Juan Alberto Zapata May 27, 2020
## [[1]]
## [1] "pdfetch" "stats" "graphics" "grDevices" "utils" "datasets"
## [7] "methods" "base"
##
## [[2]]
## [1] "tseries" "pdfetch" "stats" "graphics" "grDevices" "utils"
## [7] "datasets" "methods" "base"
##
## [[3]]
## [1] "forcats" "stringr" "dplyr" "purrr" "readr" "tidyr"
## [7] "tibble" "ggplot2" "tidyverse" "tseries" "pdfetch" "stats"
## [13] "graphics" "grDevices" "utils" "datasets" "methods" "base"
##
## [[4]]
## [1] "forecast" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "tseries" "pdfetch"
## [13] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
## [19] "base"
NASDAQdata <- pdfetch_YAHOO("^IXIC",from = as.Date("2019-01-01"),to = as.Date("2020-01-01"), interval = '1d') #DATOS DE S&P500
tsNASDAQ <- NASDAQdata[,4]
tsNASDAQ1 <- ts(tsNASDAQ$`^IXIC.close`,start = c(2019,1),frequency=356.25)*(Discretos)
*(Continuo)
## [1] 0.001183922
## ^IXIC.close
## ^IXIC.close 0.0000978898
## [1] 0.009893928
media (mu)
varianza (s2)
Desviacion estandad (s)
x<-seq(-0.1,0.1,by=0.01)
hist(
l_NASDAQ,prob=TRUE,ylim=c(0,80),xlim = c(-0.1,0.1),breaks = 50,col = "grey94",
main = c("Histograma de los retornos"),
xlab = expression(r==ln(P[t]/P[t-1])),
ylab=c("Densidad"),
)
lines(density(l_NASDAQ),lwd=1.5,lty=2)
curve(dnorm(x,mean=mu,sd=s),lwd=2,lty=2,col="red",add = T) Simulacion las probabilidades dadas (0.01) 100000 repeticiones
##
## Shapiro-Wilk normality test
##
## data: l_NASDAQ
## W = 0.95853, p-value = 0.000001278
##
## One-sample Kolmogorov-Smirnov test
##
## data: l_NASDAQ
## D = 0.076839, p-value = 0.1032
## alternative hypothesis: two-sided
##
## Jarque Bera Test
##
## data: l_NASDAQ
## X-squared = 74.388, df = 2, p-value < 0.00000000000000022
## [1] -0.03030498
## [1] -0.01512554
## [1] -0.01105111
## 1%
## -0.02170762
## 1%
## -0.0214737
VAR.mc <- numeric()
for (i in 1:1000) {
changes <- rnorm(length(l_NASDAQ),mean=1+mu,sd=s)
sim.ts <- cumprod(c(as.numeric(tsNASDAQ[1]),changes))
sim.R <- diff(log(sim.ts))
sim.q <- quantile(sim.R,0.01,na.rm = T)
sim.VAR <- exp(sim.q)-1
VAR.mc[i] <- sim.VAR
}
mean(VAR.mc)## [1] -0.02094656
## [1] 0.002084594
## 2.5%
## -0.02534959
## 97.5%
## -0.01721036
options(scipen=999)
pkges<-c("pdfetch","tseries","tidyverse","forecast")
#install.packages(pkges)
lapply(pkges,"library",character.only=T)## [[1]]
## [1] "forecast" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "tseries" "pdfetch"
## [13] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
## [19] "base"
##
## [[2]]
## [1] "forecast" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "tseries" "pdfetch"
## [13] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
## [19] "base"
##
## [[3]]
## [1] "forecast" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "tseries" "pdfetch"
## [13] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
## [19] "base"
##
## [[4]]
## [1] "forecast" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "tseries" "pdfetch"
