00
##      4   19 -1.041e+03  1.46e-03  1.04e-03  6.9e-01  9.8e-01  2.3e-01  8.25e-03
##      5   21 -1.046e+03  5.55e-03  3.44e-03  4.5e-01  2.0e+00  4.6e-01  2.81e+00
##      6   23 -1.047e+03  7.61e-04  1.61e-03  3.0e-02  1.9e+00  4.6e-02  3.65e-03
##      7   24 -1.048e+03  9.76e-04  2.14e-03  3.0e-02  1.9e+00  4.6e-02  3.28e-02
##      8   31 -1.048e+03  4.25e-07  3.30e-05  5.8e-05  2.0e+00  8.6e-05  4.09e-04
##      9   32 -1.048e+03  1.73e-05  2.05e-05  2.9e-05  2.0e+00  4.3e-05  2.47e-05
##     10   35 -1.048e+03  1.38e-07  3.17e-07  3.3e-04  1.7e+00  5.0e-04  2.38e-06
##     11   36 -1.048e+03  4.18e-07  4.55e-07  4.8e-04  7.3e-01  1.0e-03  6.84e-07
##     12   37 -1.048e+03  1.12e-07  3.31e-07  5.3e-04  8.1e-01  1.0e-03  5.60e-07
##     13   38 -1.048e+03  1.90e-07  1.98e-07  5.5e-04  5.4e-01  1.0e-03  2.43e-07
##     14   52 -1.048e+03 -4.47e-14  2.05e-14  7.0e-15  5.0e+05  1.0e-14  3.19e-08
## 
##  ***** FALSE CONVERGENCE *****
## 
##  FUNCTION    -1.048322e+03   RELDX        6.983e-15
##  FUNC. EVALS      52         GRAD. EVALS      14
##  PRELDF       2.050e-14      NPRELDF      3.189e-08
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    7.322641e-06     1.000e+00    -2.074e+03
##      2    1.833333e-01     1.000e+00    -1.290e-01
##      3    7.417722e-01     1.000e+00    -5.975e-02
summary(ts.garch)
## 
## Call:
## garch(x = R1, order = c(1, 1), cond.dist = "norm", include.mean = FALSE,     trade = FALSE)
## 
## Model:
## GARCH(1,1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9971 -0.3604  0.1917  0.7754  2.6166 
## 
## Coefficient(s):
##       Estimate  Std. Error  t value             Pr(>|t|)    
## a0 0.000007323 0.000003433    2.133             0.032927 *  
## a1 0.183333268 0.049790401    3.682             0.000231 ***
## b1 0.741772214 0.063917969   11.605 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Diagnostic Tests:
##  Jarque Bera Test
## 
## data:  Residuals
## X-squared = 44.569, df = 2, p-value = 0.0000000002099
## 
## 
##  Box-Ljung test
## 
## data:  Squared.Residuals
## X-squared = 0.4746, df = 1, p-value = 0.4909
ts.garch$residuals
## Time Series:
## Start = 2019.00280701754 
## End = 2019.70456140351 
## Frequency = 356.25 
##   [1]           NA  2.616614253  0.549824722  0.524332308  0.471522017
##   [6]  0.252089759 -0.143473634 -0.734189441  1.398515451  0.118994189
##  [11]  0.611775055  0.953201625 -1.826688120  0.061178416  0.604975549
##  [16]  1.232763090 -1.023009747 -0.750273730  2.109980927  1.035953292
##  [21] -0.188417005  0.987245418  0.645663538 -0.338729804 -1.217801640
##  [26]  0.132812152  0.144603087  1.730047667  0.078460503  0.098897330
##  [31]  0.746220136  0.240446354  0.041305540 -0.564899174  1.334353406
##  [36]  0.475010632 -0.095165575  0.102108625 -0.453555938  1.321585515
##  [41] -0.333916525 -0.023839077 -1.465744209 -1.547941719 -0.214033274
##  [46]  2.582940262  0.388473890  0.674562425 -0.169650560  0.858064646
##  [51]  0.389839043  0.152382015  0.087071405  2.024817052 -2.834268939
##  [56] -0.049418233  0.586213966 -0.565006453  0.326950967  0.832155494
##  [61]  1.397763782  0.252838280  0.655881096 -0.055178410  0.747051398
##  [66]  0.245869125 -0.773631938  0.957470522 -0.286321906  0.660769522
##  [71] -0.148199832  0.463761797 -0.081315479  0.040391750  0.362267829
##  [76]  2.234363345 -0.289572866  0.274967101  0.484232677  0.278747628
##  [81] -1.257791661 -0.794205575 -0.224098733  2.325746795 -0.537853218
##  [86] -2.275387537 -0.220526680 -0.394993034  0.083884714 -3.997149407
##  [91]  0.675139655  0.725129692  0.666702472 -0.775642249 -1.157904406
##  [96]  0.835176316 -0.364527179 -1.433876326  0.094803985 -0.362026083
## [101] -0.809569205  0.284844335 -1.757541149 -1.579225826  2.254651930
## [106]  0.420416690  0.385816355  1.340697180  0.800802030 -0.006207162
## [111] -0.348111534  0.569777453 -0.554967500  0.705628773  1.632113430
## [116]  0.430385817  0.886831791 -0.274438060 -0.395972482 -1.981961598
## [121]  0.330452060  0.820876202  0.554961201  1.284357828  0.250969354
## [126]  0.925132028 -0.126678218 -1.034014427  0.685352280  0.980665233
## [131] -0.102049476  0.810936248  0.235646335 -0.629195862 -0.681035155
## [136]  0.401813379 -1.148602305  1.012797054  0.793525724  1.170446078
## [141] -1.302289978  1.326049242 -0.491723458 -0.281872498 -1.525218650
## [146] -0.888919051 -1.511292868 -3.589451270  0.784850194  0.228828762
## [151]  1.527172517 -0.627765225 -0.827119506  1.386910886 -2.077533492
## [156] -0.050920566  1.021865324  0.847802557 -0.451682949  0.661518982
## [161] -0.285858416 -2.697868455  0.792855172 -0.220486433  0.278644075
## [166]  1.205283260 -0.105039960 -1.003694138  1.169727933  1.530200536
## [171] -0.134724530 -0.172346226 -0.040341172  1.159647965  0.321683900
## [176] -0.250854497 -0.355615785  0.531121320 -0.146578696  0.099016936
## [181] -1.242292319 -0.090950898 -2.215558163  1.164212801 -0.623027290
## [186] -1.292503055  0.794835280 -1.247170603 -1.630275945  1.007301930
## [191]  1.267696196 -0.285958906 -1.622151273  0.863860813  0.522347595
## [196]  1.268697651 -0.094769918  1.253353540 -0.290921188  0.426246392
## [201] -0.950289168  1.034703780 -0.812330019  0.219911907  1.012718886
## [206]  0.854065262  1.233476569 -0.686049007  0.394049001 -0.180110012
## [211]  1.556031990  0.667070616  0.021821630 -0.384097010  0.401886373
## [216]  0.713296079 -0.193001533  0.399937936 -0.075074197 -0.060136366
## [221]  1.238337318  0.163507302  0.387249981 -0.840555755 -0.381511814
## [226]  0.260575508  2.189557974  0.220609496  0.877235035 -0.604155441
## [231] -1.544700972 -0.659678081  0.666712997  0.060181009  1.372977991
## [236] -0.499748885 -0.085935125  0.616709998  1.047499291  0.276611118
## [241]  1.314605841  0.136625286  0.070106254  1.006217746  0.607685608
## [246]  0.338900010  0.123285828  1.233839874 -0.254001231 -1.029228646
## [251]  0.430332426
hhat <- ts(ts.garch$fitted.values[-1,1]^2,start = c(2019,1),frequency = 365.25)
plot.ts(hhat)