This approximation is only descriptive. Epidemiological models are only a personal experience, probably full of errors, misspecifications, and missinterpretations, with poor experimental conditions and without controls, more close to models based on mere speculation than serious research. By now, “cases” will refer only to confirmed cases, notwithstanding which that there may be other cases that are in quarantine or have not attended health care centers to be diagnosed. That is why these results could be biased in terms of the sample due to selection bias.

Worldwide Dataset of Number of Cases By Each Country


We downloaded coronavirus available in this link, obtained from the Johns Hopkins University each day at 1AM (GMT-03). The data from Chile is the obtained in 10 junio, 2020 at 1 PM.


First we defined the datasets in order to identify Latin American countries that have been affected by Coronavirus into an objective time progression (determined by dates).


coronavirus_plot_tiempo_obj<- coronavirus %>%
  dplyr::filter(country %in% c('Argentina','Bolivia','Brazil', 'Chile',
                                      'Colombia','Costa Rica','Cuba', 'Dominican Republic',
                                      'Ecuador', 'Honduras','Mexico', 'Panama',
                                      'Paraguay','Peru', 'Uruguay',
                                      'Venezuela')) %>%
  dplyr::filter(type=="confirmed") %>%
  dplyr::arrange(country,date) %>%
  dplyr::group_by(country) %>%
  dplyr::mutate(acum_new = cumsum(cases)) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(chile=ifelse(country=="Chile",1,0)) %>%
  dplyr::mutate(date_posixct=as.POSIXct(as.character(date))) 


coronavirus_plot_tiempo_por_paises_prim_caso <- coronavirus_plot_tiempo_obj %>%
  dplyr::filter(acum_new>0) %>%
  dplyr::group_by(country) %>% 
  dplyr::mutate(days_passed=row_number()) %>%
  dplyr::ungroup()


library(magrittr)
library(ggplot2)
coronavirus_plot_tiempo_obj_cl<-coronavirus_plot_tiempo_obj %>%
  dplyr::filter(country=="Chile")

col_vector<-c("darksalmon","gold","orange4","mediumorchid2", "darkred","red","pink1","lightcyan2")
#sample(color, 16)
#pie(rep(1,16), col=sample(col_vector, 16))
manualcolors<-c('black','forestgreen', 'red2', 'orange', 'cornflowerblue', 
                'magenta', 'darkolivegreen4',  
                'indianred1', 'tan4', 'darkblue', 
                'mediumorchid1','firebrick4',  'yellowgreen', 'gray20', 'tan3',
                "tan1",'darkgray', 'wheat4', '#DDAD4B', 'chartreuse', 'seagreen1',
                'moccasin', 'mediumvioletred', 'seagreen','cadetblue1',
                "darkolivegreen1" ,"tan2" ,   "tomato3" , "#7CE3D8","gainsboro")
library(ochRe)
library(randomcoloR)
n <- 16
palette <- distinctColorPalette(n)

pal <- colorRampPalette(ochre_palettes[["emu_woman_paired"]])

#pie(rep(1,30), col=sample(manualcolors, 30))

coronavirus_plot_tiempo_obj %>%
  dplyr::filter(country!="Chile") %>%
  ggplot() +#, ) +
  geom_line(aes(x = date_posixct, y = acum_new, color=factor(country)),size=1) +
  scale_x_datetime(breaks=scales::date_breaks("1 week"),labels = scales::date_format("%d/%m"),
                   limits = as.POSIXct(c('2020-02-20 09:00:00',as.character(Sys.time())))) +
  geom_line(aes(x = date_posixct, y = acum_new,color=" Chile"), data=coronavirus_plot_tiempo_obj_cl, size=2.5) +
  ylim(min(coronavirus_plot_tiempo_obj$acum_new, na.rm=TRUE),max(coronavirus_plot_tiempo_obj$acum_new, na.rm=TRUE)) +
  scale_colour_ochre(name= "Países",
                     palette="emu_woman_paired",
                     labels=c('Chile', 'Argentina','Bolivia','Brazil',
                              'Colombia','Costa Rica','Cuba', 'Dom. Republic',
                              'Ecuador', 'Honduras','Mexico', 'Panama',
                              'Paraguay','Peru', 'Uruguay','Venezuela', discrete=FALSE)) +
  guides(color=guide_legend(ncol=6,name = "Countries",size=6))+  labs(color="Countries")+
  sjPlot::theme_sjplot2() +
  geom_vline(xintercept = as.POSIXct('2020-03-03 09:00:00'))+ 
  labs(title = paste0("Figure 1a. Linear Trends of Aggregated Data of Chile v/s Other States of \n Confirmed Cases COVID-19 in Latin America"),
       y = "No. of Confirmed Cases", x = "Week/Year",
       caption="Vertical Line: First case in Chile; Dates since 02-20 until last day of retrieval")+
  theme(plot.title = element_text(color="darkblue"))+
  theme(legend.title = element_text(size= 10.5, colour = "black"), legend.position='bottom', 
        legend.text=element_text(size=7))+
  theme(plot.caption = element_text(hjust = 0, face = "italic"))

coronavirus_plot_tiempo_obj$tooltip <- paste0(substr(coronavirus_plot_tiempo_obj$country,1,3),"=", round(coronavirus_plot_tiempo_obj$acum_new,0) )

rank_la_countries<-coronavirus_plot_tiempo_por_paises_prim_caso %>%
  dplyr::group_by(country) %>% 
  dplyr::filter(date==max(date)) %>%
  dplyr::select(country,acum_new) %>% 
  dplyr::arrange(desc(acum_new))%>%
  dplyr::ungroup()%>%
  dplyr::mutate(rn=row_number())
fila_chile_la_rank<-as.numeric(rank_la_countries %>% dplyr::filter(country=="Chile")%>% 
                                 dplyr::select(rn))

rank<-rank_la_countries %>%
  dplyr::slice(1:fila_chile_la_rank-1)


words_la <-data.frame(rank_la_countries[fila_chile_la_rank-1,"country"])
if (fila_chile_la_rank>3) {
  for (i in seq(from=fila_chile_la_rank-2,to=2,by=1)){
    words_la <-paste0(words_la,", ",rank_la_countries[i,"country"])
  }
  words_la <-paste0(words_la," & ",rank_la_countries[1,"country"])
} else {
  words_la <-paste0(rank_la_countries[2,"country"]," & ",rank_la_countries[1,"country"])
}

library(ggiraph)
#if( requireNamespace("dplyr", quietly = TRUE)){
gg <- coronavirus_plot_tiempo_obj %>%
  dplyr::mutate(country=dplyr::if_else(country=="Dominican Republic","Dom.Rep",country)) %>%
  dplyr::mutate(country=dplyr::if_else(country=="Costa Rica","C.Rica",country)) %>%
  ggplot(aes( hover_css = "fill:none;")) +#, ) +
  scale_x_datetime(breaks=scales::date_breaks("1 week"),labels = scales::date_format("%d/%m"),
                   limits = as.POSIXct(c('2020-02-20 09:00:00',as.character(Sys.time()))))+
  geom_line(aes(x = date_posixct, y = acum_new, color=factor(country)),size=1) +
  ggiraph::geom_point_interactive(aes(x = date_posixct,y = acum_new, color=country, tooltip=tooltip),size = .75) +
  scale_colour_ochre(name= "Países",
                     palette="emu_woman_paired",
                     labels=c('Chile', 'Argentina','Bolivia','Brazil',
                              'Colombia','Costa Rica','Cuba', 'Dom. Republic',
                              'Ecuador', 'Honduras','Mexico', 'Panama',
                              'Paraguay','Peru', 'Uruguay','Venezuela', discrete=FALSE)) +
  guides(color=guide_legend(ncol=6,name = "Countries",size=6))+  labs(color="Countries")+
  sjPlot::theme_sjplot2() +
  geom_vline(xintercept = as.POSIXct('2020-03-03 09:00:00'))+ 
  labs(title = "Figure 1b. Linear Trends of Aggregated Data of Chile v/s\n Other States of Confirmed Cases COVID-19 in Latin Am.", subtitle= "Interactive Plot",
       y = "No. of Confirmed Cases", x = "Week/Year",
       caption="Vertical Line: First case in Chile; Dates since 02-20 until last day of retrieval")+
  theme(plot.title = element_text(color="darkblue"))+
  theme(legend.title = element_text(size= 10.5, colour = "black"), legend.position='bottom', 
        legend.text=element_text(size=7))+
  theme(plot.caption = element_text(hjust = -0.5, face = "italic"))
#  x <- girafe(ggobj = gg)
#  x <- girafe_options(x = x,
#                      opts_hover(css = "stroke:red;fill:orange") )
#  if( interactive() ) print(x)

#}
tooltip_css <- "background-color:gray;color:white;font-style:italic;padding:10px;border-radius:10px 20px 10px 20px;"

ggiraph(code = {print(gg)}, tooltip_extra_css = tooltip_css, tooltip_opacity = .75 )


As seen in Figure 1, Chile is in the 3rd place in terms of cases detected. Peru & Brazil have more confirmed cases. This could be explained by population, date of onset of diagnoses, or the quantity of tests applied.


#library(rCharts)          # To make the convertion data-frame / xts format
#coronavirus_plot_tiempo_obj$date <- as.numeric(as.POSIXct(paste0(coronavirus_plot_tiempo_obj$date, "-01-01")))
coronavirus_plot_tiempo_obj_conv <- transform(coronavirus_plot_tiempo_obj, date = as.numeric(coronavirus_plot_tiempo_obj$date_posixct)*1000)

line.rcharts <- rCharts::hPlot(acum_new ~date, group="country", data=coronavirus_plot_tiempo_obj_conv, type="line",
                      title="Figure 1b. Linear Trends of Aggregated Data of Chile v/s Other States of Confirmed Cases COVID-19 in Latin America", subtitle= "Interactive Plot")
#line.rcharts$show('iframesrc', cdn=TRUE)
# line.rcharts$xAxis(
#    tickFormat =   "#!
#     function(d) {return d3.time.format('%Y-%m-%d')(new Date(d*1000*3600*24));}
#   !#",
#    rotateLabels = -90
# )

x1 <- xPlot(acum_new ~ date_posixct, group = "country", data = coronavirus_plot_tiempo_obj_conv, type = "line-dotted")
x1$print("chart4")

x1$xAxis(type = 'datetime', labels = list(
  format = '{value:%Y-%m-%d}'), title = list(text = "Days since the first diagnosed"))
x1$yAxis(title = list(text = "Days of Exposure"))
#line.rcharts$set(width = 1000, height = 600)
#line.rcharts$set(slider = TRUE)
#line.rcharts$show('inline', include_assets = TRUE, cdn = TRUE)
#line.rcharts$show('iframesrc', cdn = TRUE)
#line.rcharts$print("chart4")

Second, we transformed the accumulative cases into a logaritmic scale, comparing Chile versus other latin american countries in objective time periods. As can be seen, Chile seems to have a greater logaritmic progression. Still, objective dates do not permit comparisons between countries, since there is a difference between the date of the first cases in each one. Additionally, the comparison is made on aggregated means, hence, some countries could be over Chile in terms of confirmed cases.


combo_plot<-  ggplot(coronavirus_plot_tiempo_obj, aes(x = date_posixct, y = log(acum_new), group = chile, color=as.factor(chile))) +
  stat_smooth(aes(group = chile),method = "lm", se = T) + 
  stat_summary(geom = "point", fun.y = mean, shape = 15, size = 2.5) + 
  #  stat_quantile(quantiles = c(0.25,  0.75), color= "black", linetype="dashed") +
  scale_x_datetime(breaks=scales::date_breaks("1 week"),labels = scales::date_format("%d/%m"),
                   limits = as.POSIXct(c('2020-02-20 09:00:00',as.character(Sys.time())))) +
  sjPlot::theme_sjplot2() +
  #  theme(legend.position = "none") +
  labs(title = paste0("Figure 2. Linear Trends, objective time of progression in cum. cases"),
       subtitle = "(Linear regression in shaded area. Means in squares)",
       y = "Cumulative Cases (Log. Scale)", x = "Weeks/Year",
       caption="Note. Vertical Line: First case in Chile; Dates since 02-20; Other countries: Argentina,Bolivia,Brazil,Colombia,Costa Rica,Cuba,\nDom. Republic,Ecuador, Honduras,Mexico, Panama, Paraguay,Peru, Uruguay & Venezuela")+ 
  geom_vline(xintercept = as.POSIXct('2020-03-03 09:00:00'))+ 
  scale_colour_discrete(name  ="País",
                        labels=c("Other Countries", "Chile"))  +
  theme(plot.title = element_text(color="darkblue"))+
  theme(legend.text = element_text(size = 8, face = "italic"))+
  theme(legend.title = element_text(size = 8, face = "italic"))+
  theme(plot.caption = element_text(hjust = 0, face= "italic", size=8))
print(combo_plot)

#ggsave(paste0("G:/Mi unidad/covid19/_Primer gráfico simple.png"), combo_plot, dpi = 300)


Third, we obtained the number of cases, but grouping the other countries of latin america, vs. cases in Chile, but also incluiding Interquartile Range, in order to catch the heterogeneity. Also we included a linear regression to show the overall linear trend. As can be seen in Figure 3, when we normalized dates into the difference between the date of the diagnosis of the first case, Chile seems to follow nearly the same trend than the other countries.


segundo_grafico<- 
  ggplot(data = coronavirus_plot_tiempo_por_paises_prim_caso, aes(x = days_passed)) +
  stat_smooth(method = "lm", se = T, aes(y = acum_new, fill = as.factor(chile),color = as.factor(chile)), linetype="dashed") +
  stat_summary(geom = "line", fun.y = median, size = 1, aes(y = acum_new, color=as.factor(chile))) +
  stat_summary(geom="ribbon", aes(y = acum_new,color="green" ), fun.ymin = function(x) quantile(x, 0.25), fun.ymax = function(x) quantile(x, 0.75), alpha=.45)+ 
  #geom_line(aes(y = acum_new), color = "blue") +
  #geom_line(aes(y = B19301_001E), color = "red") +
  labs(title = paste0("Figure 3. Linear Trends of Aggregated Data of Chile v/s\nOther States of Confirmed Cases COVID-19 in Latin America"),
       y = "No. of Confirmed Cases", x = "Days Since the First Diagnosed",
       caption="Note: Linear Regression in Dashed Lines, SE's (Std. Errors) in gray;O Other countries: Argentina,Bolivia,Brazil,\nColombia,Costa Rica,Cuba,Dom. Republic,Ecuador, Honduras,Mexico, Panama,Paraguay,Peru, Uruguay & Venezuela")+ 
  #scale_x_continuous("Quarters & Years",breaks=seq(0,14,7)) +
  theme(axis.text.x = element_text(size=13.5,vjust = 0.5), axis.text.y = element_text(size=14),
        axis.title.y = element_text(size = 14)) +
  theme(legend.text = element_text(size = 12, face = "italic")) +
  scale_colour_discrete(name  ="Legend", 
                        labels=c("Other Countries", "Chile", "25th & 75th percentiles\n  Orher Countries")) +
  #Medians in continuous lines, 25th and 75th \npercentiles in Shaded Areas
  #scale_fill_manual(values=c("red","blue"))+
  #ylim(c(0,100))+
  #  scale_fill_manual(values=c("0","1"),labels=c("Otros Países", "Chile")) +
  sjPlot::theme_sjplot2() +
  theme(plot.title = element_text(color="darkblue"))+
  theme(legend.title = element_text(size= 10.5, colour = "black"), legend.position='bottom')+
  theme(plot.caption = element_text(hjust = 0, face = "italic",size=8.5))+
  guides( fill = F)

print(segundo_grafico)

#ggsave("G:/Mi unidad/covid19/_Segundo gráfico.png", segundo_grafico,dpi = 300)


In Figure 3 we can see that if we calculated the trends by starting from the first day of the first confirmed case, our country starts showed a more pronounced trend compared to the rest of latin american countries starting from the 12th day of the first reported case, but since the 35th day, the no. of confirmed cases in Chile started being not different than the other latinoamerican countries.


We obtained data from the world bank regarding Population(total), Current health expenditure (% of GDP),Hospital beds (per 1,000 people), and GDP (current US$) from the last available year (more info on this link). Additionally, we added the diabetes prevalence,the median age, the percentage of population 65+ years old, and the percentage of male and female smokers. This and other reports are compiled in owid/covid-19-data GitHub repository through a rate per habitants (Total tests for COVID-19 per 1,000 people) (more info, available in this link).