## [13] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
## [19] "base"
##
## ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
## I INITIAL X(I) D(I)
##
## 1 8.810082e-05 1.000e+00
## 2 5.000000e-02 1.000e+00
## 3 5.000000e-02 1.000e+00
##
## IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
## 0 1 -1.036e+03
## 1 7 -1.036e+03 2.86e-04 9.48e-04 1.0e-04 9.8e+09 1.0e-05 4.66e+06
## 2 8 -1.036e+03 7.05e-05 9.59e-05 9.3e-05 2.0e+00 1.0e-05 1.55e+00
## 3 16 -1.039e+03 2.81e-03 4.85e-03 4.7e-01 2.0e+00 8.8e-02 1.56e+00
## 4 19 -1.041e+03 1.46e-03 1.04e-03 6.9e-01 9.8e-01 2.3e-01 8.25e-03
## 5 21 -1.046e+03 5.55e-03 3.44e-03 4.5e-01 2.0e+00 4.6e-01 2.81e+00
## 6 23 -1.047e+03 7.61e-04 1.61e-03 3.0e-02 1.9e+00 4.6e-02 3.65e-03
## 7 24 -1.048e+03 9.76e-04 2.14e-03 3.0e-02 1.9e+00 4.6e-02 3.28e-02
## 8 31 -1.048e+03 4.25e-07 3.30e-05 5.8e-05 2.0e+00 8.6e-05 4.09e-04
## 9 32 -1.048e+03 1.73e-05 2.05e-05 2.9e-05 2.0e+00 4.3e-05 2.47e-05
## 10 35 -1.048e+03 1.38e-07 3.17e-07 3.3e-04 1.7e+00 5.0e-04 2.38e-06
## 11 36 -1.048e+03 4.18e-07 4.55e-07 4.8e-04 7.3e-01 1.0e-03 6.84e-07
## 12 37 -1.048e+03 1.12e-07 3.31e-07 5.3e-04 8.1e-01 1.0e-03 5.60e-07
## 13 38 -1.048e+03 1.90e-07 1.98e-07 5.5e-04 5.4e-01 1.0e-03 2.43e-07
## 14 52 -1.048e+03 -4.47e-14 2.05e-14 7.0e-15 5.0e+05 1.0e-14 3.19e-08
##
## ***** FALSE CONVERGENCE *****
##
## FUNCTION -1.048322e+03 RELDX 6.983e-15
## FUNC. EVALS 52 GRAD. EVALS 14
## PRELDF 2.050e-14 NPRELDF 3.189e-08
##
## I FINAL X(I) D(I) G(I)
##
## 1 7.322641e-06 1.000e+00 -2.074e+03
## 2 1.833333e-01 1.000e+00 -1.290e-01
## 3 7.417722e-01 1.000e+00 -5.975e-02
##
## Call:
## garch(x = R1, order = c(1, 1))
##
## Model:
## GARCH(1,1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9971 -0.3604 0.1917 0.7754 2.6166
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## a0 0.000007323 0.000003433 2.133 0.032927 *
## a1 0.183333268 0.049790401 3.682 0.000231 ***
## b1 0.741772214 0.063917969 11.605 < 0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Diagnostic Tests:
## Jarque Bera Test
##
## data: Residuals
## X-squared = 44.569, df = 2, p-value = 0.0000000002099
##
##
## Box-Ljung test
##
## data: Squared.Residuals
## X-squared = 0.4746, df = 1, p-value = 0.4909
## [1] NA 2.616614253 0.549824722 0.524332308 0.471522017
## [6] 0.252089759 -0.143473634 -0.734189441 1.398515451 0.118994189
## [11] 0.611775055 0.953201625 -1.826688120 0.061178416 0.604975549
## [16] 1.232763090 -1.023009747 -0.750273730 2.109980927 1.035953292
## [21] -0.188417005 0.987245418 0.645663538 -0.338729804 -1.217801640
## [26] 0.132812152 0.144603087 1.730047667 0.078460503 0.098897330
## [31] 0.746220136 0.240446354 0.041305540 -0.564899174 1.334353406
## [36] 0.475010632 -0.095165575 0.102108625 -0.453555938 1.321585515
## [41] -0.333916525 -0.023839077 -1.465744209 -1.547941719 -0.214033274
## [46] 2.582940262 