IAT: 0.15, 0.35, and 0.65 are considered small, medium, and large level of bias for individual scores.
Positive means bias towards arts / against Math.
iat = read_csv(here::here(params$arquivo_dados), col_types = "cccdc")
iat = iat %>%
mutate(sex = factor(sex, levels = c("m", "f"), ordered = TRUE))
glimpse(iat)
## Rows: 155
## Columns: 5
## $ session_id <chr> "2436706", "2436967", "2440429", "2440430", "2440431", "2…
## $ referrer <chr> "sdsu", "sdsu", "sdsu", "sdsu", "sdsu", "sdsu", "sdsu", "…
## $ sex <ord> f, f, f, f, m, f, f, m, f, m, f, f, f, f, f, f, m, m, f, …
## $ d_art <dbl> 0.90444320, -0.47402625, 0.46840862, -0.02522412, 0.13681…
## $ iat_exclude <chr> "Include", "Include", "Include", "Include", "Include", "I…
iat %>%
ggplot(aes(x = d_art, fill = sex, color = sex)) +
geom_histogram(binwidth = .2, alpha = .4) +
geom_rug() +
facet_grid(sex ~ ., scales = "free_y") +
theme(legend.position = "None")
iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1)
iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1) +
stat_summary(geom = "point", fun.y = "mean", color = "red", size = 5)
## Warning: `fun.y` is deprecated. Use `fun` instead.
iat %>%
group_by(sex) %>%
summarise(media = mean(d_art), desvio = sd(d_art), n = n())
## # A tibble: 2 x 4
## sex media desvio n
## <ord> <dbl> <dbl> <int>
## 1 m 0.224 0.485 38
## 2 f 0.467 0.548 117
agrupado = iat %>%
group_by(sex) %>%
summarise(media = mean(d_art))
m = agrupado %>% filter(sex == "m") %>% pull(media)
f = agrupado %>% filter(sex == "f") %>% pull(media)
m - f
## [1] -0.2430539
library(boot)
theta <- function(d, i) {
agrupado = d %>%
slice(i) %>%
group_by(sex) %>%
summarise(media = mean(d_art))
m = agrupado %>% filter(sex == "m") %>% pull(media)
f = agrupado %>% filter(sex == "f") %>% pull(media)
m - f
}
booted <- boot(data = iat,
statistic = theta,
R = 2000)
ci = tidy(booted,
conf.level = .95,
conf.method = "bca",
conf.int = TRUE)
glimpse(ci)
## Rows: 1
## Columns: 5
## $ statistic <dbl> -0.2430539
## $ bias <dbl> 0.002228785
## $ std.error <dbl> 0.09062812
## $ conf.low <dbl> -0.4227803
## $ conf.high <dbl> -0.06978702
ci %>%
ggplot(aes(
x = "",
y = statistic,
ymin = conf.low,
ymax = conf.high
)) +
geom_pointrange() +
geom_point(size = 3) +
labs(x = "Diferença",
y = "IAT homens - mulheres")
p1 = iat %>%
ggplot(aes(x = sex, y = d_art)) +
geom_quasirandom(width = .1) +
stat_summary(geom = "point", fun = "mean", color = "red", size = 5)
p2 = ci %>%
ggplot(aes(
x = "",
y = statistic,
ymin = conf.low,
ymax = conf.high
)) +
geom_pointrange() +
geom_point(size = 3) +
ylim(-1, 1) +
labs(x = "Diferença",
y = "IAT homens - mulheres")
grid.arrange(p1, p2, ncol = 2)
Em média, as mulheres que participaram do experimento tiveram uma associação implícita (medida pelo IAT) com a matemática negativa e média (média 0.466, desv. padrão 0.5475, N = 117). Homens tiveram uma associação positiva com a matemática, portanto maior que a das mulheres (média 0.223, desv. padrão 0.4850899, N = 38 ). Houve portanto uma considerável diferença entre homens e mulheres (diferença das médias -0.2430539, 95% IC [-0.41, -0.06] ). A partir desta amostra, estimamos que mulheres tem uma associação negativa maior que a dos homens, mas que a diferença poder ser pequena.
Exemplos de possíveis conclusões para completar