#"https://raw.githubusercontent.com/demm94/Covid19-CL/master/15-03-2020.csv"
##MODO JSON
library(dplyr)
library(readxl)

url <- "http://api.worldbank.org/v2/en/indicator/SP.POP.TOTL?downloadformat=excel"
destfile <- "SP_POP.xls"
curl::curl_download(url, destfile)
SP_POP <- read_excel(destfile, skip=2)

SP_POP2<- reshape2::melt(SP_POP[c(1,5:63)],  na.rm = T,id="Country Name", measure.vars = as.character(1960:2018))%>%
  dplyr::group_by(`Country Name`) %>%
  slice(which.max(variable)) %>%
  dplyr::ungroup()%>%
  dplyr::mutate(`Country Name`=ifelse(`Country Name`=="Venezuela, RB","Venezuela",`Country Name`))

url2 <- "http://api.worldbank.org/v2/en/indicator/SH.XPD.CHEX.GD.ZS?downloadformat=excel"
destfile2 <- "SH_XPD_CHEX_GD.xls"
curl::curl_download(url2, destfile2)
SH_XPD_CHEX_GD <- read_excel(destfile2, skip=2)

SH_XPD_CHEX_GD2<-reshape2::melt(SH_XPD_CHEX_GD[c(1,5:63)],  na.rm = T,id="Country Name", measure.vars = as.character(1960:2018))%>%
  dplyr::group_by(`Country Name`) %>%
  slice(which.max(variable)) %>%
  dplyr::ungroup()%>%
  dplyr::mutate(`Country Name`=ifelse(`Country Name`=="Venezuela, RB","Venezuela",`Country Name`))

url3 <- "http://api.worldbank.org/v2/en/indicator/SH.MED.BEDS.ZS?downloadformat=excel"
destfile3 <- "SH.MED.BEDS.ZS.xls"
curl::curl_download(url3, destfile3)
SH_MED_BEDS_ZS <- read_excel(destfile3, skip=2)
SH_MED_BEDS_ZS<-reshape2::melt(SH_MED_BEDS_ZS[c(1,5:64)],  na.rm = T,id="Country Name", measure.vars = as.character(1960:2019)) %>%
  dplyr::group_by(`Country Name`) %>% 
  dplyr::slice(which.max(variable)) %>%
  dplyr::ungroup()%>%
  dplyr::mutate(`Country Name`=ifelse(`Country Name`=="Venezuela, RB","Venezuela",`Country Name`))

url4 <- "http://api.worldbank.org/v2/en/indicator/NY.GDP.MKTP.CD?downloadformat=excel"
destfile4 <- "NY.GDP.MKTP.CD.xls"
curl::curl_download(url4, destfile4)
NY.GDP.MKTP.CD <- read_excel(destfile4, skip=2)
NY.GDP.MKTP.CD<-reshape2::melt(NY.GDP.MKTP.CD[c(1,5:63)],  na.rm = T,id="Country Name", measure.vars = as.character(1960:2018)) %>%
  dplyr::group_by(`Country Name`) %>% 
  dplyr::slice(which.max(variable)) %>%
  dplyr::ungroup()%>%
  dplyr::mutate(`Country Name`=ifelse(`Country Name`=="Venezuela, RB","Venezuela",`Country Name`))

bd_comp_countries<- SP_POP2 %>%
  dplyr::left_join(SH_XPD_CHEX_GD2, by="Country Name",suffix = c("_pop", "_health_exp")) %>%
  dplyr::left_join(SH_MED_BEDS_ZS, by="Country Name",suffix = c("", "_beds")) %>%
  dplyr::left_join(NY.GDP.MKTP.CD, by="Country Name",suffix = c("", "_gdp")) %>%
  dplyr::mutate(chile=ifelse(`Country Name`=="Chile",1,0)) %>%
  dplyr::mutate(`Country Name`= recode(`Country Name`, "Iran" = "Iran, Islamic Rep.",
                                       "Russia" = "Russian Federation",
                                       "South Korea"="Korea, Rep.",
                                       "Slovakia" = "Slovak Republic"))
  #  dplyr::mutate(value_pop=round(value_pop/100000,0),
  #                value_health_exp=round(value_health_exp,0),
  #                value_beds=round(value,2),
  #                value_gdp=round(as.numeric(value_gdp/100000000)))%>%

#https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/testing/covid-testing-all-observations.csv
covid_testing_all_observations <- readr::read_csv("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/testing/covid-testing-all-observations.csv", 
                                                  col_types = cols(`Cumulative total` = col_number(), 
                                                                   `Cumulative total per thousand` = col_number(), 
                                                                   `Daily change in cumulative total` = col_number(), 
                                                                   `Daily change in cumulative total per thousand` = col_number(), 
                                                                   Date = col_datetime(format = "%Y-%m-%d")))%>%
  dplyr::mutate(date_date=as.Date(as.character(Date))) %>%
  separate("Entity", c("Country.Name", "measure"), sep= " - ",extra = "merge")


#Para ver chile 
#bd_comp_countries %>% dplyr::filter(`Country Name`=="Chile")

#JOIN DATASET W POP
coronavirus_plot_tiempo_por_paises_prim_caso %>%
  dplyr::left_join(bd_comp_countries,by=c("country"="Country Name")) %>%
  dplyr::left_join(covid_testing_all_observations, by=c("country"="Country.Name", "date"="date_date"))%>%
  dplyr::mutate(acum_new_pop=(acum_new/value_pop)*100000) %>% 
  assign("coronavirus_plot_tiempo_por_paises_prim_caso_pop_c",., envir = .GlobalEnv)

#casos / poblacion *100000 = casos por 100 mil hab
#fit1=lm(acum_new_pop~days_passed+`2016` + (1|as.factor(chile)),data=coronavirus_plot_tiempo_por_paises_prim_caso_pop, na.rm=T)

coronavirus_plot_tiempo_por_paises_prim_caso_pop_c %>%
  dplyr::rename("variable_beds"="variable") %>%
  dplyr::rename("value_beds"="value") %>%
  dplyr::rename("chile"="chile.x") %>%
  dplyr::group_by(country)%>%
  dplyr::mutate(rn=row_number())%>%
  dplyr::filter(rn==max(rn)) %>% 
  dplyr::ungroup()%>%
  dplyr::select(-rn, -chile.y,-type, -`Daily change in cumulative total`,-`Daily change in cumulative total per thousand`,-`Source label`) %>%
  dplyr::rename("year_pop"="variable_pop") %>%
  dplyr::rename("year_health_exp"="variable_health_exp") %>%
  dplyr::rename("year_beds"="variable_beds") %>%
  dplyr::rename("year_gdp"="variable_gdp") %>%
  assign("coronavirus_plot_tiempo_por_paises_prim_caso_pop_1_exp",., envir = .GlobalEnv)

coronavirus_plot_tiempo_por_paises_prim_caso_pop_1_exp%>% 
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption = paste0("Table 1. Comparison of Latinoamerican countries"),
               align =rep('c', 101)) %>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 7) %>%
  kableExtra::add_footnote( c("Note. acum_new= Cumulative confirmed cases",
                              "cases= Daily confirmed cases",
                              "date_posixct= Date of the last available date of cases confirmed",
                              "days_passed= Days passed since the first confirmed case", 
                              "year_= Year in which an indicator was reported",
                              "value_= Corresponding value for each indicator",
                              "measure= Source of test reported",
                              "Date= date of the last report of tests",
                              "Source URL= webpage of datasets or reports",
                              "Notes= Additional observations to each report",
                              "Cumulative total= Of tests reported",
                              "Cumulative total per thousand" = "Rate of Cum. Tot. per 1,000 people"), 
                            notation = "none") %>%
  kableExtra::scroll_box(width = "100%", height = "375px")
Table 1. Comparison of Latinoamerican countries
date province country lat long cases acum_new chile date_posixct days_passed year_pop value_pop year_health_exp value_health_exp year_beds value_beds year_gdp value_gdp measure ISO code Date Source URL Notes Cumulative total Cumulative total per thousand 7-day smoothed daily change 7-day smoothed daily change per thousand acum_new_pop
2020-06-10 Argentina -38.4161 -63.6167 1,226 25,987 0 2020-06-10 100 2018 44,494,502 2017 9.124315 2014 5.0 2018 5.198715e+11 NA NA NA NA NA NA NA NA NA 58.404969
2020-06-10 Bolivia -16.2902 -63.5887 637 15,281 0 2020-06-10 92 2018 11,353,142 2017 6.443161 2014 1.1 2018 4.028765e+10 NA NA NA NA NA NA NA NA NA 134.597101
2020-06-10 Brazil -14.2350 -51.9253 32,913 772,416 0 2020-06-10 106 2018 209,469,333 2017 9.467477 2014 2.2 2018 1.885483e+12 NA NA NA NA NA NA NA NA NA 368.748966
2020-06-10 Chile -35.6751 -71.5430 5,697 148,456 1 2020-06-10 100 2018 18,729,160 2017 8.983510 2013 2.2 2018 2.982311e+11 NA NA NA NA NA NA NA NA NA 792.646333
2020-06-10 Colombia 4.5709 -74.2973 1,359 42,206 0 2020-06-10 97 2018 49,648,685 2017 7.226281 2014 1.5 2018 3.310470e+11 NA NA NA NA NA NA NA NA NA 85.009301
2020-06-10 Costa Rica 9.7489 -83.7534 86 1,461 0 2020-06-10 97 2018 4,999,441 2017 7.328796 2015 1.2 2018 6.013011e+10 NA NA NA NA NA NA NA NA NA 29.223267
2020-06-10 Cuba 22.0000 -80.0000 6 2,211 0 2020-06-10 91 2018 11,338,138 2017 11.711327 2014 5.2 2018 1.000230e+11 NA NA NA NA NA NA NA NA NA 19.500556
2020-06-10 Dominican Republic 18.7357 -70.1627 393 20,808 0 2020-06-10 102 2018 10,627,165 2017 6.136395 2014 1.6 2018 8.555539e+10 NA NA NA NA NA NA NA NA NA 195.800103
2020-06-10 Ecuador -1.8312 -78.1834 523 44,440 0 2020-06-10 102 2018 17,084,357 2017 8.257429 2013 1.5 2018 1.083981e+11 NA NA NA NA NA NA NA NA NA 260.120998
2020-06-10 Honduras 15.2000 -86.2419 425 7,360 0 2020-06-10 92 2018 9,587,522 2017 7.858425 2014 0.7 2018 2.402419e+10 NA NA NA NA NA NA NA NA NA 76.766447
2020-06-10 Mexico 23.6345 -102.5528 4,883 129,184 0 2020-06-10 104 2018 126,190,788 2017 5.516541 2015 1.5 2018 1.220699e+12 NA NA NA NA NA NA NA NA NA 102.371973
2020-06-10 Panama 8.5380 -80.7821 656 17,889 0 2020-06-10 93 2018 4,176,873 2017 7.319491 2013 2.3 2018 6.505510e+10 NA NA NA NA NA NA NA NA NA 428.286903
2020-06-10 Paraguay -23.4425 -58.4438 15 1,202 0 2020-06-10 95 2018 6,956,071 2017 6.654569 2011 1.3 2018 4.049695e+10 NA NA NA NA NA NA NA NA NA 17.279870
2020-06-10 Peru -9.1900 -75.0152 5,087 208,823 0 2020-06-10 97 2018 31,989,256 2017 4.995151 2014 1.6 2018 2.220450e+11 NA NA NA NA NA NA NA NA NA 652.791050
2020-06-10 Uruguay -32.5228 -55.7658 1 847 0 2020-06-10 90 2018 3,449,299 2017 9.296212 2014 2.8 2018 5.959689e+10 NA NA NA NA NA NA NA NA NA 24.555714
2020-06-10 Venezuela 6.4238 -66.5897 106 2,738 0 2020-06-10 89 2018 28,870,195 2017 1.181210 2014 0.8 2014 4.823593e+11 NA NA NA NA NA NA NA NA NA 9.483829
Note. acum_new= Cumulative confirmed cases
cases= Daily confirmed cases
date_posixct= Date of the last available date of cases confirmed
days_passed= Days passed since the first confirmed case
year_= Year in which an indicator was reported
value_= Corresponding value for each indicator
measure= Source of test reported
Date= date of the last report of tests
Source URL= webpage of datasets or reports
Notes= Additional observations to each report
Cumulative total= Of tests reported
Rate of Cum. Tot. per 1,000 people
coronavirus_world<- coronavirus %>%
  dplyr::filter(type=="confirmed") %>%
  dplyr::arrange(country,date) %>%
  dplyr::group_by(country) %>%
  mutate(acum_new = cumsum(cases)) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(chile=ifelse(country=="Chile",1,0)) %>%
  dplyr::mutate(date_posixct=as.POSIXct(as.character(date)))  %>%
  dplyr::filter(acum_new>0) %>%
  dplyr::group_by(country) %>% 
  dplyr::mutate(days_passed=row_number()) %>%
  dplyr::ungroup()

library(readxl)
library("rjson")
url <- "https://github.com/owid/covid-19-data/blob/master/public/data/owid-covid-data.xlsx?raw=true"
destfile <- "owid_covid_data.xlsx"
curl::curl_download(url, destfile)
owid_covid_data <- read_excel(destfile)
owid_covid_data <-owid_covid_data%>% 
  dplyr::mutate(date=as.Date(date,tryFormats = c("%Y-%m-%d")))

covid_testing_all_observations%>%
  dplyr::left_join(bd_comp_countries,by=c("Country.Name"="Country Name")) %>%
  #dplyr::left_join(covid_testing_all_observations, by=c(="Country.Name"))%>%
  dplyr::rename("country"="Country.Name")%>%
  dplyr::mutate(acum_new_pop=(`Cumulative total`/value_pop)*100000) %>%
  dplyr::left_join(owid_covid_data,by=c("ISO code"="iso_code","date_date"="date")) %>%
  dplyr::group_by(country) %>% 
  dplyr::mutate(days_passed=row_number()) %>%
  dplyr::ungroup()%>%
  assign("coronavirus_plot_tiempo_por_paises_world_ult_caso",., envir = .GlobalEnv)

coronavirus_plot_tiempo_por_paises_world_ult_caso %>%
  dplyr::rename("variable_beds"="variable") %>%
  dplyr::rename("value_beds"="value") %>%
  #dplyr::rename("chile"="chile.x") %>%
  dplyr::group_by(country)%>%
  dplyr::mutate(rn=row_number())%>%
  dplyr::filter(rn==max(rn)) %>% 
  dplyr::ungroup()%>%
  dplyr::select(-rn, -`Daily change in cumulative total`,-`Daily change in cumulative total per thousand`,-`Source label`) %>%
  dplyr::rename("year_pop"="variable_pop") %>%
  dplyr::rename("year_health_exp"="variable_health_exp") %>%
  dplyr::rename("year_beds"="variable_beds") %>%
  dplyr::rename("year_gdp"="variable_gdp") %>%
  assign("coronavirus_plot_tiempo_world_log",., envir = .GlobalEnv)

norm_coronavirus_plot_tiempo_world_log<-rockchalk::gmc(coronavirus_plot_tiempo_world_log, c("value_pop", "value_health_exp", "value_beds", "value_gdp", "acum_new_pop"), "chile", FUN = mean, suffix = c("_mn", "_dev"),fulldataframe = TRUE)

#glm.fit<-glm(chile~ value_pop + value_health_exp + value_beds + value_gdp, data=coronavirus_plot_tiempo_world_log, family = binomial)

#glm.probs <- predict(std.glm.fit,type = "response")
#cbind(na.omit(coronavirus_plot_tiempo_world_log[,c(1,11,13,15,17)]),glm.probs) %>%
#  dplyr::arrange(desc(glm.probs))

#library(caret)

#x <- coronavirus_plot_tiempo_world_log[,c(11,13,15,17)]
#y <- coronavirus_plot_tiempo_world_log[,7]
#scales <- list(x=list(relation="free"), y=list(relation="free"))
#caret::featurePlot(x=x, y=y, plot="density", scales=scales)


Table 1 let us see differences fixed by each country in terms of resources to confront this pandemic.


#POPULATION DATASET
library(readxl)
require(ggiraph)
require(ggiraphExtra)
require(gridExtra)

tt <- ttheme_minimal(colhead=list(fg_params = list(parse=TRUE)),base_size = 5)
tbl <- tableGrob(coronavirus_plot_tiempo_por_paises_prim_caso_pop_1_exp, rows=NULL, theme=tt)

coronavirus_plot_tiempo_por_paises_prim_caso %>%
  dplyr::left_join(SP_POP2, by=c("country"="Country Name"),suffix = c("", "_pop")) %>%
  dplyr::mutate(acum_new_pop=(acum_new/value)*100000) %>% 
  assign("coronavirus_treds_plus_pop",., envir = .GlobalEnv)

my.formula <- acum_new_pop ~ value_pop + value_health_exp + value_beds + value_gdp

tercer_grafico<- 
  ggplot(data = coronavirus_treds_plus_pop, aes(x = days_passed)) +
  stat_smooth(method = "lm", se = T, aes(y = acum_new_pop, fill = as.factor(chile),color = as.factor(chile)), linetype="dashed") +
  # stat_smooth(method = "lm", se = T,aes(y = acum_new_pop, color=as.factor(chile)), formula=my.formula,data=coronavirus_plot_tiempo_por_paises_prim_caso_pop_1_exp) +
  stat_summary(geom = "line", fun.y = median, size = 1, aes(y = acum_new_pop, color=as.factor(chile))) +
  stat_summary(geom="ribbon", aes(y = acum_new_pop,color="green" ), fun.ymin = function(x) quantile(x, 0.25), fun.ymax = function(x) quantile(x, 0.75), alpha=.45)+ 
  #geom_line(aes(y = acum_new), color = "blue") +
  #geom_line(aes(y = B19301_001E), color = "red") +
  labs(title = paste0("Figure 4. Linear Trends of Aggregated Data of Chile v/s Other States of \nConfirmed Cases COVID-19 in Latin America"),
       y = "No. Confirmed Cases per 100,000 hab", x = "Days Since the First Diagnosed",
       caption="Note: Linear Regression in Dashed Lines, SE's (Std. Errors) in gray; Other countries: Argentina,Bolivia,Brazil,Colombia,Costa Rica,Cuba,Dom. Republic,\nEcuador,Honduras,Mexico, Panama,Paraguay,Peru, Uruguay & Venezuela")+ 
  #scale_x_continuous("Quarters & Years",breaks=seq(0,14,7)) +
  theme(axis.text.x = element_text(size=10,vjust = 0.5), 
        axis.title.y = element_text(size = 9.5)) +
  theme(legend.text = element_text(size = 12, face = "italic")) +
  scale_colour_discrete(name  ="Legend", 
                        labels=c("Other Countries", "Chile", "25th & 75th percentiles\n  Orher Countries")) +
  #Medians in continuous lines, 25th and 75th \npercentiles in Shaded Areas
  #scale_fill_manual(values=c("red","blue"))+
  # ylim(c(0,100))+
  #  scale_fill_manual(values=c("0","1"),labels=c("Otros Países", "Chile")) +
  sjPlot::theme_sjplot2() +
  theme(plot.title = element_text(color="darkblue"))+
  theme(legend.title = element_text(size= 10, colour = "black"), legend.position='bottom',
        legend.text=element_text(size=7))+
  theme(plot.caption = element_text(hjust = 0, face = "italic",size = 7))+
  guides( fill = F)
tercer_grafico


However, when we transformed the number of confirmed cases into a logaritmic scale, the difference seems to bend over the other countries more clearly, differing from the 15th day since the first case (See Figure 4 & 5).


#POPULATION DATASET
library(readxl)

coronavirus_treds_plus_pop %>%
  dplyr::mutate(log_acum_new_pop=log(acum_new_pop)) %>%
  assign("coronavirus_treds_plus_pop_log",., envir = .GlobalEnv)

#JOIN DATASET W POP
tercer_grafico<- 
  ggplot(data = coronavirus_treds_plus_pop_log, aes(x = days_passed)) +
  stat_smooth(method = "lm", se = T, aes(y = log_acum_new_pop, fill = as.factor(chile),color = as.factor(chile)), linetype="dashed") +
  stat_summary(geom = "line", fun.y = median, size = 1, aes(y = log_acum_new_pop, color=as.factor(chile))) +
  stat_summary(geom="ribbon", aes(y = log_acum_new_pop,color="green" ), fun.ymin = function(x) quantile(x, 0.25), fun.ymax = function(x) quantile(x, 0.75), alpha=.45)+ 
  #geom_line(aes(y = acum_new), color = "blue") +
  #geom_line(aes(y = B19301_001E), color = "red") +
  labs(title = paste0("Figure 5. Linear Trends of Aggregated Data of Chile v/s Other States of \nConfirmed Cases COVID-19 in Latin America"),
       y = "No of Confirmed Cases per 100,000 hab (Log)", x = "Days Since the First Diagnosed",
       caption="Note: Linear Regression in Dashed Lines, SE's (Std. Errors) in gray;Other countries: Argentina,Bolivia,Brazil,Colombia,Costa Rica,\nCuba,Dom. Republic,Ecuador,Honduras,Mexico, Panama,Paraguay,Peru, Uruguay & Venezuela")+ 
  #scale_x_continuous("Quarters & Years",breaks=seq(0,14,7)) +
  theme(axis.text.x = element_text(size=13.5,vjust = 0.5), axis.text.y = element_text(size=14),
        axis.title.y = element_text(size = 13)) +
  theme(legend.text = element_text(size = 12, face = "italic")) +
  scale_colour_discrete(name  ="Legend", 
                        labels=c("Other Countries", "Chile", "25th & 75th percentiles\n  Orher Countries")) +
  #Medians in continuous lines, 25th and 75th \npercentiles in Shaded Areas
  #scale_fill_manual(values=c("red","blue"))+
  # ylim(c(0,100))+
  #  scale_fill_manual(values=c("0","1"),labels=c("Otros Países", "Chile")) +
  sjPlot::theme_sjplot2() +
  theme(plot.title = element_text(color="darkblue"))+
  theme(legend.title = element_text(size= 10.5, colour = "black"), legend.position='bottom')+
  theme(plot.caption = element_text(hjust = 0, face = "italic", size=8.5))+
  guides( fill = F)

print(tercer_grafico)


We also analysed deaths in Latinoamerican countries in the reported deaths through a logaritmic scale. The dots represents the lockdowns policies in the GOVERNMENT MEASURES DATASET available in this link.


covid19_dta <- download_merged_data(silent = TRUE, cached = TRUE)

covid19_dta_la<-covid19_dta %>% 
  dplyr::filter(country %in%
                  c('Chile', 'Argentina','Bolivia','Brazil',
                    'Colombia','Costa Rica','Cuba', 'Dom. Republic',
                    'Ecuador', 'Honduras','Mexico', 'Panama',
                    'Paraguay','Peru', 'Uruguay','Venezuela'))
p1<-plot_covid19_spread(
  covid19_dta_la, type = "deaths", min_cases = 0.1, min_by_ctry_obs = 1,
  edate_cutoff = 50, per_capita = T, log_scale = T,
  cumulative = TRUE, change_ave = 7,
  # highlight = c("CHL"),
  intervention = 'lockdown') +
  labs(title="Figure 6a. Linear Trends of Reported Deaths w/ COVID-19 in Latin America")+
  theme(plot.title = element_text(color="darkblue"))+
  theme(plot.subtitle = element_text(size = 9, face = "italic"))

p2<-plot_covid19_spread(
  covid19_dta_la, type = "deaths", min_cases = 0.1, min_by_ctry_obs = 1,
  edate_cutoff = 50, per_capita = T, log_scale = T,
  cumulative = TRUE, change_ave = 7,
  highlight = c("CHL"),
  intervention = 'lockdown') +
  labs(title="Figure 6b. Linear Trends of Reported Deaths in Chile w/ COVID-19 vs. Latin America", 
       subtitle= "Other countries: Argentina,Bolivia,Brazil,Colombia,Costa Rica,Cuba,Dom.Republic,Ecuador,Honduras,Mexico,Panama,\nParaguay,Peru,Uruguay & Venezuela")+
  theme(plot.title = element_text(color="darkblue"))+
  theme(plot.subtitle = element_text(size = 9, face = "italic"))

grid.arrange(p1, p2, nrow=2)


As seen in Figures 6a and 6b, Chile does not show the highest death rates. However, must note that deaths could be underreported.