0.388473890 0.674562425 -0.169650560 0.858064646
## [51] 0.389839043 0.152382015 0.087071405 2.024817052 -2.834268939
## [56] -0.049418233 0.586213966 -0.565006453 0.326950967 0.832155494
## [61] 1.397763782 0.252838280 0.655881096 -0.055178410 0.747051398
## [66] 0.245869125 -0.773631938 0.957470522 -0.286321906 0.660769522
## [71] -0.148199832 0.463761797 -0.081315479 0.040391750 0.362267829
## [76] 2.234363345 -0.289572866 0.274967101 0.484232677 0.278747628
## [81] -1.257791661 -0.794205575 -0.224098733 2.325746795 -0.537853218
## [86] -2.275387537 -0.220526680 -0.394993034 0.083884714 -3.997149407
## [91] 0.675139655 0.725129692 0.666702472 -0.775642249 -1.157904406
## [96] 0.835176316 -0.364527179 -1.433876326 0.094803985 -0.362026083
## [101] -0.809569205 0.284844335 -1.757541149 -1.579225826 2.254651930
## [106] 0.420416690 0.385816355 1.340697180 0.800802030 -0.006207162
## [111] -0.348111534 0.569777453 -0.554967500 0.705628773 1.632113430
## [116] 0.430385817 0.886831791 -0.274438060 -0.395972482 -1.981961598
## [121] 0.330452060 0.820876202 0.554961201 1.284357828 0.250969354
## [126] 0.925132028 -0.126678218 -1.034014427 0.685352280 0.980665233
## [131] -0.102049476 0.810936248 0.235646335 -0.629195862 -0.681035155
## [136] 0.401813379 -1.148602305 1.012797054 0.793525724 1.170446078
## [141] -1.302289978 1.326049242 -0.491723458 -0.281872498 -1.525218650
## [146] -0.888919051 -1.511292868 -3.589451270 0.784850194 0.228828762
## [151] 1.527172517 -0.627765225 -0.827119506 1.386910886 -2.077533492
## [156] -0.050920566 1.021865324 0.847802557 -0.451682949 0.661518982
## [161] -0.285858416 -2.697868455 0.792855172 -0.220486433 0.278644075
## [166] 1.205283260 -0.105039960 -1.003694138 1.169727933 1.530200536
## [171] -0.134724530 -0.172346226 -0.040341172 1.159647965 0.321683900
## [176] -0.250854497 -0.355615785 0.531121320 -0.146578696 0.099016936
## [181] -1.242292319 -0.090950898 -2.215558163 1.164212801 -0.623027290
## [186] -1.292503055 0.794835280 -1.247170603 -1.630275945 1.007301930
## [191] 1.267696196 -0.285958906 -1.622151273 0.863860813 0.522347595
## [196] 1.268697651 -0.094769918 1.253353540 -0.290921188 0.426246392
## [201] -0.950289168 1.034703780 -0.812330019 0.219911907 1.012718886
## [206] 0.854065262 1.233476569 -0.686049007 0.394049001 -0.180110012
## [211] 1.556031990 0.667070616 0.021821630 -0.384097010 0.401886373
## [216] 0.713296079 -0.193001533 0.399937936 -0.075074197 -0.060136366
## [221] 1.238337318 0.163507302 0.387249981 -0.840555755 -0.381511814
## [226] 0.260575508 2.189557974 0.220609496 0.877235035 -0.604155441
## [231] -1.544700972 -0.659678081 0.666712997 0.060181009 1.372977991
## [236] -0.499748885 -0.085935125 0.616709998 1.047499291 0.276611118
## [241] 1.314605841 0.136625286 0.070106254 1.006217746 0.607685608
## [246] 0.338900010 0.123285828 1.233839874 -0.254001231 -1.029228646
## [251] 0.430332426