Datasets of Hospitals and Individual Cases By Geographical Location


We obtained confirmed cases from COVID 19 from this link, to map cases by region. Cases are shown in Table 2.


#"https://raw.githubusercontent.com/demm94/Covid19-CL/master/15-03-2020.csv"
##MODO JSON
library(dplyr)

minsal_casos_sin_hosp = rjson::fromJSON(file="https://atlas.jifo.co/api/connectors/53c116ec-41cb-4560-ae21-45b3263fa73c")

minsal_casos_sin_hosp<- data.table::data.table(t(as.data.frame(minsal_casos_sin_hosp))) %>%
  dplyr::mutate(V1=ifelse(V1=="Totales", "Región", V1)) %>%
  janitor::row_to_names(row_number = 1) %>%
  dplyr::slice(-c(n(),n()-1,n()-2,n()-3))
minsal_casos_sin_hosp %>% 
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption = paste0("Table 2. Confirmed cases at ",format(Sys.time(), '%d-%m-%Y')),
               align =rep('c', 101)) %>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 7) %>%
  kableExtra::scroll_box(width = "100%", height = "375px")
Table 2. Confirmed cases at 11-06-2020
Región Totales Casos nuevos totales Nuevos con síntomas Nuevos sin síntomas* Fallecidos
Arica y Parinacota 930 16 16 0 10
Tarapacá 3,591 100 79 21 46
Antofagasta 3,559 157 143 14 56
Atacama 365 17 14 3 0
Coquimbo 1,256 81 78 3 6
Valparaíso 5,614 223 198 25 99
RM 119,746 4,620 4,235 385 2,115
O’Higgins 1,442 125 117 8 26
Maule 2,440 151 123 28 18
Ñuble 1,616 32 24 8 20
Biobío 2,846 152 138 14 11
Araucanía 2,488 43 42 1 33
Los Ríos 452 6 6 0 8
Los Lagos 1,041 13 12 1 12
Aysén 21 0 0 0 0
Magallanes 1,089 1 1 0 15


These cases are being updated by ivanMSC /COVID19_Chile, most of them being infered due to the secrecy of MINSAL in publishing information In Figure 6, we can see that most of the cases are private centers and from the metropolitan region.


casos <- readr::read_csv("https://raw.githubusercontent.com/ivanMSC/COVID19_Chile/master/covid19_chile.csv")

casos %>% 
  knitr::kable(.,format = "html", format.args = list(decimal.mark = ".", big.mark = ","),
               caption = paste0("Table 2. Confirmed cases at ",format(Sys.time(), '%d-%m-%Y')," w/ completed info."),
               align =rep('c', 101)) %>%
  kableExtra::kable_styling(bootstrap_options = c("striped", "hover"),font_size = 7) %>%
  kableExtra::scroll_box(width = "100%", height = "375px")
Table 2. Confirmed cases at 11-06-2020 w/ completed info.
Fecha Region Nuevo Confirmado Nuevo Muerte Nuevo Recuperado Acum Confirmado Acum Muerte Acum Recuperado Casos UCI
03-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
03-03-2020 Tarapacá 0 0 0 0 0 0 NA
03-03-2020 Antofagasta 0 0 0 0 0 0 NA
03-03-2020 Atacama 0 0 0 0 0 0 NA
03-03-2020 Coquimbo 0 0 0 0 0 0 NA
03-03-2020 Valparaíso 0 0 0 0 0 0 NA
03-03-2020 Metropolitana 0 0 0 0 0 0 NA
03-03-2020 O’Higgins 0 0 0 0 0 0 NA
03-03-2020 Maule 2 0 0 2 0 0 NA
03-03-2020 Ñuble 0 0 0 0 0 0 NA
03-03-2020 Biobío 0 0 0 0 0 0 NA
03-03-2020 Araucanía 0 0 0 0 0 0 NA
03-03-2020 Los Ríos 0 0 0 0 0 0 NA
03-03-2020 Los Lagos 0 0 0 0 0 0 NA
03-03-2020 Aysén 0 0 0 0 0 0 NA
03-03-2020 Magallanes 0 0 0 0 0 0 NA
03-03-2020 No Informado 0 0 0 0 0 0 NA
04-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
04-03-2020 Tarapacá 0 0 0 0 0 0 NA
04-03-2020 Antofagasta 0 0 0 0 0 0 NA
04-03-2020 Atacama 0 0 0 0 0 0 NA
04-03-2020 Coquimbo 0 0 0 0 0 0 NA
04-03-2020 Valparaíso 0 0 0 0 0 0 NA
04-03-2020 Metropolitana 1 0 0 1 0 0 NA
04-03-2020 O’Higgins 0 0 0 0 0 0 NA
04-03-2020 Maule 0 0 0 2 0 0 NA
04-03-2020 Ñuble 0 0 0 0 0 0 NA
04-03-2020 Biobío 0 0 0 0 0 0 NA
04-03-2020 Araucanía 0 0 0 0 0 0 NA
04-03-2020 Los Ríos 0 0 0 0 0 0 NA
04-03-2020 Los Lagos 0 0 0 0 0 0 NA
04-03-2020 Aysén 0 0 0 0 0 0 NA
04-03-2020 Magallanes 0 0 0 0 0 0 NA
04-03-2020 No Informado 0 0 0 0 0 0 NA
05-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
05-03-2020 Tarapacá 0 0 0 0 0 0 NA
05-03-2020 Antofagasta 0 0 0 0 0 0 NA
05-03-2020 Atacama 0 0 0 0 0 0 NA
05-03-2020 Coquimbo 0 0 0 0 0 0 NA
05-03-2020 Valparaíso 0 0 0 0 0 0 NA
05-03-2020 Metropolitana 1 0 0 2 0 0 NA
05-03-2020 O’Higgins 0 0 0 0 0 0 NA
05-03-2020 Maule 0 0 0 2 0 0 NA
05-03-2020 Ñuble 0 0 0 0 0 0 NA
05-03-2020 Biobío 0 0 0 0 0 0 NA
05-03-2020 Araucanía 0 0 0 0 0 0 NA
05-03-2020 Los Ríos 0 0 0 0 0 0 NA
05-03-2020 Los Lagos 0 0 0 0 0 0 NA
05-03-2020 Aysén 0 0 0 0 0 0 NA
05-03-2020 Magallanes 0 0 0 0 0 0 NA
05-03-2020 No Informado 0 0 0 0 0 0 NA
06-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
06-03-2020 Tarapacá 0 0 0 0 0 0 NA
06-03-2020 Antofagasta 0 0 0 0 0 0 NA
06-03-2020 Atacama 0 0 0 0 0 0 NA
06-03-2020 Coquimbo 0 0 0 0 0 0 NA
06-03-2020 Valparaíso 0 0 0 0 0 0 NA
06-03-2020 Metropolitana 1 0 0 3 0 0 NA
06-03-2020 O’Higgins 0 0 0 0 0 0 NA
06-03-2020 Maule 0 0 0 2 0 0 NA
06-03-2020 Ñuble 0 0 0 0 0 0 NA
06-03-2020 Biobío 0 0 0 0 0 0 NA
06-03-2020 Araucanía 0 0 0 0 0 0 NA
06-03-2020 Los Ríos 0 0 0 0 0 0 NA
06-03-2020 Los Lagos 0 0 0 0 0 0 NA
06-03-2020 Aysén 0 0 0 0 0 0 NA
06-03-2020 Magallanes 0 0 0 0 0 0 NA
06-03-2020 No Informado 0 0 0 0 0 0 NA
07-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
07-03-2020 Tarapacá 0 0 0 0 0 0 NA
07-03-2020 Antofagasta 0 0 0 0 0 0 NA
07-03-2020 Atacama 0 0 0 0 0 0 NA
07-03-2020 Coquimbo 0 0 0 0 0 0 NA
07-03-2020 Valparaíso 0 0 0 0 0 0 NA
07-03-2020 Metropolitana 1 0 0 4 0 0 NA
07-03-2020 O’Higgins 0 0 0 0 0 0 NA
07-03-2020 Maule 0 0 0 2 0 0 NA
07-03-2020 Ñuble 0 0 0 0 0 0 NA
07-03-2020 Biobío 0 0 0 0 0 0 NA
07-03-2020 Araucanía 0 0 0 0 0 0 NA
07-03-2020 Los Ríos 0 0 0 0 0 0 NA
07-03-2020 Los Lagos 1 0 0 1 0 0 NA
07-03-2020 Aysén 0 0 0 0 0 0 NA
07-03-2020 Magallanes 0 0 0 0 0 0 NA
07-03-2020 No Informado 0 0 0 0 0 0 NA
08-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
08-03-2020 Tarapacá 0 0 0 0 0 0 NA
08-03-2020 Antofagasta 0 0 0 0 0 0 NA
08-03-2020 Atacama 0 0 0 0 0 0 NA
08-03-2020 Coquimbo 0 0 0 0 0 0 NA
08-03-2020 Valparaíso 0 0 0 0 0 0 NA
08-03-2020 Metropolitana 2 0 0 6 0 0 NA
08-03-2020 O’Higgins 0 0 0 0 0 0 NA
08-03-2020 Maule 1 0 0 3 0 0 NA
08-03-2020 Ñuble 0 0 0 0 0 0 NA
08-03-2020 Biobío 0 0 0 0 0 0 NA
08-03-2020 Araucanía 0 0 0 0 0 0 NA
08-03-2020 Los Ríos 0 0 0 0 0 0 NA
08-03-2020 Los Lagos 0 0 0 1 0 0 NA
08-03-2020 Aysén 0 0 0 0 0 0 NA
08-03-2020 Magallanes 0 0 0 0 0 0 NA
08-03-2020 No Informado 0 0 0 0 0 0 NA
09-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
09-03-2020 Tarapacá 0 0 0 0 0 0 NA
09-03-2020 Antofagasta 0 0 0 0 0 0 NA
09-03-2020 Atacama 0 0 0 0 0 0 NA
09-03-2020 Coquimbo 0 0 0 0 0 0 NA
09-03-2020 Valparaíso 0 0 0 0 0 0 NA
09-03-2020 Metropolitana 1 0 0 7 0 0 NA
09-03-2020 O’Higgins 0 0 0 0 0 0 NA
09-03-2020 Maule 1 0 0 4 0 0 NA
09-03-2020 Ñuble 0 0 0 0 0 0 NA
09-03-2020 Biobío 1 0 0 1 0 0 NA
09-03-2020 Araucanía 0 0 0 0 0 0 NA
09-03-2020 Los Ríos 0 0 0 0 0 0 NA
09-03-2020 Los Lagos 0 0 0 1 0 0 NA
09-03-2020 Aysén 0 0 0 0 0 0 NA
09-03-2020 Magallanes 0 0 0 0 0 0 NA
09-03-2020 No Informado 0 0 0 0 0 0 NA
10-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
10-03-2020 Tarapacá 0 0 0 0 0 0 NA
10-03-2020 Antofagasta 0 0 0 0 0 0 NA
10-03-2020 Atacama 0 0 0 0 0 0 NA
10-03-2020 Coquimbo 0 0 0 0 0 0 NA
10-03-2020 Valparaíso 0 0 0 0 0 0 NA
10-03-2020 Metropolitana 3 0 0 10 0 0 NA
10-03-2020 O’Higgins 0 0 0 0 0 0 NA
10-03-2020 Maule 1 0 0 5 0 0 NA
10-03-2020 Ñuble 0 0 0 0 0 0 NA
10-03-2020 Biobío 0 0 0 1 0 0 NA
10-03-2020 Araucanía 0 0 0 0 0 0 NA
10-03-2020 Los Ríos 0 0 0 0 0 0 NA
10-03-2020 Los Lagos 0 0 0 1 0 0 NA
10-03-2020 Aysén 0 0 0 0 0 0 NA
10-03-2020 Magallanes 0 0 0 0 0 0 NA
10-03-2020 No Informado 0 0 0 0 0 0 NA
11-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
11-03-2020 Tarapacá 0 0 0 0 0 0 NA
11-03-2020 Antofagasta 0 0 0 0 0 0 NA
11-03-2020 Atacama 0 0 0 0 0 0 NA
11-03-2020 Coquimbo 0 0 0 0 0 0 NA
11-03-2020 Valparaíso 0 0 0 0 0 0 NA
11-03-2020 Metropolitana 4 0 0 14 0 0 NA
11-03-2020 O’Higgins 0 0 0 0 0 0 NA
11-03-2020 Maule 2 0 0 7 0 0 NA
11-03-2020 Ñuble 0 0 0 0 0 0 NA
11-03-2020 Biobío 0 0 0 1 0 0 NA
11-03-2020 Araucanía 0 0 0 0 0 0 NA
11-03-2020 Los Ríos 0 0 0 0 0 0 NA
11-03-2020 Los Lagos 0 0 0 1 0 0 NA
11-03-2020 Aysén 0 0 0 0 0 0 NA
11-03-2020 Magallanes 0 0 0 0 0 0 NA
11-03-2020 No Informado 0 0 0 0 0 0 NA
12-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
12-03-2020 Tarapacá 0 0 0 0 0 0 NA
12-03-2020 Antofagasta 0 0 0 0 0 0 NA
12-03-2020 Atacama 0 0 0 0 0 0 NA
12-03-2020 Coquimbo 0 0 0 0 0 0 NA
12-03-2020 Valparaíso 0 0 0 0 0 0 NA
12-03-2020 Metropolitana 9 0 0 23 0 0 NA
12-03-2020 O’Higgins 0 0 0 0 0 0 NA
12-03-2020 Maule 0 0 0 7 0 0 NA
12-03-2020 Ñuble 1 0 0 1 0 0 NA
12-03-2020 Biobío 0 0 0 1 0 0 NA
12-03-2020 Araucanía 0 0 0 0 0 0 NA
12-03-2020 Los Ríos 0 0 0 0 0 0 NA
12-03-2020 Los Lagos 0 0 0 1 0 0 NA
12-03-2020 Aysén 0 0 0 0 0 0 NA
12-03-2020 Magallanes 0 0 0 0 0 0 NA
12-03-2020 No Informado 0 0 0 0 0 0 NA
13-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
13-03-2020 Tarapacá 0 0 0 0 0 0 NA
13-03-2020 Antofagasta 0 0 0 0 0 0 NA
13-03-2020 Atacama 0 0 0 0 0 0 NA
13-03-2020 Coquimbo 0 0 0 0 0 0 NA
13-03-2020 Valparaíso 0 0 0 0 0 0 NA
13-03-2020 Metropolitana 6 0 0 29 0 0 NA
13-03-2020 O’Higgins 0 0 0 0 0 0 NA
13-03-2020 Maule 1 0 0 8 0 0 NA
13-03-2020 Ñuble 1 0 0 2 0 0 NA
13-03-2020 Biobío 2 0 0 3 0 0 NA
13-03-2020 Araucanía 0 0 0 0 0 0 NA
13-03-2020 Los Ríos 0 0 0 0 0 0 NA
13-03-2020 Los Lagos 0 0 0 1 0 0 NA
13-03-2020 Aysén 0 0 0 0 0 0 NA
13-03-2020 Magallanes 0 0 0 0 0 0 NA
13-03-2020 No Informado 0 0 0 0 0 0 NA
14-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
14-03-2020 Tarapacá 0 0 0 0 0 0 NA
14-03-2020 Antofagasta 2 0 0 2 0 0 NA
14-03-2020 Atacama 1 0 0 1 0 0 NA
14-03-2020 Coquimbo 0 0 0 0 0 0 NA
14-03-2020 Valparaíso 0 0 0 0 0 0 NA
14-03-2020 Metropolitana 11 0 0 40 0 0 NA
14-03-2020 O’Higgins 0 0 0 0 0 0 NA
14-03-2020 Maule 1 0 0 9 0 0 NA
14-03-2020 Ñuble 2 0 0 4 0 0 NA
14-03-2020 Biobío 0 0 0 3 0 0 NA
14-03-2020 Araucanía 0 0 0 0 0 0 NA
14-03-2020 Los Ríos 0 0 0 0 0 0 NA
14-03-2020 Los Lagos 0 0 0 1 0 0 NA
14-03-2020 Aysén 1 0 0 1 0 0 NA
14-03-2020 Magallanes 0 0 0 0 0 0 NA
14-03-2020 No Informado 0 0 0 0 0 0 NA
15-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
15-03-2020 Tarapacá 0 0 0 0 0 0 NA
15-03-2020 Antofagasta 0 0 0 2 0 0 NA
15-03-2020 Atacama 0 0 0 1 0 0 NA
15-03-2020 Coquimbo 0 0 0 0 0 0 NA
15-03-2020 Valparaíso 0 0 0 0 0 0 NA
15-03-2020 Metropolitana 14 0 0 54 0 0 NA
15-03-2020 O’Higgins 0 0 0 0 0 0 NA
15-03-2020 Maule 0 0 0 9 0 0 NA
15-03-2020 Ñuble 0 0 0 4 0 0 NA
15-03-2020 Biobío 0 0 0 3 0 0 NA
15-03-2020 Araucanía 0 0 0 0 0 0 NA
15-03-2020 Los Ríos 0 0 0 0 0 0 NA
15-03-2020 Los Lagos 0 0 0 1 0 0 NA
15-03-2020 Aysén 0 0 0 1 0 0 NA
15-03-2020 Magallanes 0 0 0 0 0 0 NA
15-03-2020 No Informado 0 0 0 0 0 0 NA
16-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
16-03-2020 Tarapacá 0 0 0 0 0 0 NA
16-03-2020 Antofagasta 0 0 0 2 0 0 NA
16-03-2020 Atacama 0 0 0 1 0 0 NA
16-03-2020 Coquimbo 0 0 0 0 0 0 NA
16-03-2020 Valparaíso 1 0 0 1 0 0 NA
16-03-2020 Metropolitana 69 0 0 123 0 0 NA
16-03-2020 O’Higgins 0 0 0 0 0 0 NA
16-03-2020 Maule 0 0 0 9 0 0 NA
16-03-2020 Ñuble 8 0 0 12 0 0 NA
16-03-2020 Biobío 1 0 0 4 0 0 NA
16-03-2020 Araucanía 1 0 0 1 0 0 NA
16-03-2020 Los Ríos 1 0 0 1 0 0 NA
16-03-2020 Los Lagos 0 0 0 1 0 0 NA
16-03-2020 Aysén 0 0 0 1 0 0 NA
16-03-2020 Magallanes 0 0 0 0 0 0 NA
16-03-2020 No Informado 0 0 0 0 0 0 NA
17-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
17-03-2020 Tarapacá 0 0 0 0 0 0 NA
17-03-2020 Antofagasta 0 0 0 2 0 0 NA
17-03-2020 Atacama 0 0 0 1 0 0 NA
17-03-2020 Coquimbo 0 0 0 0 0 0 NA
17-03-2020 Valparaíso 0 0 0 1 0 0 NA
17-03-2020 Metropolitana 29 0 0 152 0 0 NA
17-03-2020 O’Higgins 0 0 0 0 0 0 NA
17-03-2020 Maule 0 0 0 9 0 0 NA
17-03-2020 Ñuble 14 0 0 26 0 0 NA
17-03-2020 Biobío 0 0 0 4 0 0 NA
17-03-2020 Araucanía 0 0 0 1 0 0 NA
17-03-2020 Los Ríos 0 0 0 1 0 0 NA
17-03-2020 Los Lagos 0 0 0 1 0 0 NA
17-03-2020 Aysén 0 0 0 1 0 0 NA
17-03-2020 Magallanes 2 0 0 2 0 0 NA
17-03-2020 No Informado 0 0 0 0 0 0 8
18-03-2020 Arica y Parinacota 0 0 0 0 0 0 NA
18-03-2020 Tarapacá 0 0 0 0 0 0 NA
18-03-2020 Antofagasta 0 0 0 2 0 0 NA
18-03-2020 Atacama 0 0 0 1 0 0 NA
18-03-2020 Coquimbo 0 0 0 0 0 0 NA
18-03-2020 Valparaíso 0 0 0 1 0 0 NA
18-03-2020 Metropolitana 22 0 0 174 0 0 NA
18-03-2020 O’Higgins 0 0 0 0 0 0 NA
18-03-2020 Maule 2 0 0 11 0 0 NA
18-03-2020 Ñuble 0 0 0 26 0 0 NA
18-03-2020 Biobío 3 0 0 7 0 0 NA
18-03-2020 Araucanía 3 0 0 4 0 0 NA
18-03-2020 Los Ríos 0 0 0 1 0 0 NA
18-03-2020 Los Lagos 7 0 0 8 0 0 NA
18-03-2020 Aysén 0 0 0 1 0 0 NA
18-03-2020 Magallanes 0 0 0 2 0 0 NA
18-03-2020 No Informado 0 0 0 0 0 0 19
19-03-2020 Arica y Parinacota 1 0 0 1 0 0 NA
19-03-2020 Tarapacá 0 0 0 0 0 0 NA
19-03-2020 Antofagasta 0 0 0 2 0 0 NA
19-03-2020 Atacama 0 0 0 1 0 0 NA
19-03-2020 Coquimbo 2 0 0 2 0 0 NA
19-03-2020 Valparaíso 3 0 0 4 0 0 NA
19-03-2020 Metropolitana 73 0 0 247 0 0 NA
19-03-2020 O’Higgins 2 0 0 2 0 0 NA
19-03-2020 Maule 3 0 0 14 0 0 NA
19-03-2020 Ñuble 2 0 0 28 0 0 NA
19-03-2020 Biobío 7 0 0 14 0 0 NA
19-03-2020 Araucanía 3 0 0 7 0 0 NA
19-03-2020 Los Ríos 0 0 0 1 0 0 NA
19-03-2020 Los Lagos 8 0 0 16 0 0 NA
19-03-2020 Aysén 0 0 0 1 0 0 NA
19-03-2020 Magallanes 0 0 0 2 0 0 NA
19-03-2020 No Informado 0 0 5 0 0 5 32
20-03-2020 Arica y Parinacota 0 0 0 1 0 0 NA
20-03-2020 Tarapacá 0 0 0 0 0 0 NA
20-03-2020 Antofagasta 4 0 0 6 0 0 NA
20-03-2020 Atacama 0 0 0 1 0 0 NA
20-03-2020 Coquimbo 1 0 0 3 0 0 NA
20-03-2020 Valparaíso 1 0 0 5 0 0 NA
20-03-2020 Metropolitana 57 0 0 304 0 0 NA
20-03-2020 O’Higgins 4 0 0 6 0 0 NA
20-03-2020 Maule 0 0 0 14 0 0 NA
20-03-2020 Ñuble 16 0 0 44 0 0 NA
20-03-2020 Biobío 5 0 0 19 0 0 NA
20-03-2020 Araucanía 2 0 0 9 0 0 NA
20-03-2020 Los Ríos 0 0 0 1 0 0 NA
20-03-2020 Los Lagos 2 0 0 18 0 0 NA
20-03-2020 Aysén 0 0 0 1 0 0 NA
20-03-2020 Magallanes 0 0 0 2 0 0 NA
20-03-2020 No Informado 0 0 1 0 0 6 36
21-03-2020 Arica y Parinacota 0 0 0 1 0 0 NA
21-03-2020 Tarapacá 0 0 0 0 0 0 NA
21-03-2020 Antofagasta 4 0 0 10 0 0 NA
21-03-2020 Atacama 0 0 0 1 0 0 NA
21-03-2020 Coquimbo 0 0 0 3 0 0 NA
21-03-2020 Valparaíso 8 0 0 13 0 0 NA
21-03-2020 Metropolitana 55 1 0 359 1 0 NA
21-03-2020 O’Higgins 1 0 0 7 0 0 NA
21-03-2020 Maule 1 0 0 15 0 0 NA
21-03-2020 Ñuble 14 0 0 58 0 0 NA
21-03-2020 Biobío 11 0 0 30 0 0 NA
21-03-2020 Araucanía 6 0 0 15 0 0 NA
21-03-2020 Los Ríos 0 0 0 1 0 0 NA
21-03-2020 Los Lagos 2 0 0 20 0 0 NA
21-03-2020 Aysén 0 0 0 1 0 0 NA
21-03-2020 Magallanes 1 0 0 3 0 0 NA
21-03-2020 No Informado 0 0 2 0 0 8 29
22-03-2020 Arica y Parinacota 1 0 0 2 0 0 NA
22-03-2020 Tarapacá 0 0 0 0 0 0 NA
22-03-2020 Antofagasta 1 0 0 11 0 0 NA
22-03-2020 Atacama 0 0 0 1 0 0 NA
22-03-2020 Coquimbo 2 0 0 5 0 0 NA
22-03-2020 Valparaíso 3 0 0 16 0 0 NA
22-03-2020 Metropolitana 50 0 0 409 1 0 NA
22-03-2020 O’Higgins 1 0 0 8 0 0 NA
22-03-2020 Maule 10 0 0 25 0 0 NA
22-03-2020 Ñuble 6 0 0 64 0 0 NA
22-03-2020 Biobío 5 0 0 35 0 0 NA
22-03-2020 Araucanía 12 0 0 27 0 0 NA
22-03-2020 Los Ríos 0 0 0 1 0 0 NA
22-03-2020 Los Lagos 3 0 0 23 0 0 NA
22-03-2020 Aysén 0 0 0 1 0 0 NA
22-03-2020 Magallanes 1 0 0 4 0 0 NA
22-03-2020 No Informado 0 0 0 0 0 8 34
23-03-2020 Arica y Parinacota 0 0 0 2 0 0 NA
23-03-2020 Tarapacá 1 0 0 1 0 0 NA
23-03-2020 Antofagasta 0 0 0 11 0 0 NA
23-03-2020 Atacama 0 0 0 1 0 0 NA
23-03-2020 Coquimbo 1 0 0 6 0 0 NA
23-03-2020 Valparaíso 3 0 0 19 0 0 NA
23-03-2020 Metropolitana 50 0 0 459 1 0 NA
23-03-2020 O’Higgins 0 0 0 8 0 0 NA
23-03-2020 Maule 3 0 0 28 0 0 NA
23-03-2020 Ñuble 17 0 0 81 0 0 NA
23-03-2020 Biobío 11 0 0 46 0 0 NA
23-03-2020 Araucanía 13 0 0 40 0 0 NA
23-03-2020 Los Ríos 3 0 0 4 0 0 NA
23-03-2020 Los Lagos 10 0 0 33 0 0 NA
23-03-2020 Aysén 0 0 0 1 0 0 NA
23-03-2020 Magallanes 2 0 0 6 0 0 NA
23-03-2020 No Informado 0 0 3 0 0 11 40
24-03-2020 Arica y Parinacota 0 0 0 2 0 0 NA
24-03-2020 Tarapacá 3 0 0 4 0 0 NA
24-03-2020 Antofagasta 2 0 0 13 0 0 NA
24-03-2020 Atacama 0 0 0 1 0 0 NA
24-03-2020 Coquimbo 5 0 0 11 0 0 NA
24-03-2020 Valparaíso 6 0 0 25 0 0 NA
24-03-2020 Metropolitana 81 1 0 540 2 0 NA
24-03-2020 O’Higgins 1 0 0 9 0 0 NA
24-03-2020 Maule 1 0 0 29 0 0 NA
24-03-2020 Ñuble 24 0 0 105 0 0 NA
24-03-2020 Biobío 27 0 0 73 0 0 NA
24-03-2020 Araucanía 19 0 0 59 0 0 NA
24-03-2020 Los Ríos 2 0 0 6 0 0 NA
24-03-2020 Los Lagos 3 0 0 36 0 0 NA
24-03-2020 Aysén 0 0 0 1 0 0 NA
24-03-2020 Magallanes 2 0 0 8 0 0 NA
24-03-2020 No Informado 0 0 6 0 0 17 43
25-03-2020 Arica y Parinacota 0 0 0 2 0 0 NA
25-03-2020 Tarapacá 0 0 0 4 0 0 NA
25-03-2020 Antofagasta 6 0 0 19 0 0 NA
25-03-2020 Atacama 0 0 0 1 0 0 NA
25-03-2020 Coquimbo 1 0 0 12 0 0 NA
25-03-2020 Valparaíso 7 0 0 32 0 0 NA
25-03-2020 Metropolitana 142 0 0 682 2 0 NA
25-03-2020 O’Higgins 2 0 0 11 0 0 NA
25-03-2020 Maule 1 0 0 30 0 0 NA
25-03-2020 Ñuble 6 0 0 111 0 0 NA
25-03-2020 Biobío 22 1 0 95 1 0 NA
25-03-2020 Araucanía 15 0 0 74 0 0 NA
25-03-2020 Los Ríos 5 0 0 11 0 0 NA
25-03-2020 Los Lagos 8 0 0 44 0 0 NA
25-03-2020 Aysén 0 0 0 1 0 0 NA
25-03-2020 Magallanes 5 0 0 13 0 0 NA
25-03-2020 No Informado 0 0 5 0 0 22 44
26-03-2020 Arica y Parinacota 1 0 0 3 0 0 NA
26-03-2020 Tarapacá 1 0 0 5 0 0 NA
26-03-2020 Antofagasta 1 0 0 20 0 0 NA
26-03-2020 Atacama 0 0 0 1 0 0 NA
26-03-2020 Coquimbo 1 0 0 13 0 0 NA
26-03-2020 Valparaíso 12 0 0 44 0 0 NA
26-03-2020 Metropolitana 64 0 0 746 2 0 NA
26-03-2020 O’Higgins 3 0 0 14 0 0 NA
26-03-2020 Maule 1 0 0 31 0 0 NA
26-03-2020 Ñuble 3 0 0 114 0 0 NA
26-03-2020 Biobío 14 1 0 109 2 0 NA
26-03-2020 Araucanía 37 0 0 111 0 0 NA
26-03-2020 Los Ríos 3 0 0 14 0 0 NA
26-03-2020 Los Lagos 16 0 0 60 0 0 NA
26-03-2020 Aysén 1 0 0 2 0 0 NA
26-03-2020 Magallanes 6 0 0 19 0 0 NA
26-03-2020 No Informado 0 0 11 0 0 33 52
27-03-2020 Arica y Parinacota 0 0 0 3 0 0 NA
27-03-2020 Tarapacá 0 0 0 5 0 0 NA
27-03-2020 Antofagasta 1 0 0 21 0 0 NA
27-03-2020 Atacama 0 0 0 1 0 0 NA
27-03-2020 Coquimbo 1 0 0 14 0 0 NA
27-03-2020 Valparaíso 5 0 0 49 0 0 NA
27-03-2020 Metropolitana 192 1 0 938 3 0 NA
27-03-2020 O’Higgins 2 0 0 16 0 0 NA
27-03-2020 Maule 1 0 0 32 0 0 NA
27-03-2020 Ñuble 30 0 0 144 0 0 NA
27-03-2020 Biobío 26 0 0 135 2 0 NA
27-03-2020 Araucanía 32 0 0 143 0 0 NA
27-03-2020 Los Ríos 8 0 0 22 0 0 NA
27-03-2020 Los Lagos 3 0 0 63 0 0 NA
27-03-2020 Aysén 0 0 0 2 0 0 NA
27-03-2020 Magallanes 3 0 0 22 0 0 NA
27-03-2020 No Informado 0 0 10 0 0 43 81
28-03-2020 Arica y Parinacota 0 0 0 3 0 0 NA
28-03-2020 Tarapacá 0 0 0 5 0 0 NA
28-03-2020 Antofagasta 4 0 0 25 0 0 NA
28-03-2020 Atacama 0 0 0 1 0 0 NA
28-03-2020 Coquimbo 1 0 0 15 0 0 NA
28-03-2020 Valparaíso 22 0 0 71 0 0 NA
28-03-2020 Metropolitana 146 0 0 1,084 3 0 NA
28-03-2020 O’Higgins 4 0 0 20 0 0 NA
28-03-2020 Maule 5 0 0 37 0 0 NA
28-03-2020 Ñuble 28 0 0 172 0 0 NA
28-03-2020 Biobío 16 0 0 151 2 0 NA
28-03-2020 Araucanía 34 1 0 177 1 0 NA
28-03-2020 Los Ríos 5 0 0 27 0 0 NA
28-03-2020 Los Lagos 30 0 0 93 0 0 NA
28-03-2020 Aysén 0 0 0 2 0 0 NA
28-03-2020 Magallanes 4 0 0 26 0 0 NA
28-03-2020 No Informado 0 0 18 0 0 61 105
29-03-2020 Arica y Parinacota 1 0 0 4 0 0 NA
29-03-2020 Tarapacá 1 0 0 6 0 0 NA
29-03-2020 Antofagasta 2 0 0 27 0 0 NA
29-03-2020 Atacama 1 0 0 2 0 0 NA
29-03-2020 Coquimbo 3 0 0 18 0 0 NA
29-03-2020 Valparaíso 9 0 0 80 0 0 NA
29-03-2020 Metropolitana 83 0 0 1,167 3 0 NA
29-03-2020 O’Higgins 1 0 0 21 0 0 NA
29-03-2020 Maule 5 0 0 42 0 0 NA
29-03-2020 Ñuble 25 0 0 197 0 0 NA
29-03-2020 Biobío 34 0 0 185 2 0 NA
29-03-2020 Araucanía 28 1 0 205 2 0 NA
29-03-2020 Los Ríos 13 0 0 40 0 0 NA
29-03-2020 Los Lagos 11 0 0 104 0 0 NA
29-03-2020 Aysén 0 0 0 2 0 0 NA
29-03-2020 Magallanes 13 0 0 39 0 0 NA
29-03-2020 No Informado 0 0 14 0 0 75 122
30-03-2020 Arica y Parinacota 2 0 0 6 0 0 NA
30-03-2020 Tarapacá 2 0 0 8 0 0 NA
30-03-2020 Antofagasta 8 0 0 35 0 0 NA
30-03-2020 Atacama 0 0 0 2 0 0 NA
30-03-2020 Coquimbo 9 0 0 27 0 0 NA
30-03-2020 Valparaíso 28 0 0 108 0 0 NA
30-03-2020 Metropolitana 128 0 0 1,295 3 0 NA
30-03-2020 O’Higgins 0 0 0 21 0 0 NA
30-03-2020 Maule 12 1 0 54 1 0 NA
30-03-2020 Ñuble 32 0 0 229 0 0 NA
30-03-2020 Biobío 16 0 0 201 2 0 NA
30-03-2020 Araucanía 42 0 0 247 2 0 NA
30-03-2020 Los Ríos 7 0 0 47 0 0 NA
30-03-2020 Los Lagos 24 0 0 128 0 0 NA
30-03-2020 Aysén 0 0 0 2 0 0 NA
30-03-2020 Magallanes 0 0 0 39 0 0 NA
30-03-2020 No Informado 0 0 81 0 0 156 138
31-03-2020 Arica y Parinacota 0 0 0 6 0 0 NA
31-03-2020 Tarapacá 2 0 0 10 0 0 NA
31-03-2020 Antofagasta 0 0 0 35 0 0 NA
31-03-2020 Atacama 0 0 0 2 0 0 NA
31-03-2020 Coquimbo 1 0 0 28 0 0 NA
31-03-2020 Valparaíso 7 1 0 115 1 0 NA
31-03-2020 Metropolitana 125 1 0 1,420 4 0 NA
31-03-2020 O’Higgins 2 0 0 23 0 0 NA
31-03-2020 Maule 8 0 0 62 1 0 NA
31-03-2020 Ñuble 16 0 0 245 0 0 NA
31-03-2020 Biobío 15 0 0 216 2 0 NA
31-03-2020 Araucanía 55 2 0 302 4 0 NA
31-03-2020 Los Ríos 11 0 0 58 0 0 NA
31-03-2020 Los Lagos 23 0 0 151 0 0 NA
31-03-2020 Aysén 0 0 0 2 0 0 NA
31-03-2020 Magallanes 24 0 0 63 0 0 NA
31-03-2020 No Informado 0 0 0 0 0 156 NA
01-04-2020 Arica y Parinacota 0 0 0 6 0 0 0
01-04-2020 Tarapacá 0 0 0 10 0 0 1
01-04-2020 Antofagasta 4 0 0 39 0 0 3
01-04-2020 Atacama 1 0 0 3 0 0 0
01-04-2020 Coquimbo 2 0 0 30 0 0 1
01-04-2020 Valparaíso 21 0 0 136 1 0 14
01-04-2020 Metropolitana 101 1 0 1,521 5 0 83
01-04-2020 O’Higgins 3 0 0 26 0 0 5
01-04-2020 Maule 9 0 0 71 1 0 3
01-04-2020 Ñuble 14 0 0 259 0 0 7
01-04-2020 Biobío 24 0 0 240 2 0 14
01-04-2020 Araucanía 41 2 0 343 6 0 26
01-04-2020 Los Ríos 6 1 0 64 1 0 1
01-04-2020 Los Lagos 30 0 0 181 0 0 10
01-04-2020 Aysén 1 0 0 3 0 0 0
01-04-2020 Magallanes 36 0 0 99 0 0 5
01-04-2020 No Informado 0 0 78 0 0 234 NA
02-04-2020 Arica y Parinacota 1 0 0 7 0 0 0
02-04-2020 Tarapacá 2 0 0 12 0 0 1
02-04-2020 Antofagasta 8 0 0 47 0 0 4
02-04-2020 Atacama 0 0 0 3 0 0 0
02-04-2020 Coquimbo 4 0 0 34 0 0 1
02-04-2020 Valparaíso 20 0 0 156 1 0 17
02-04-2020 Metropolitana 115 1 0 1,636 6 0 90
02-04-2020 O’Higgins 6 0 0 32 0 0 5
02-04-2020 Maule 11 0 0 82 1 0 3
02-04-2020 Ñuble 82 0 0 341 0 0 8
02-04-2020 Biobío 35 0 0 275 2 0 18
02-04-2020 Araucanía 46 1 0 389 7 0 29
02-04-2020 Los Ríos 4 0 0 68 1 0 2
02-04-2020 Los Lagos 22 0 0 203 0 0 12
02-04-2020 Aysén 2 0 0 5 0 0 0
02-04-2020 Magallanes 15 0 0 114 0 0 10
02-04-2020 No Informado 0 0 101 0 0 335 NA
03-04-2020 Arica y Parinacota 5 0 0 12 0 0 0
03-04-2020 Tarapacá 1 0 0 13 0 0 1
03-04-2020 Antofagasta 7 0 0 54 0 0 3
03-04-2020 Atacama 2 0 0 5 0 0 0
03-04-2020 Coquimbo 1 0 0 35 0 0 1
03-04-2020 Valparaíso 20 0 0 176 1 0 18
03-04-2020 Metropolitana 106 2 0 1,742 8 0 107
03-04-2020 O’Higgins 1 0 0 33 0 0 5
03-04-2020 Maule 7 0 0 89 1 0 3
03-04-2020 Ñuble 29 1 0 370 1 0 10
03-04-2020 Biobío 27 0 0 302 2 0 21
03-04-2020 Araucanía 43 0 0 432 7 0 37
03-04-2020 Los Ríos 10 0 0 78 1 0 2
03-04-2020 Los Lagos 31 0 0 234 0 0 18
03-04-2020 Aysén 1 0 0 6 0 0 0
03-04-2020 Magallanes 42 1 0 156 1 0 11
03-04-2020 No Informado 0 0 92 0 0 427 NA
04-04-2020 Arica y Parinacota 0 0 0 12 0 0 0
04-04-2020 Tarapacá 4 0 0 17 0 0 1
04-04-2020 Antofagasta 1 0 0 55 0 0 3
04-04-2020 Atacama 0 0 0 5 0 0 0
04-04-2020 Coquimbo 9 0 0 44 0 0 2
04-04-2020 Valparaíso 9 0 0 185 1 0 22
04-04-2020 Metropolitana 215 1 0 1,957 9 0 129
04-04-2020 O’Higgins 5 0 0 38 0 0 5
04-04-2020 Maule 8 0 0 97 1 0 3
04-04-2020 Ñuble 31 1 0 401 2 0 11
04-04-2020 Biobío 45 0 0 347 2 0 24
04-04-2020 Araucanía 45 2 0 477 9 0 44
04-04-2020 Los Ríos 11 0 0 89 1 0 2
04-04-2020 Los Lagos 25 0 0 259 0 0 22
04-04-2020 Aysén 0 0 0 6 0 0 0
04-04-2020 Magallanes 16 1 0 172 2 0 12
04-04-2020 No Informado 0 0 101 0 0 528 NA
05-04-2020 Arica y Parinacota 16 0 0 28 0 0 2
05-04-2020 Tarapacá 3 0 0 20 0 0 1
05-04-2020 Antofagasta 5 0 0 60 0 0 3
05-04-2020 Atacama 0 0 0 5 0 0 0
05-04-2020 Coquimbo 6 0 0 50 0 0 1
05-04-2020 Valparaíso 6 0 0 191 1 0 27
05-04-2020 Metropolitana 145 1 0 2,102 10 0 146
05-04-2020 O’Higgins 3 0 0 41 0 0 5
05-04-2020 Maule 6 0 0 103 1 0 4
05-04-2020 Ñuble 24 1 0 425 3 0 10
05-04-2020 Biobío 18 0 0 365 2 0 26
05-04-2020 Araucanía 32 4 0 509 13 0 44
05-04-2020 Los Ríos 10 0 0 99 1 0 3
05-04-2020 Los Lagos 17 1 0 276 1 0 22
05-04-2020 Aysén 1 0 0 7 0 0 0
05-04-2020 Magallanes 18 0 0 190 2 0 13
05-04-2020 No Informado 0 0 70 0 0 598 NA
06-04-2020 Arica y Parinacota 13 0 0 41 0 0 4
06-04-2020 Tarapacá 1 0 0 21 0 0 2
06-04-2020 Antofagasta 8 0 0 68 0 0 3
06-04-2020 Atacama 0 0 0 5 0 0 0
06-04-2020 Coquimbo 1 0 0 51 0 0 1
06-04-2020 Valparaíso 7 0 0 198 1 0 22
06-04-2020 Metropolitana 142 0 0 2,244 10 0 161
06-04-2020 O’Higgins 1 0 0 42 0 0 6
06-04-2020 Maule 5 0 0 108 1 0 5
06-04-2020 Ñuble 49 1 0 474 4 0 11
06-04-2020 Biobío 18 0 0 383 2 0 27
06-04-2020 Araucanía 53 1 0 562 14 0 46
06-04-2020 Los Ríos 5 0 0 104 1 0 4
06-04-2020 Los Lagos 10 1 0 286 2 0 23
06-04-2020 Aysén 0 0 0 7 0 0 0
06-04-2020 Magallanes 31 0 0 221 2 0 12
06-04-2020 No Informado 0 0 130 0 0 728 NA
07-04-2020 Arica y Parinacota 12 0 0 53 0 0 4
07-04-2020 Tarapacá 2 0 0 23 0 0 2
07-04-2020 Antofagasta 1 1 0 69 1 0 2
07-04-2020 Atacama 1 0 0 6 0 0 0
07-04-2020 Coquimbo 1 0 0 52 0 0 2
07-04-2020 Valparaíso 16 0 0 214 1 0 21
07-04-2020 Metropolitana 106 2 0 2,350 12 0 160
07-04-2020 O’Higgins 0 0 0 42 0 0 6
07-04-2020 Maule 0 1 0 108 2 0 7
07-04-2020 Ñuble 48 1 0 522 5 0 13
07-04-2020 Biobío 27 0 0 410 2 0 32
07-04-2020 Araucanía 50 0 0 612 14 0 46
07-04-2020 Los Ríos 5 1 0 109 2 0 6
07-04-2020 Los Lagos 13 0 0 299 2 0 24
07-04-2020 Aysén 0 0 0 7 0 0 0
07-04-2020 Magallanes 19 0 0 240 2 0 12
07-04-2020 No Informado 0 0 170 0 0 898 NA
08-04-2020 Arica y Parinacota 10 0 0 63 0 0 5
08-04-2020 Tarapacá 3 0 0 26 0 0 2
08-04-2020 Antofagasta 8 0 0 77 1 0 2
08-04-2020 Atacama 2 0 0 8 0 0 1
08-04-2020 Coquimbo 4 0 0 56 0 0 1
08-04-2020 Valparaíso 11 1 0 225 2 0 20
08-04-2020 Metropolitana 198 2 0 2,548 14 0 174
08-04-2020 O’Higgins 1 0 0 43 0 0 6
08-04-2020 Maule 11 0 0 119 2 0 8
08-04-2020 Ñuble 39 0 0 561 5 0 13
08-04-2020 Biobío 29 0 0 439 2 0 31
08-04-2020 Araucanía 57 1 0 669 15 0 54
08-04-2020 Los Ríos 5 0 0 114 2 0 6
08-04-2020 Los Lagos 26 0 0 325 2 0 25
08-04-2020 Aysén 0 0 0 7 0 0 0
08-04-2020 Magallanes 26 1 0 266 3 0 14
08-04-2020 No Informado 0 0 217 0 0 1,115 NA
09-04-2020 Arica y Parinacota 12 0 0 75 0 0 5
09-04-2020 Tarapacá 3 0 0 29 0 0 2
09-04-2020 Antofagasta 15 0 0 92 1 0 2
09-04-2020 Atacama 2 0 0 10 0 0 1
09-04-2020 Coquimbo 5 0 0 61 0 0 1
09-04-2020 Valparaíso 5 0 0 230 2 0 22
09-04-2020 Metropolitana 284 7 0 2,832 21 0 164
09-04-2020 O’Higgins 1 0 0 44 0 0 6
09-04-2020 Maule 9 0 0 128 2 0 10
09-04-2020 Ñuble 10 1 0 571 6 0 13
09-04-2020 Biobío 21 0 0 460 2 0 33
09-04-2020 Araucanía 20 1 0 689 16 0 56
09-04-2020 Los Ríos 4 0 0 118 2 0 7
09-04-2020 Los Lagos 15 0 0 340 2 0 24
09-04-2020 Aysén 0 0 0 7 0 0 0
09-04-2020 Magallanes 20 0 0 286 3 0 14
09-04-2020 No Informado 0 0 159 0 0 1,274 NA
10-04-2020 Arica y Parinacota 12 0 0 87 0 0 5
10-04-2020 Tarapacá 6 0 0 35 0 0 3
10-04-2020 Antofagasta 18 0 0 110 1 0 3
10-04-2020 Atacama 3 0 0 13 0 0 1
10-04-2020 Coquimbo 0 0 0 61 0 0 2
10-04-2020 Valparaíso 11 0 0 241 2 0 21
10-04-2020 Metropolitana 361 8 0 3,193 29 0 181
10-04-2020 O’Higgins 0 0 0 44 0 0 7
10-04-2020 Maule 3 0 0 131 2 0 11
10-04-2020 Ñuble 18 0 0 589 6 0 13
10-04-2020 Biobío 14 0 0 474 2 0 32
10-04-2020 Araucanía 23 0 0 712 16 0 57
10-04-2020 Los Ríos 6 0 0 124 2 0 7
10-04-2020 Los Lagos 9 0 0 349 2 0 25
10-04-2020 Aysén 0 0 0 7 0 0 0
10-04-2020 Magallanes 45 0 0 331 3 0 15
10-04-2020 No Informado 0 0 297 0 0 1,571 NA
11-04-2020 Arica y Parinacota 20 0 0 107 0 0 5
11-04-2020 Tarapacá 3 0 0 38 0 0 3
11-04-2020 Antofagasta 7 0 0 117 1 0 2
11-04-2020 Atacama 0 0 0 13 0 0 1
11-04-2020 Coquimbo 3 0 0 64 0 0 2
11-04-2020 Valparaíso 7 0 0 248 2 0 22
11-04-2020 Metropolitana 255 3 0 3,448 32 0 178
11-04-2020 O’Higgins 1 0 0 45 0 0 7
11-04-2020 Maule 3 1 0 134 3 0 13
11-04-2020 Ñuble 17 0 0 606 6 0 13
11-04-2020 Biobío 16 0 0 490 2 0 33
11-04-2020 Araucanía 27 1 0 739 17 0 53
11-04-2020 Los Ríos 6 0 0 130 2 0 7
11-04-2020 Los Lagos 15 3 0 364 5 0 26
11-04-2020 Aysén 0 0 0 7 0 0 0
11-04-2020 Magallanes 46 0 0 377 3 0 18
11-04-2020 No Informado 0 0 293 0 0 1,864 NA
12-04-2020 Arica y Parinacota 8 1 0 115 1 0 5
12-04-2020 Tarapacá 8 0 0 46 0 0 2
12-04-2020 Antofagasta 21 0 0 138 1 0 3
12-04-2020 Atacama 0 0 0 13 0 0 1
12-04-2020 Coquimbo 2 0 0 66 0 0 1
12-04-2020 Valparaíso 6 0 0 254 2 0 18
12-04-2020 Metropolitana 151 3 0 3,599 35 0 185
12-04-2020 O’Higgins 1 0 0 46 0 0 7
12-04-2020 Maule 4 0 0 138 3 0 15
12-04-2020 Ñuble 7 1 0 613 7 0 12
12-04-2020 Biobío 10 0 0 500 2 0 31
12-04-2020 Araucanía 36 0 0 775 17 0 56
12-04-2020 Los Ríos 5 1 0 135 3 0 7
12-04-2020 Los Lagos 8 0 0 372 5 0 26
12-04-2020 Aysén 0 0 0 7 0 0 0
12-04-2020 Magallanes 19 1 0 396 4 0 18
12-04-2020 No Informado 0 0 195 0 0 2,059 NA
13-04-2020 Arica y Parinacota 0 0 0 115 1 0 5
13-04-2020 Tarapacá 6 0 0 52 0 0 2
13-04-2020 Antofagasta 11 0 0 149 1 0 4
13-04-2020 Atacama 0 0 0 13 0 0 1
13-04-2020 Coquimbo 0 0 0 66 0 0 0
13-04-2020 Valparaíso 19 0 0 273 2 0 16
13-04-2020 Metropolitana 204 1 0 3,803 36 0 189
13-04-2020 O’Higgins 2 0 0 48 0 0 7
13-04-2020 Maule 3 0 0 141 3 0 16
13-04-2020 Ñuble 5 0 0 618 7 0 13
13-04-2020 Biobío 12 0 0 512 2 0 35
13-04-2020 Araucanía 20 0 0 795 17 0 52
13-04-2020 Los Ríos 3 0 0 138 3 0 7
13-04-2020 Los Lagos 8 0 0 380 5 0 25
13-04-2020 Aysén 0 0 0 7 0 0 0
13-04-2020 Magallanes 19 1 0 415 5 0 15
13-04-2020 No Informado 0 0 308 0 0 2,367 NA
14-04-2020 Arica y Parinacota 5 0 0 120 1 0 5
14-04-2020 Tarapacá 10 0 0 62 0 0 1
14-04-2020 Antofagasta 6 0 0 155 1 0 4
14-04-2020 Atacama 0 0 0 13 0 0 1
14-04-2020 Coquimbo 0 0 0 66 0 0 1
14-04-2020 Valparaíso 12 0 0 285 2 0 16
14-04-2020 Metropolitana 283 4 0 4,086 40 0 190
14-04-2020 O’Higgins 5 0 0 53 0 0 5
14-04-2020 Maule 1 1 0 142 4 0 15
14-04-2020 Ñuble 4 1 0 622 8 0 12
14-04-2020 Biobío 16 0 0 528 2 0 35
14-04-2020 Araucanía 21 3 0 816 20 0 46
14-04-2020 Los Ríos 10 0 0 148 3 0 7
14-04-2020 Los Lagos 5 0 0 385 5 0 26
14-04-2020 Aysén 0 0 0 7 0 0 0
14-04-2020 Magallanes 14 1 0 429 6 0 15
14-04-2020 No Informado 0 0 279 0 0 2,646 NA
15-04-2020 Arica y Parinacota 4 0 0 124 1 0 5
15-04-2020 Tarapacá 0 0 0 62 0 0 0
15-04-2020 Antofagasta 21 0 0 176 1 0 5
15-04-2020 Atacama 0 0 0 13 0 0 1
15-04-2020 Coquimbo 0 0 0 66 0 0 1
15-04-2020 Valparaíso 14 0 0 299 2 0 16
15-04-2020 Metropolitana 248 1 0 4,334 41 0 198
15-04-2020 O’Higgins 1 0 0 54 0 0 6
15-04-2020 Maule 10 0 0 152 4 0 15
15-04-2020 Ñuble 12 0 0 634 8 0 13
15-04-2020 Biobío 14 0 0 542 2 0 35
15-04-2020 Araucanía 10 1 0 826 21 0 46
15-04-2020 Los Ríos 2 0 0 150 3 0 6
15-04-2020 Los Lagos 5 0 0 390 5 0 26
15-04-2020 Aysén 0 0 0 7 0 0 0
15-04-2020 Magallanes 15 0 0 444 6 0 16
15-04-2020 No Informado 0 0 291 0 0 2,937 NA
16-04-2020 Arica y Parinacota 5 0 0 129 1 0 6
16-04-2020 Tarapacá 4 0 0 66 0 0 0
16-04-2020 Antofagasta 16 0 0 192 1 0 5
16-04-2020 Atacama 0 0 0 13 0 0 1
16-04-2020 Coquimbo 2 0 0 68 0 0 0
16-04-2020 Valparaíso 31 2 0 330 4 0 18
16-04-2020 Metropolitana 348 7 0 4,682 48 0 196
16-04-2020 O’Higgins 0 0 0 54 0 0 4
16-04-2020 Maule 15 0 0 167 4 0 13
16-04-2020 Ñuble 5 2 0 639 10 0 12
16-04-2020 Biobío 17 0 0 559 2 0 30
16-04-2020 Araucanía 56 0 0 882 21 0 47
16-04-2020 Los Ríos 3 0 0 153 3 0 7
16-04-2020 Los Lagos 9 0 0 399 5 0 27
16-04-2020 Aysén 0 0 0 7 0 0 0
16-04-2020 Magallanes 23 0 0 467 6 0 18
16-04-2020 No Informado 0 0 362 0 0 3,299 NA
17-04-2020 Arica y Parinacota 5 1 0 134 2 0 6
17-04-2020 Tarapacá 7 0 0 73 0 0 0
17-04-2020 Antofagasta 19 0 0 211 1 0 6
17-04-2020 Atacama 0 0 0 13 0 0 1
17-04-2020 Coquimbo 0 0 0 68 0 0 0
17-04-2020 Valparaíso 15 0 0 345 4 0 18
17-04-2020 Metropolitana 233 3 0 4,915 51 0 202
17-04-2020 O’Higgins 1 0 0 55 0 0 4
17-04-2020 Maule 56 3 0 223 7 0 12
17-04-2020 Ñuble 17 1 0 656 11 0 12
17-04-2020 Biobío 19 1 0 578 3 0 27
17-04-2020 Araucanía 25 1 0 907 22 0 47
17-04-2020 Los Ríos 1 0 0 154 3 0 6
17-04-2020 Los Lagos 13 1 0 412 6 0 26
17-04-2020 Aysén 0 0 0 7 0 0 0
17-04-2020 Magallanes 34 0 0 501 6 0 18
17-04-2020 No Informado 0 0 322 0 0 3,621 NA
18-04-2020 Arica y Parinacota 8 0 0 142 2 0 5
18-04-2020 Tarapacá 8 0 0 81 0 0 0
18-04-2020 Antofagasta 15 0 0 226 1 0 5
18-04-2020 Atacama 0 0 0 13 0 0 1
18-04-2020 Coquimbo 0 0 0 68 0 0 0
18-04-2020 Valparaíso 14 0 0 359 4 0 19
18-04-2020 Metropolitana 277 7 0 5,192 58 0 181
18-04-2020 O’Higgins 0 0 0 55 0 0 4
18-04-2020 Maule 53 1 0 276 8 0 12
18-04-2020 Ñuble 11 1 0 667 12 0 13
18-04-2020 Biobío 28 0 0 606 3 0 25
18-04-2020 Araucanía 37 1 0 944 23 0 46
18-04-2020 Los Ríos 2 0 0 156 3 0 6
18-04-2020 Los Lagos 4 0 0 416 6 0 26
18-04-2020 Aysén 0 0 0 7 0 0 0
18-04-2020 Magallanes 21 0 0 522 6 0 17
18-04-2020 No Informado 0 0 414 0 0 4,035 NA
19-04-2020 Arica y Parinacota 3 0 0 145 2 0 5
19-04-2020 Tarapacá 9 0 0 90 0 0 1
19-04-2020 Antofagasta 23 0 0 249 1 0 5
19-04-2020 Atacama 0 0 0 13 0 0 1
19-04-2020 Coquimbo 0 0 0 68 0 0 0
19-04-2020 Valparaíso 22 1 0 381 5 0 22
19-04-2020 Metropolitana 189 5 0 5,381 63 0 186
19-04-2020 O’Higgins 0 0 0 55 0 0 4
19-04-2020 Maule 26 0 0 302 8 0 15
19-04-2020 Ñuble 11 1 0 678 13 0 14
19-04-2020 Biobío 10 0 0 616 3 0 26
19-04-2020 Araucanía 28 0 0 972 23 0 44
19-04-2020 Los Ríos 1 0 0 157 3 0 7
19-04-2020 Los Lagos 5 0 0 421 6 0 25
19-04-2020 Aysén 0 0 0 7 0 0 0
19-04-2020 Magallanes 31 0 0 553 6 0 18
19-04-2020 No Informado 0 0 303 0 0 4,338 NA
20-04-2020 Arica y Parinacota 16 0 0 161 2 0 5
20-04-2020 Tarapacá 3 0 0 93 0 0 1
20-04-2020 Antofagasta 14 0 0 263 1 0 5
20-04-2020 Atacama 0 0 0 13 0 0 1
20-04-2020 Coquimbo 1 0 0 69 0 0 0
20-04-2020 Valparaíso 7 0 0 388 5 0 22
20-04-2020 Metropolitana 262 4 0 5,643 67 0 194
20-04-2020 O’Higgins 1 0 0 56 0 0 4
20-04-2020 Maule 2 2 0 304 10 0 9
20-04-2020 Ñuble 9 0 0 687 13 0 15
20-04-2020 Biobío 10 0 0 626 3 0 26
20-04-2020 Araucanía 73 0 0 1,045 23 0 45
20-04-2020 Los Ríos 5 0 0 162 3 0 5
20-04-2020 Los Lagos 3 0 0 424 6 0 24
20-04-2020 Aysén 0 0 0 7 0 0 0
20-04-2020 Magallanes 13 0 0 566 6 0 21
20-04-2020 No Informado 0 0 338 0 0 4,676 NA
21-04-2020 Arica y Parinacota 9 0 0 170 2 0 5
21-04-2020 Tarapacá 11 0 0 104 0 0 1
21-04-2020 Antofagasta 28 0 0 291 1 0 7
21-04-2020 Atacama 0 0 0 13 0 0 1
21-04-2020 Coquimbo 0 0 0 69 0 0 0
21-04-2020 Valparaíso 15 1 0 403 6 0 22
21-04-2020 Metropolitana 145 2 0 5,788 69 0 204
21-04-2020 O’Higgins 1 1 0 57 1 0 3
21-04-2020 Maule 12 0 0 316 10 0 14
21-04-2020 Ñuble 7 0 0 694 13 0 15
21-04-2020 Biobío 10 1 0 636 4 0 25
21-04-2020 Araucanía 47 2 0 1,092 25 0 45
21-04-2020 Los Ríos 5 0 0 167 3 0 6
21-04-2020 Los Lagos 8 0 0 432 6 0 25
21-04-2020 Aysén 0 0 0 7 0 0 0
21-04-2020 Magallanes 27 1 0 593 7 0 19
21-04-2020 No Informado 0 0 293 0 0 4,969 NA
22-04-2020 Arica y Parinacota 10 0 0 180 2 0 4
22-04-2020 Tarapacá 10 0 0 114 0 0 2
22-04-2020 Antofagasta 35 1 0 326 2 0 10
22-04-2020 Atacama 0 0 0 13 0 0 1
22-04-2020 Coquimbo 1 0 0 70 0 0 0
22-04-2020 Valparaíso 18 1 0 421 7 0 24
22-04-2020 Metropolitana 295 9 0 6,083 78 0 213
22-04-2020 O’Higgins 2 0 0 59 1 0 4
22-04-2020 Maule 12 0 0 328 10 0 10
22-04-2020 Ñuble 9 0 0 703 13 0 15
22-04-2020 Biobío 22 1 0 658 5 0 25
22-04-2020 Araucanía 21 1 0 1,113 26 0 43
22-04-2020 Los Ríos 4 0 0 171 3 0 7
22-04-2020 Los Lagos 13 0 0 445 6 0 23
22-04-2020 Aysén 0 0 0 7 0 0 0
22-04-2020 Magallanes 12 0 0 605 7 0 18
22-04-2020 No Informado 0 0 417 0 0 5,386 NA
23-04-2020 Arica y Parinacota 30 0 0 210 2 0 4
23-04-2020 Tarapacá 14 0 0 128 0 0 2
23-04-2020 Antofagasta 14 0 0 340 2 0 14
23-04-2020 Atacama 5 0 0 18 0 0 1
23-04-2020 Coquimbo 0 0 0 70 0 0 0
23-04-2020 Valparaíso 8 0 0 429 7 0 20
23-04-2020 Metropolitana 351 7 0 6,434 85 0 234
23-04-2020 O’Higgins 17 0 0 76 1 0 4
23-04-2020 Maule 5 0 0 333 10 0 9
23-04-2020 Ñuble 5 0 0 708 13 0 15
23-04-2020 Biobío 17 0 0 675 5 0 25
23-04-2020 Araucanía 29 0 0 1,142 26 0 37
23-04-2020 Los Ríos 2 0 0 173 3 0 7
23-04-2020 Los Lagos 9 1 0 454 7 0 22
23-04-2020 Aysén 0 0 0 7 0 0 0
23-04-2020 Magallanes 10 0 0 615 7 0 17
23-04-2020 No Informado 0 0 418 0 0 5,804 NA
24-04-2020 Arica y Parinacota 29 1 0 239 3 0 7
24-04-2020 Tarapacá 6 0 0 134 0 0 2
24-04-2020 Antofagasta 26 0 0 366 2 0 16
24-04-2020 Atacama 3 0 0 21 0 0 1
24-04-2020 Coquimbo 2 0 0 72 0 0 0
24-04-2020 Valparaíso 7 1 0 436 8 0 17
24-04-2020 Metropolitana 327 1 0 6,761 86 0 242
24-04-2020 O’Higgins 5 0 0 81 1 0 4
24-04-2020 Maule 16 0 0 349 10 0 9
24-04-2020 Ñuble 7 1 0 715 14 0 13
24-04-2020 Biobío 8 0 0 683 5 0 22
24-04-2020 Araucanía 42 0 0 1,184 26 0 38
24-04-2020 Los Ríos 1 0 0 174 3 0 7
24-04-2020 Los Lagos 6 1 0 460 8 0 21
24-04-2020 Aysén 0 0 0 7 0 0 0
24-04-2020 Magallanes 9 1 0 624 8 0 16
24-04-2020 No Informado 0 0 523 0 0 6,327 NA
25-04-2020 Arica y Parinacota 6 0 0 245 3 0 8
25-04-2020 Tarapacá 9 1 0 143 1 0 3
25-04-2020 Antofagasta 25 1 0 391 3 0 16
25-04-2020 Atacama 3 0 0 24 0 0 1
25-04-2020 Coquimbo 1 0 0 73 0 0 0
25-04-2020 Valparaíso 18 1 0 454 9 0 16
25-04-2020 Metropolitana 404 3 0 7,165 89 0 246
25-04-2020 O’Higgins 4 0 0 85 1 0 4
25-04-2020 Maule 1 0 0 350 10 0 8
25-04-2020 Ñuble 10 0 0 725 14 0 10
25-04-2020 Biobío 13 0 0 696 5 0 22
25-04-2020 Araucanía 19 1 0 1,203 27 0 39
25-04-2020 Los Ríos 3 0 0 177 3 0 7
25-04-2020 Los Lagos 5 0 0 465 8 0 21
25-04-2020 Aysén 0 0 0 7 0 0 0
25-04-2020 Magallanes 31 0 0 655 8 0 17
25-04-2020 No Informado 0 0 419 0 0 6,746 NA
26-04-2020 Arica y Parinacota 7 0 0 252 3 0 9
26-04-2020 Tarapacá 13 0 0 156 1 0 2
26-04-2020 Antofagasta 52 1 0 443 4 0 15
26-04-2020 Atacama 5 0 0 29 0 0 1
26-04-2020 Coquimbo 0 0 0 73 0 0 0
26-04-2020 Valparaíso 6 0 0 460 9 0 14
26-04-2020 Metropolitana 331 2 0 7,496 91 0 248
26-04-2020 O’Higgins 7 0 0 92 1 0 4
26-04-2020 Maule 4 1 0 354 11 0 10
26-04-2020 Ñuble 6 0 0 731 14 0 10
26-04-2020 Biobío 7 1 0 703 6 0 23
26-04-2020 Araucanía 13 2 0 1,216 29 0 38
26-04-2020 Los Ríos 1 0 0 178 3 0 7
26-04-2020 Los Lagos 8 0 0 473 8 0 17
26-04-2020 Aysén 0 0 0 7 0 0 0
26-04-2020 Magallanes 13 1 0 668 9 0 17
26-04-2020 No Informado 0 0 278 0 0 7,024 NA
27-04-2020 Arica y Parinacota 13 0 0 265 3 0 10
27-04-2020 Tarapacá 8 0 0 164 1 0 2
27-04-2020 Antofagasta 14 0 0 457 4 0 17
27-04-2020 Atacama 6 0 0 35 0 0 1
27-04-2020 Coquimbo 1 0 0 74 0 0 0
27-04-2020 Valparaíso 25 0 0 485 9 0 15
27-04-2020 Metropolitana 362 4 0 7,858 95 0 252
27-04-2020 O’Higgins 2 0 0 94 1 0 4
27-04-2020 Maule 9 1 0 363 12 0 10
27-04-2020 Ñuble 10 0 0 741 14 0 10
27-04-2020 Biobío 3 0 0 706 6 0 24
27-04-2020 Araucanía 20 3 0 1,236 32 0 37
27-04-2020 Los Ríos 2 0 0 180 3 0 6
27-04-2020 Los Lagos 4 0 0 477 8 0 17
27-04-2020 Aysén 0 0 0 7 0 0 0
27-04-2020 Magallanes 3 1 0 671 10 0 21
27-04-2020 No Informado 0 0 303 0 0 7,327 NA
28-04-2020 Arica y Parinacota 3 0 0 268 3 0 10
28-04-2020 Tarapacá 5 0 0 169 1 0 2
28-04-2020 Antofagasta 24 0 0 481 4 0 19
28-04-2020 Atacama 0 0 0 35 0 0 1
28-04-2020 Coquimbo 0 0 0 74 0 0 0
28-04-2020 Valparaíso 8 1 0 493 10 0 15
28-04-2020 Metropolitana 442 5 0 8,300 100 0 258
28-04-2020 O’Higgins 3 0 0 97 1 0 5
28-04-2020 Maule 21 0 0 384 12 0 8
28-04-2020 Ñuble 6 0 0 747 14 0 9
28-04-2020 Biobío 3 1 0 709 7 0 21
28-04-2020 Araucanía 15 0 0 1,251 32 0 35
28-04-2020 Los Ríos 0 1 0 180 4 0 5
28-04-2020 Los Lagos 0 1 0 477 9 0 18
28-04-2020 Aysén 0 0 0 7 0 0 0
28-04-2020 Magallanes 22 0 0 693 10 0 22
28-04-2020 No Informado 0 0 383 0 0 7,710 NA
29-04-2020 Arica y Parinacota 4 1 0 272 4 0 9
29-04-2020 Tarapacá 14 0 0 183 1 0 3
29-04-2020 Antofagasta 33 0 0 514 4 0 20
29-04-2020 Atacama 7 0 0 42 0 0 1
29-04-2020 Coquimbo 2 0 0 76 0 0 0
29-04-2020 Valparaíso 33 2 0 526 12 0 14
29-04-2020 Metropolitana 589 4 0 8,889 104 0 256
29-04-2020 O’Higgins 7 0 0 104 1 0 4
29-04-2020 Maule 8 1 0 392 13 0 7
29-04-2020 Ñuble 14 0 0 761 14 0 7
29-04-2020 Biobío 10 0 0 719 7 0 22
29-04-2020 Araucanía 22 0 0 1,273 32 0 35
29-04-2020 Los Ríos 2 0 0 182 4 0 5
29-04-2020 Los Lagos 4 0 0 481 9 0 18
29-04-2020 Aysén 0 0 0 7 0 0 0
29-04-2020 Magallanes 21 1 0 714 11 0 17
29-04-2020 No Informado 0 0 347 0 0 8,057 NA
30-04-2020 Arica y Parinacota 7 0 0 279 4 0 8
30-04-2020 Tarapacá 15 0 0 198 1 0 2
30-04-2020 Antofagasta 32 1 0 546 5 0 21
30-04-2020 Atacama 1 0 0 43 0 0 1
30-04-2020 Coquimbo 0 0 0 76 0 0 0
30-04-2020 Valparaíso 33 0 0 559 12 0 18
30-04-2020 Metropolitana 736 6 0 9,625 110 0 257
30-04-2020 O’Higgins 4 0 0 108 1 0 5
30-04-2020 Maule 1 0 0 393 13 0 6
30-04-2020 Ñuble 7 0 0 768 14 0 7
30-04-2020 Biobío 8 0 0 727 7 0 22
30-04-2020 Araucanía 20 3 0 1,293 35 0 30
30-04-2020 Los Ríos 7 0 0 189 4 0 5
30-04-2020 Los Lagos 6 1 0 487 10 0 19
30-04-2020 Aysén 0 0 0 7 0 0 0
30-04-2020 Magallanes 11 0 0 725 11 0 18
30-04-2020 No Informado 0 0 523 0 0 8,580 NA
01-05-2020 Arica y Parinacota 18 0 0 297 4 0 9
01-05-2020 Tarapacá 2 0 0 200 1 0 2
01-05-2020 Antofagasta 43 2 0 589 7 0 23
01-05-2020 Atacama 0 0 0 43 0 0 1
01-05-2020 Coquimbo 1 0 0 77 0 0 0
01-05-2020 Valparaíso 9 0 0 568 12 0 19
01-05-2020 Metropolitana 891 4 0 10,516 114 0 262
01-05-2020 O’Higgins 1 0 0 109 1 0 6
01-05-2020 Maule 1 0 0 394 13 0 5
01-05-2020 Ñuble 0 0 0 768 14 0 8
01-05-2020 Biobío 2 0 0 729 7 0 23
01-05-2020 Araucanía 2 1 0 1,295 36 0 29
01-05-2020 Los Ríos 0 0 0 189 4 0 5
01-05-2020 Los Lagos 14 0 0 501 10 0 18
01-05-2020 Aysén 0 0 0 7 0 0 0
01-05-2020 Magallanes 1 0 0 726 11 0 18
01-05-2020 No Informado 0 0 438 0 0 9,018 NA
02-05-2020 Arica y Parinacota 10 0 0 307 4 0 7
02-05-2020 Tarapacá 12 0 0 212 1 0 2
02-05-2020 Antofagasta 90 0 0 679 7 0 22
02-05-2020 Atacama 16 0 0 59 0 0 1
02-05-2020 Coquimbo 1 0 0 78 0 0 0
02-05-2020 Valparaíso 46 1 0 614 13 0 18
02-05-2020 Metropolitana 1,145 8 0 11,661 122 0 269
02-05-2020 O’Higgins 11 2 0 120 3 0 5
02-05-2020 Maule 2 0 0 396 13 0 5
02-05-2020 Ñuble 8 2 0 776 16 0 8
02-05-2020 Biobío 22 0 0 751 7 0 21
02-05-2020 Araucanía 19 0 0 1,314 36 0 28
02-05-2020 Los Ríos 7 0 0 196 4 0 4
02-05-2020 Los Lagos 12 0 0 513 10 0 17
02-05-2020 Aysén 0 0 0 7 0 0 0
02-05-2020 Magallanes 26 0 0 752 11 0 18
02-05-2020 No Informado 0 0 554 0 0 9,572 NA
03-05-2020 Arica y Parinacota 1 0 0 308 4 0 7
03-05-2020 Tarapacá 60 0 0 272 1 0 4
03-05-2020 Antofagasta 61 0 0 740 7 0 24
03-05-2020 Atacama 8 0 0 67 0 0 1
03-05-2020 Coquimbo 10 0 0 88 0 0 0
03-05-2020 Valparaíso 24 0 0 638 13 0 17
03-05-2020 Metropolitana 995 13 0 12,656 135 0 289
03-05-2020 O’Higgins 5 0 0 125 3 0 5
03-05-2020 Maule 1 0 0 397 13 0 8
03-05-2020 Ñuble 10 0 0 786 16 0 9
03-05-2020 Biobío 8 0 0 759 7 0 20
03-05-2020 Araucanía 14 0 0 1,328 36 0 27
03-05-2020 Los Ríos 2 0 0 198 4 0 3
03-05-2020 Los Lagos 4 0 0 517 10 0 17
03-05-2020 Aysén 0 0 0 7 0 0 0
03-05-2020 Magallanes 25 0 0 777 11 0 18
03-05-2020 No Informado 0 0 469 0 0 10,041 NA
04-05-2020 Arica y Parinacota 0 0 0 308 4 0 7
04-05-2020 Tarapacá 23 0 0 295 1 0 4
04-05-2020 Antofagasta 20 0 0 760 7 0 25
04-05-2020 Atacama 3 0 0 70 0 0 1
04-05-2020 Coquimbo 3 0 0 91 0 0 0
04-05-2020 Valparaíso 18 0 0 656 13 0 18
04-05-2020 Metropolitana 872 8 0 13,528 143 0 303
04-05-2020 O’Higgins 6 0 0 131 3 0 5
04-05-2020 Maule 2 0 0 399 13 0 8
04-05-2020 Ñuble 1 1 0 787 17 0 9
04-05-2020 Biobío 3 1 0 762 8 0 18
04-05-2020 Araucanía 3 0 0 1,331 36 0 26
04-05-2020 Los Ríos 1 0 0 199 4 0 3
04-05-2020 Los Lagos 7 0 0 524 10 0 18
04-05-2020 Aysén 0 0 0 7 0 0 0
04-05-2020 Magallanes 18 0 0 795 11 0 19
04-05-2020 No Informado 0 0 374 0 0 10,415 NA
05-05-2020 Arica y Parinacota 7 0 0 315 4 0 6
05-05-2020 Tarapacá 27 0 0 322 1 0 5
05-05-2020 Antofagasta 51 0 0 811 7 0 24
05-05-2020 Atacama 8 0 0 78 0 0 1
05-05-2020 Coquimbo 6 0 0 97 0 0 0
05-05-2020 Valparaíso 31 2 0 687 15 0 17
05-05-2020 Metropolitana 1,179 3 0 14,707 146 0 314
05-05-2020 O’Higgins 5 0 0 136 3 0 7
05-05-2020 Maule 9 0 0 408 13 0 7
05-05-2020 Ñuble 2 0 0 789 17 0 7
05-05-2020 Biobío 12 0 0 774 8 0 18
05-05-2020 Araucanía 21 0 0 1,352 36 0 25
05-05-2020 Los Ríos 0 0 0 199 4 0 4
05-05-2020 Los Lagos 1 0 0 525 10 0 16
05-05-2020 Aysén 0 0 0 7 0 0 0
05-05-2020 Magallanes 14 0 0 809 11 0 19
05-05-2020 No Informado 0 0 295 0 0 10,710 NA
06-05-2020 Arica y Parinacota 3 1 0 318 5 0 7
06-05-2020 Tarapacá 17 0 0 339 1 0 5
06-05-2020 Antofagasta 44 0 0 855 7 0 28
06-05-2020 Atacama 2 0 0 80 0 0 1
06-05-2020 Coquimbo 0 0 0 97 0 0 0
06-05-2020 Valparaíso 29 1 0 716 16 0 16
06-05-2020 Metropolitana 875 4 0 15,582 150 0 340
06-05-2020 O’Higgins 9 0 0 145 3 0 5
06-05-2020 Maule 0 0 0 408 13 0 4
06-05-2020 Ñuble 2 0 0 791 17 0 7
06-05-2020 Biobío 15 0 0 789 8 0 15
06-05-2020 Araucanía 10 0 0 1,362 36 0 24
06-05-2020 Los Ríos 1 0 0 200 4 0 4
06-05-2020 Los Lagos 16 0 0 541 10 0 11
06-05-2020 Aysén 0 0 0 7 0 0 0
06-05-2020 Magallanes 9 0 0 818 11 0 19
06-05-2020 No Informado 0 0 479 0 0 11,189 NA
07-05-2020 Arica y Parinacota 7 1 0 325 6 0 8
07-05-2020 Tarapacá 78 0 0 417 1 0 5
07-05-2020 Antofagasta 40 0 0 895 7 0 28
07-05-2020 Atacama 7 0 0 87 0 0 1
07-05-2020 Coquimbo 3 0 0 100 0 0 0
07-05-2020 Valparaíso 65 1 0 781 17 0 15
07-05-2020 Metropolitana 1,246 2 0 16,828 152 0 348
07-05-2020 O’Higgins 6 0 0 151 3 0 6
07-05-2020 Maule 6 0 0 414 13 0 4
07-05-2020 Ñuble 2 0 0 793 17 0 7
07-05-2020 Biobío 25 0 0 814 8 0 14
07-05-2020 Araucanía 23 0 0 1,385 36 0 24
07-05-2020 Los Ríos 2 0 0 202 4 0 4
07-05-2020 Los Lagos 4 0 0 545 10 0 10
07-05-2020 Aysén 1 0 0 8 0 0 0
07-05-2020 Magallanes 18 0 0 836 11 0 19
07-05-2020 No Informado 0 0 475 0 0 11,664 NA
08-05-2020 Arica y Parinacota 2 0 0 327 6 0 7
08-05-2020 Tarapacá 42 0 0 459 1 0 4
08-05-2020 Antofagasta 28 2 0 923 9 0 29
08-05-2020 Atacama 1 0 0 88 0 0 1
08-05-2020 Coquimbo 11 0 0 111 0 0 0
08-05-2020 Valparaíso 47 1 0 828 18 0 18
08-05-2020 Metropolitana 1,151 5 0 17,979 157 0 366
08-05-2020 O’Higgins 16 0 0 167 3 0 6
08-05-2020 Maule 11 0 0 425 13 0 4
08-05-2020 Ñuble 1 1 0 794 18 0 7
08-05-2020 Biobío 28 0 0 842 8 0 16
08-05-2020 Araucanía 18 0 0 1,403 36 0 21
08-05-2020 Los Ríos 1 0 0 203 4 0 4
08-05-2020 Los Lagos 3 0 0 548 10 0 10
08-05-2020 Aysén 0 0 0 8 0 0 0
08-05-2020 Magallanes 31 0 0 867 11 0 15
08-05-2020 No Informado 0 0 496 0 0 12,160 NA
09-05-2020 Arica y Parinacota 10 0 0 337 6 0 7
09-05-2020 Tarapacá 26 0 0 485 1 0 6
09-05-2020 Antofagasta 24 1 0 947 10 0 30
09-05-2020 Atacama 29 0 0 117 0 0 2
09-05-2020 Coquimbo 18 0 0 129 0 0 0
09-05-2020 Valparaíso 50 1 0 878 19 0 19
09-05-2020 Metropolitana 978 6 0 18,957 163 0 394
09-05-2020 O’Higgins 15 0 0 182 3 0 5
09-05-2020 Maule 7 1 0 432 14 0 4
09-05-2020 Ñuble 7 0 0 801 18 0 8
09-05-2020 Biobío 40 0 0 882 8 0 18
09-05-2020 Araucanía 15 0 0 1,418 36 0 22
09-05-2020 Los Ríos 3 1 0 206 5 0 3
09-05-2020 Los Lagos 11 0 0 559 10 0 11
09-05-2020 Aysén 0 0 0 8 0 0 0
09-05-2020 Magallanes 14 0 0 881 11 0 15
09-05-2020 No Informado 0 0 507 0 0 12,667 NA
10-05-2020 Arica y Parinacota 3 0 0 340 6 0 7
10-05-2020 Tarapacá 35 0 0 520 1 0 6
10-05-2020 Antofagasta 31 0 0 978 10 0 31
10-05-2020 Atacama 7 0 0 124 0 0 2
10-05-2020 Coquimbo 6 1 0 135 1 0 0
10-05-2020 Valparaíso 55 1 0 933 20 0 18
10-05-2020 Metropolitana 1,396 3 0 20,353 166 0 415
10-05-2020 O’Higgins 13 0 0 195 3 0 5
10-05-2020 Maule 9 0 0 441 14 0 4
10-05-2020 Ñuble 11 0 0 812 18 0 8
10-05-2020 Biobío 17 0 0 899 8 0 19
10-05-2020 Araucanía 36 1 0 1,454 37 0 23
10-05-2020 Los Ríos 0 0 0 206 5 0 2
10-05-2020 Los Lagos 16 0 0 575 10 0 10
10-05-2020 Aysén 0 0 0 8 0 0 0
10-05-2020 Magallanes 12 2 0 893 13 0 15
10-05-2020 No Informado 0 0 445 0 0 13,112 NA
11-05-2020 Arica y Parinacota 11 1 0 351 7 0 7
11-05-2020 Tarapacá 27 0 0 547 1 0 7
11-05-2020 Antofagasta 36 0 0 1,014 10 0 32
11-05-2020 Atacama 9 0 0 133 0 0 2
11-05-2020 Coquimbo 5 0 0 140 1 0 0
11-05-2020 Valparaíso 37 1 0 970 21 0 19
11-05-2020 Metropolitana 964 6 0 21,317 172 0 421
11-05-2020 O’Higgins 21 1 0 216 4 0 5
11-05-2020 Maule 13 0 0 454 14 0 5
11-05-2020 Ñuble 2 0 0 814 18 0 8
11-05-2020 Biobío 33 0 0 932 8 0 18
11-05-2020 Araucanía 12 1 0 1,466 38 0 22
11-05-2020 Los Ríos 2 0 0 208 5 0 2
11-05-2020 Los Lagos 17 0 0 592 10 0 10
11-05-2020 Aysén 0 0 0 8 0 0 0
11-05-2020 Magallanes 8 1 0 901 14 0 16
11-05-2020 No Informado 0 0 493 0 0 13,605 NA
12-05-2020 Arica y Parinacota 0 0 0 351 7 0 7
12-05-2020 Tarapacá 31 0 0 578 1 0 9
12-05-2020 Antofagasta 95 0 0 1,109 10 0 32
12-05-2020 Atacama 1 0 0 134 0 0 2
12-05-2020 Coquimbo 8 0 0 148 1 0 0
12-05-2020 Valparaíso 59 2 0 1,029 23 0 21
12-05-2020 Metropolitana 1,392 6 0 22,709 178 0 450
12-05-2020 O’Higgins 8 0 0 224 4 0 6
12-05-2020 Maule 12 0 0 466 14 0 6
12-05-2020 Ñuble 12 1 0 826 19 0 7
12-05-2020 Biobío 10 1 0 942 9 0 17
12-05-2020 Araucanía 16 1 0 1,482 39 0 20
12-05-2020 Los Ríos 3 0 0 211 5 0 1
12-05-2020 Los Lagos 2 1 0 594 11 0 10
12-05-2020 Aysén 0 0 0 8 0 0 0
12-05-2020 Magallanes 9 0 0 910 14 0 16
12-05-2020 No Informado 0 0 520 0 0 14,125 NA
13-05-2020 Arica y Parinacota 8 0 0 359 7 0 7
13-05-2020 Tarapacá 37 0 0 615 1 0 8
13-05-2020 Antofagasta 107 1 0 1,216 11 0 38
13-05-2020 Atacama 5 0 0 139 0 0 2
13-05-2020 Coquimbo 5 0 0 153 1 0 0
13-05-2020 Valparaíso 94 1 0 1,123 24 0 24
13-05-2020 Metropolitana 2,256 6 0 24,965 184 0 490
13-05-2020 O’Higgins 24 0 0 248 4 0 7
13-05-2020 Maule 19 0 0 485 14 0 6
13-05-2020 Ñuble 13 0 0 839 19 0 5
13-05-2020 Biobío 33 0 0 975 9 0 14
13-05-2020 Araucanía 13 0 0 1,495 39 0 18
13-05-2020 Los Ríos 1 1 0 212 6 0 0
13-05-2020 Los Lagos 34 0 0 628 11 0 11
13-05-2020 Aysén 0 0 0 8 0 0 0
13-05-2020 Magallanes 11 2 0 921 16 0 12
13-05-2020 No Informado 0 0 740 0 0 14,865 NA
14-05-2020 Arica y Parinacota 4 0 0 363 7 0 7
14-05-2020 Tarapacá 67 0 0 682 1 0 9
14-05-2020 Antofagasta 61 0 0 1,277 11 0 39
14-05-2020 Atacama 1 0 0 140 0 0 2
14-05-2020 Coquimbo 12 0 0 165 1 0 0
14-05-2020 Valparaíso 90 1 0 1,213 25 0 25
14-05-2020 Metropolitana 2,251 18 0 27,216 202 0 509
14-05-2020 O’Higgins 47 0 0 295 4 0 8
14-05-2020 Maule 34 0 0 519 14 0 6
14-05-2020 Ñuble 10 1 0 849 20 0 5
14-05-2020 Biobío 20 0 0 995 9 0 11
14-05-2020 Araucanía 41 2 0 1,536 41 0 17
14-05-2020 Los Ríos 2 0 0 214 6 0 0
14-05-2020 Los Lagos 5 0 0 633 11 0 13
14-05-2020 Aysén 0 0 0 8 0 0 0
14-05-2020 Magallanes 14 0 0 935 16 0 12
14-05-2020 No Informado 0 0 790 0 0 15,655 NA
15-05-2020 Arica y Parinacota 5 0 0 368 7 0 7
15-05-2020 Tarapacá 97 1 0 779 2 0 13
15-05-2020 Antofagasta 54 1 0 1,331 12 0 41
15-05-2020 Atacama 3 0 0 143 0 0 3
15-05-2020 Coquimbo 15 0 0 180 1 0 2
15-05-2020 Valparaíso 99 2 0 1,312 27 0 25
15-05-2020 Metropolitana 2,060 19 0 29,276 221 0 551
15-05-2020 O’Higgins 28 1 0 323 5 0 7
15-05-2020 Maule 21 0 0 540 14 0 6
15-05-2020 Ñuble 36 0 0 885 20 0 5
15-05-2020 Biobío 41 0 0 1,036 9 0 12
15-05-2020 Araucanía 28 2 0 1,564 43 0 16
15-05-2020 Los Ríos 5 0 0 219 6 0 0
15-05-2020 Los Lagos 8 0 0 641 11 0 11
15-05-2020 Aysén 0 0 0 8 0 0 0
15-05-2020 Magallanes 2 0 0 937 16 0 12
15-05-2020 No Informado 0 0 959 0 0 16,614 NA
16-05-2020 Arica y Parinacota 9 0 0 377 7 0 8
16-05-2020 Tarapacá 66 0 0 845 2 0 13
16-05-2020 Antofagasta 98 0 0 1,429 12 0 45
16-05-2020 Atacama 3 0 0 146 0 0 3
16-05-2020 Coquimbo 7 1 0 187 2 0 1
16-05-2020 Valparaíso 53 1 0 1,365 28 0 26
16-05-2020 Metropolitana 1,518 25 0 30,794 246 0 581
16-05-2020 O’Higgins 6 0 0 329 5 0 10
16-05-2020 Maule 11 0 0 551 14 0 8
16-05-2020 Ñuble 36 0 0 921 20 0 5
16-05-2020 Biobío 38 0 0 1,074 9 0 14
16-05-2020 Araucanía 23 0 0 1,587 43 0 16
16-05-2020 Los Ríos 0 0 0 219 6 0 0
16-05-2020 Los Lagos 3 0 0 644 11 0 10
16-05-2020 Aysén 0 0 0 8 0 0 0
16-05-2020 Magallanes 15 0 0 952 16 0 11
16-05-2020 No Informado 0 0 1,400 0 0 18,014 NA
17-05-2020 Arica y Parinacota 1 0 0 378 7 0 8
17-05-2020 Tarapacá 130 2 0 975 4 0 12
17-05-2020 Antofagasta 76 1 0 1,505 13 0 49
17-05-2020 Atacama 3 0 0 149 0 0 3
17-05-2020 Coquimbo 7 0 0 194 2 0 1
17-05-2020 Valparaíso 109 1 0 1,474 29 0 27
17-05-2020 Metropolitana 1,890 24 0 32,684 270 0 595
17-05-2020 O’Higgins 37 0 0 366 5 0 10
17-05-2020 Maule 22 0 0 573 14 0 8
17-05-2020 Ñuble 21 0 0 942 20 0 5
17-05-2020 Biobío 25 0 0 1,099 9 0 14
17-05-2020 Araucanía 19 1 0 1,606 44 0 17
17-05-2020 Los Ríos 1 0 0 220 6 0 0
17-05-2020 Los Lagos 3 0 0 647 11 0 9
17-05-2020 Aysén 0 0 0 8 0 0 0
17-05-2020 Magallanes 9 0 0 961 16 0 11
17-05-2020 No Informado 0 0 1,199 0 0 19,213 NA
18-05-2020 Arica y Parinacota 20 0 0 398 7 0 8
18-05-2020 Tarapacá 81 0 0 1,056 4 0 16
18-05-2020 Antofagasta 84 1 0 1,589 14 0 47
18-05-2020 Atacama 8 0 0 157 0 0 3
18-05-2020 Coquimbo 18 0 0 212 2 0 1
18-05-2020 Valparaíso 79 1 0 1,553 30 0 32
18-05-2020 Metropolitana 1,767 24 0 34,451 294 0 620
18-05-2020 O’Higgins 52 1 0 418 6 0 9
18-05-2020 Maule 29 0 0 602 14 0 8
18-05-2020 Ñuble 43 1 0 985 21 0 5
18-05-2020 Biobío 45 0 0 1,144 9 0 17
18-05-2020 Araucanía 33 0 0 1,639 44 0 18
18-05-2020 Los Ríos 4 0 0 224 6 0 0
18-05-2020 Los Lagos 5 0 0 652 11 0 11
18-05-2020 Aysén 0 0 0 8 0 0 0
18-05-2020 Magallanes 10 0 0 971 16 0 12
18-05-2020 No Informado 0 0 952 0 0 20,165 NA
19-05-2020 Arica y Parinacota 24 0 0 422 7 0 8
19-05-2020 Tarapacá 53 0 0 1,109 4 0 18
19-05-2020 Antofagasta 59 2 0 1,648 16 0 50
19-05-2020 Atacama 1 0 0 158 0 0 3
19-05-2020 Coquimbo 27 0 0 239 2 0 1
19-05-2020 Valparaíso 86 2 0 1,639 32 0 34
19-05-2020 Metropolitana 3,140 24 0 37,591 318 0 682
19-05-2020 O’Higgins 24 1 0 442 7 0 9
19-05-2020 Maule 38 0 0 640 14 0 8
19-05-2020 Ñuble 3 0 0 988 21 0 7
19-05-2020 Biobío 28 0 0 1,172 9 0 18
19-05-2020 Araucanía 27 0 0 1,666 44 0 18
19-05-2020 Los Ríos 5 0 0 229 6 0 0
19-05-2020 Los Lagos 4 1 0 656 12 0 10
19-05-2020 Aysén 0 0 0 8 0 0 0
19-05-2020 Magallanes 1 1 0 972 17 0 10
19-05-2020 No Informado 0 0 1,342 0 0 21,507 NA
20-05-2020 Arica y Parinacota 2 0 0 424 7 0 7
20-05-2020 Tarapacá 30 0 0 1,139 4 0 18
20-05-2020 Antofagasta 83 1 0 1,731 17 0 50
20-05-2020 Atacama 5 0 0 163 0 0 3
20-05-2020 Coquimbo 24 0 0 263 2 0 0
20-05-2020 Valparaíso 131 3 0 1,770 35 0 38
20-05-2020 Metropolitana 3,588 30 0 41,179 348 0 705
20-05-2020 O’Higgins 13 0 0 455 7 0 14
20-05-2020 Maule 40 0 0 680 14 0 8
20-05-2020 Ñuble 23 0 0 1,011 21 0 7
20-05-2020 Biobío 52 0 0 1,224 9 0 19
20-05-2020 Araucanía 14 0 0 1,680 44 0 18
20-05-2020 Los Ríos 18 0 0 247 6 0 0
20-05-2020 Los Lagos 10 0 0 666 12 0 8
20-05-2020 Aysén 0 0 0 8 0 0 0
20-05-2020 Magallanes 5 1 0 977 18 0 9
20-05-2020 No Informado 0 0 997 0 0 22,504 NA
21-05-2020 Arica y Parinacota 29 0 0 453 7 0 7
21-05-2020 Tarapacá 107 0 0 1,246 4 0 21
21-05-2020 Antofagasta 47 0 0 1,778 17 0 50
21-05-2020 Atacama 5 0 0 168 0 0 3
21-05-2020 Coquimbo 5 0 0 268 2 0 1
21-05-2020 Valparaíso 117 3 0 1,887 38 0 38
21-05-2020 Metropolitana 3,462 40 0 44,641 388 0 730
21-05-2020 O’Higgins 10 0 0 465 7 0 18
21-05-2020 Maule 51 1 0 731 15 0 10
21-05-2020 Ñuble 9 0 0 1,020 21 0 8
21-05-2020 Biobío 39 0 0 1,263 9 0 23
21-05-2020 Araucanía 35 0 0 1,715 44 0 17
21-05-2020 Los Ríos 11 0 0 258 6 0 0
21-05-2020 Los Lagos 27 1 0 693 13 0 8
21-05-2020 Aysén 0 0 0 8 0 0 0
21-05-2020 Magallanes 10 0 0 987 18 0 9
21-05-2020 No Informado 0 0 1,488 0 0 23,992 NA
22-05-2020 Arica y Parinacota 18 0 0 471 7 0 8
22-05-2020 Tarapacá 147 1 0 1,393 5 0 18
22-05-2020 Antofagasta 63 0 0 1,841 17 0 44
22-05-2020 Atacama 7 0 0 175 0 0 3
22-05-2020 Coquimbo 13 0 0 281 2 0 3
22-05-2020 Valparaíso 133 2 0 2,020 40 0 37
22-05-2020 Metropolitana 3,709 35 0 48,350 423 0 771
22-05-2020 O’Higgins 27 1 0 492 8 0 22
22-05-2020 Maule 51 0 0 782 15 0 16
22-05-2020 Ñuble 5 0 0 1,025 21 0 9
22-05-2020 Biobío 48 1 0 1,311 10 0 21
22-05-2020 Araucanía 22 1 0 1,737 45 0 18
22-05-2020 Los Ríos 4 0 0 262 6 0 0
22-05-2020 Los Lagos 24 0 0 717 13 0 9
22-05-2020 Aysén 0 0 0 8 0 0 0
22-05-2020 Magallanes 5 0 0 992 18 0 7
22-05-2020 No Informado 0 0 1,350 0 0 25,342 NA
23-05-2020 Arica y Parinacota 11 0 0 482 7 0 9
23-05-2020 Tarapacá 78 0 0 1,471 5 0 17
23-05-2020 Antofagasta 56 4 0 1,897 21 0 44
23-05-2020 Atacama 7 0 0 182 0 0 3
23-05-2020 Coquimbo 13 0 0 294 2 0 3
23-05-2020 Valparaíso 96 4 0 2,116 44 0 46
23-05-2020 Metropolitana 3,049 32 0 51,399 455 0 832
23-05-2020 O’Higgins 26 3 0 518 11 0 24
23-05-2020 Maule 41 0 0 823 15 0 15
23-05-2020 Ñuble 52 0 0 1,077 21 0 10
23-05-2020 Biobío 43 0 0 1,354 10 0 23
23-05-2020 Araucanía 37 0 0 1,774 45 0 19
23-05-2020 Los Ríos 12 0 0 274 6 0 0
23-05-2020 Los Lagos 10 0 0 727 13 0 10
23-05-2020 Aysén 0 0 0 8 0 0 0
23-05-2020 Magallanes 5 0 0 997 18 0 7
23-05-2020 No Informado 0 0 1,204 0 0 26,546 NA
24-05-2020 Arica y Parinacota 16 0 0 498 7 0 8
24-05-2020 Tarapacá 93 2 0 1,564 7 0 17
24-05-2020 Antofagasta 50 0 0 1,947 21 0 46
24-05-2020 Atacama 0 0 0 182 0 0 3
24-05-2020 Coquimbo 29 0 0 323 2 0 4
24-05-2020 Valparaíso 114 4 0 2,230 48 0 50
24-05-2020 Metropolitana 3,145 39 0 54,544 494 0 851
24-05-2020 O’Higgins 36 0 0 554 11 0 26
24-05-2020 Maule 69 0 0 892 15 0 18
24-05-2020 Ñuble 25 0 0 1,102 21 0 9
24-05-2020 Biobío 60 0 0 1,414 10 0 22
24-05-2020 Araucanía 34 0 0 1,808 45 0 19
24-05-2020 Los Ríos 16 0 0 290 6 0 0
24-05-2020 Los Lagos 9 0 0 736 13 0 10
24-05-2020 Aysén 0 0 0 8 0 0 0
24-05-2020 Magallanes 13 0 0 1,010 18 0 7
24-05-2020 No Informado 0 0 1,602 0 0 28,148 NA
25-05-2020 Arica y Parinacota 15 0 0 513 7 0 8
25-05-2020 Tarapacá 66 0 0 1,630 7 0 15
25-05-2020 Antofagasta 68 0 0 2,015 21 0 47
25-05-2020 Atacama 3 0 0 185 0 0 2
25-05-2020 Coquimbo 15 0 0 338 2 0 6
25-05-2020 Valparaíso 75 5 0 2,305 53 0 54
25-05-2020 Metropolitana 4,386 35 0 58,930 529 0 884
25-05-2020 O’Higgins 34 2 0 588 13 0 26
25-05-2020 Maule 61 0 0 953 15 0 22
25-05-2020 Ñuble 37 1 0 1,139 22 0 12
25-05-2020 Biobío 44 0 0 1,458 10 0 23
25-05-2020 Araucanía 49 0 0 1,857 45 0 18
25-05-2020 Los Ríos 7 0 0 297 6 0 1
25-05-2020 Los Lagos 27 0 0 763 13 0 10
25-05-2020 Aysén 2 0 0 10 0 0 0
25-05-2020 Magallanes 6 0 0 1,016 18 0 7
25-05-2020 No Informado 0 0 1,154 0 0 29,302 NA
26-05-2020 Arica y Parinacota 9 0 0 522 7 0 8
26-05-2020 Tarapacá 107 1 0 1,737 8 0 16
26-05-2020 Antofagasta 48 2 0 2,063 23 0 49
26-05-2020 Atacama 3 0 0 188 0 0 2
26-05-2020 Coquimbo 46 0 0 384 2 0 6
26-05-2020 Valparaíso 150 4 0 2,455 57 0 66
26-05-2020 Metropolitana 3,355 38 0 62,285 567 0 927
26-05-2020 O’Higgins 66 0 0 654 13 0 28
26-05-2020 Maule 60 0 0 1,013 15 0 25
26-05-2020 Ñuble 8 0 0 1,147 22 0 12
26-05-2020 Biobío 44 0 0 1,502 10 0 26
26-05-2020 Araucanía 26 0 0 1,883 45 0 19
26-05-2020 Los Ríos 7 0 0 304 6 0 1
26-05-2020 Los Lagos 18 0 0 781 13 0 10
26-05-2020 Aysén 2 0 0 12 0 0 0
26-05-2020 Magallanes 15 0 0 1,031 18 0 7
26-05-2020 No Informado 0 0 1,613 0 0 30,915 NA
27-05-2020 Arica y Parinacota 19 0 0 541 7 0 9
27-05-2020 Tarapacá 74 3 0 1,811 11 0 16
27-05-2020 Antofagasta 74 2 0 2,137 25 0 48
27-05-2020 Atacama 9 0 0 197 0 0 2
27-05-2020 Coquimbo 71 0 0 455 2 0 9
27-05-2020 Valparaíso 121 1 0 2,576 58 0 74
27-05-2020 Metropolitana 3,726 28 0 66,011 595 0 959
27-05-2020 O’Higgins 37 1 0 691 14 0 30
27-05-2020 Maule 53 0 0 1,066 15 0 29
27-05-2020 Ñuble 27 0 0 1,174 22 0 12
27-05-2020 Biobío 63 0 0 1,565 10 0 26
27-05-2020 Araucanía 33 0 0 1,916 45 0 18
27-05-2020 Los Ríos 5 0 0 309 6 0 1
27-05-2020 Los Lagos 10 0 0 791 13 0 10
27-05-2020 Aysén 0 0 0 12 0 0 0
27-05-2020 Magallanes 6 0 0 1,037 18 0 8
27-05-2020 No Informado 0 0 2,625 0 0 33,540 NA
28-05-2020 Arica y Parinacota 21 0 0 562 7 0 9
28-05-2020 Tarapacá 146 1 0 1,957 12 0 23
28-05-2020 Antofagasta 111 3 0 2,248 28 0 48
28-05-2020 Atacama 5 0 0 202 0 0 2
28-05-2020 Coquimbo 27 0 0 482 2 0 9
28-05-2020 Valparaíso 154 2 0 2,730 60 0 73
28-05-2020 Metropolitana 3,904 43 0 69,915 638 0 977
28-05-2020 O’Higgins 14 0 0 705 14 0 33
28-05-2020 Maule 54 0 0 1,120 15 0 33
28-05-2020 Ñuble 31 0 0 1,205 22 0 12
28-05-2020 Biobío 112 0 0 1,677 10 0 29
28-05-2020 Araucanía 38 0 0 1,954 45 0 17
28-05-2020 Los Ríos 9 0 0 318 6 0 2
28-05-2020 Los Lagos 23 0 0 814 13 0 14
28-05-2020 Aysén 2 0 0 14 0 0 0
28-05-2020 Magallanes 3 0 0 1,040 18 0 8
28-05-2020 No Informado 0 0 2,610 0 0 36,150 NA
29-05-2020 Arica y Parinacota 20 0 0 582 7 0 11
29-05-2020 Tarapacá 136 2 0 2,093 14 0 23
29-05-2020 Antofagasta 70 0 0 2,318 28 0 54
29-05-2020 Atacama 5 0 0 207 0 0 2
29-05-2020 Coquimbo 55 0 0 537 2 0 12
29-05-2020 Valparaíso 112 1 0 2,842 61 0 79
29-05-2020 Metropolitana 2,995 47 0 72,910 685 0 1,014
29-05-2020 O’Higgins 40 0 0 745 14 0 33
29-05-2020 Maule 60 0 0 1,180 15 0 36
29-05-2020 Ñuble 37 0 0 1,242 22 0 12
29-05-2020 Biobío 101 1 0 1,778 11 0 31
29-05-2020 Araucanía 35 2 0 1,989 47 0 20
29-05-2020 Los Ríos 12 0 0 330 6 0 2
29-05-2020 Los Lagos 8 0 0 822 13 0 14
29-05-2020 Aysén 2 0 0 16 0 0 0
29-05-2020 Magallanes 7 1 0 1,047 19 0 7
29-05-2020 No Informado 0 0 2,448 0 0 38,598 NA
30-05-2020 Arica y Parinacota 6 0 0 588 7 0 12
30-05-2020 Tarapacá 157 4 0 2,250 18 0 23
30-05-2020 Antofagasta 111 1 0 2,429 29 0 52
30-05-2020 Atacama 8 0 0 215 0 0 2
30-05-2020 Coquimbo 60 0 0 597 2 0 10
30-05-2020 Valparaíso 195 2 0 3,037 63 0 88
30-05-2020 Metropolitana 3,341 43 0 76,251 728 0 1,022
30-05-2020 O’Higgins 11 2 0 756 16 0 39
30-05-2020 Maule 76 0 0 1,256 15 0 39
30-05-2020 Ñuble 14 1 0 1,256 23 0 10
30-05-2020 Biobío 110 0 0 1,888 11 0 32
30-05-2020 Araucanía 71 0 0 2,060 47 0 19
30-05-2020 Los Ríos 15 0 0 345 6 0 2
30-05-2020 Los Lagos 38 0 0 860 13 0 14
30-05-2020 Aysén 0 0 0 16 0 0 0
30-05-2020 Magallanes 7 0 0 1,054 19 0 7
30-05-2020 No Informado 0 0 1,833 0 0 40,431 NA
31-05-2020 Arica y Parinacota 31 0 0 619 7 0 12
31-05-2020 Tarapacá 111 3 0 2,361 21 0 25
31-05-2020 Antofagasta 81 2 0 2,510 31 0 48
31-05-2020 Atacama 3 0 0 218 0 0 2
31-05-2020 Coquimbo 31 0 0 628 2 0 11
31-05-2020 Valparaíso 130 3 0 3,167 66 0 95
31-05-2020 Metropolitana 4,253 47 0 80,504 775 0 1,033
31-05-2020 O’Higgins 29 2 0 785 18 0 40
31-05-2020 Maule 41 0 0 1,297 15 0 38
31-05-2020 Ñuble 1 0 0 1,257 23 0 10
31-05-2020 Biobío 91 0 0 1,979 11 0 30
31-05-2020 Araucanía 11 0 0 2,071 47 0 19
31-05-2020 Los Ríos 11 0 0 356 6 0 2
31-05-2020 Los Lagos 3 0 0 863 13 0 14
31-05-2020 Aysén 1 0 0 17 0 0 0
31-05-2020 Magallanes 2 0 0 1,056 19 0 4
31-05-2020 No Informado 0 0 2,296 0 0 42,727 NA
01-06-2020 Arica y Parinacota 17 1 0 636 8 0 11
01-06-2020 Tarapacá 165 1 0 2,526 22 0 26
01-06-2020 Antofagasta 75 1 0 2,585 32 0 51
01-06-2020 Atacama 14 0 0 232 0 0 2
01-06-2020 Coquimbo 40 0 0 668 2 0 11
01-06-2020 Valparaíso 181 4 0 3,348 70 0 96
01-06-2020 Metropolitana 4,735 49 0 85,239 824 0 1,088
01-06-2020 O’Higgins 28 0 0 813 18 0 40
01-06-2020 Maule 44 2 0 1,341 17 0 39
01-06-2020 Ñuble 33 0 0 1,290 23 0 11
01-06-2020 Biobío 91 0 0 2,070 11 0 33
01-06-2020 Araucanía 40 0 0 2,111 47 0 18
01-06-2020 Los Ríos 7 1 0 363 7 0 2
01-06-2020 Los Lagos 0 0 0 863 13 0 14
01-06-2020 Aysén 0 0 0 17 0 0 0
01-06-2020 Magallanes 1 0 0 1,057 19 0 4
01-06-2020 No Informado 0 0 2,219 0 0 44,946 NA
02-06-2020 Arica y Parinacota 18 0 0 654 8 0 11
02-06-2020 Tarapacá 68 1 0 2,594 23 0 29
02-06-2020 Antofagasta 64 2 0 2,649 34 0 53
02-06-2020 Atacama 4 0 0 236 0 0 2
02-06-2020 Coquimbo 19 0 0 687 2 0 10
02-06-2020 Valparaíso 247 2 0 3,595 72 0 94
02-06-2020 Metropolitana 2,955 70 0 88,194 894 0 1,090
02-06-2020 O’Higgins 30 0 0 843 18 0 36
02-06-2020 Maule 40 0 0 1,381 17 0 39
02-06-2020 Ñuble 0 0 0 1,290 23 0 12
02-06-2020 Biobío 12 0 0 2,082 11 0 37
02-06-2020 Araucanía 30 0 0 2,141 47 0 17
02-06-2020 Los Ríos 5 0 0 368 7 0 1
02-06-2020 Los Lagos 31 0 0 894 13 0 15
02-06-2020 Aysén 1 0 0 18 0 0 0
02-06-2020 Magallanes 3 0 0 1,060 19 0 5
02-06-2020 No Informado 0 0 41,034 0 0 85,980 NA
03-06-2020 Arica y Parinacota 47 0 0 701 8 0 11
03-06-2020 Tarapacá 88 5 0 2,682 28 0 32
03-06-2020 Antofagasta 67 2 0 2,716 36 0 54
03-06-2020 Atacama 6 0 0 242 0 0 2
03-06-2020 Coquimbo 31 2 0 718 4 0 9
03-06-2020 Valparaíso 174 5 0 3,769 77 0 92
03-06-2020 Metropolitana 3,997 67 0 92,191 961 0 1,112
03-06-2020 O’Higgins 88 2 0 931 20 0 31
03-06-2020 Maule 214 2 0 1,595 19 0 43
03-06-2020 Ñuble 39 1 0 1,329 24 0 13
03-06-2020 Biobío 133 0 0 2,215 11 0 39
03-06-2020 Araucanía 32 0 0 2,173 47 0 17
03-06-2020 Los Ríos 4 1 0 372 8 0 1
03-06-2020 Los Lagos 19 0 0 913 13 0 14
03-06-2020 Aysén 0 0 0 18 0 0 0
03-06-2020 Magallanes 3 0 0 1,063 19 0 5
03-06-2020 No Informado 0 0 4,768 0 0 90,748 NA
04-06-2020 Arica y Parinacota 35 0 0 736 8 0 11
04-06-2020 Tarapacá 128 0 0 2,810 28 0 32
04-06-2020 Antofagasta 146 2 0 2,862 38 0 54
04-06-2020 Atacama 16 0 0 258 0 0 2
04-06-2020 Coquimbo 54 0 0 772 4 0 10
04-06-2020 Valparaíso 248 1 0 4,017 78 0 90
04-06-2020 Metropolitana 3,699 73 0 95,890 1,034 0 1,128
04-06-2020 O’Higgins 36 1 0 967 21 0 31
04-06-2020 Maule 137 2 0 1,732 21 0 48
04-06-2020 Ñuble 43 0 0 1,372 24 0 12
04-06-2020 Biobío 86 2 0 2,301 13 0 43
04-06-2020 Araucanía 9 0 0 2,182 47 0 17
04-06-2020 Los Ríos 7 0 0 379 8 0 1
04-06-2020 Los Lagos 13 0 0 926 13 0 12
04-06-2020 Aysén 1 0 0 19 0 0 0
04-06-2020 Magallanes 6 0 0 1,069 19 0 5
04-06-2020 No Informado 0 0 4,883 0 0 95,631 NA
05-06-2020 Arica y Parinacota 46 1 0 782 9 0 12
05-06-2020 Tarapacá 155 0 0 2,965 28 0 34
05-06-2020 Antofagasta 62 4 0 2,924 42 0 46
05-06-2020 Atacama 11 0 0 269 0 0 2
05-06-2020 Coquimbo 60 1 0 832 5 0 11
05-06-2020 Valparaíso 249 10 0 4,266 88 0 92
05-06-2020 Metropolitana 3,176 71 0 99,066 1,105 0 1,147
05-06-2020 O’Higgins 49 1 0 1,016 22 0 35
05-06-2020 Maule 102 3 0 1,834 24 0 41
05-06-2020 Ñuble 57 0 0 1,429 24 0 13
05-06-2020 Biobío 78 0 0 2,379 13 0 47
05-06-2020 Araucanía 106 1 0 2,288 48 0 20
05-06-2020 Los Ríos 11 0 0 390 8 0 2
05-06-2020 Los Lagos 42 0 0 968 13 0 13
05-06-2020 Aysén 0 0 0 19 0 0 0
05-06-2020 Magallanes 3 0 0 1,072 19 0 6
05-06-2020 No Informado 0 0 3,727 0 0 99,358 NA
06-06-2020 Arica y Parinacota 37 0 0 819 9 0 12
06-06-2020 Tarapacá 129 2 0 3,094 30 0 39
06-06-2020 Antofagasta 109 5 0 3,033 47 0 49
06-06-2020 Atacama 12 0 0 281 0 0 2
06-06-2020 Coquimbo 66 0 0 898 5 0 11
06-06-2020 Valparaíso 314 3 0 4,580 91 0 86
06-06-2020 Metropolitana 4,128 79 0 103,194 1,184 0 1,144
06-06-2020 O’Higgins 95 3 0 1,111 25 0 35
06-06-2020 Maule 135 0 0 1,969 24 0 42
06-06-2020 Ñuble 41 0 0 1,470 24 0 13
06-06-2020 Biobío 111 0 0 2,490 13 0 50
06-06-2020 Araucanía 33 1 0 2,321 49 0 18
06-06-2020 Los Ríos 10 0 0 400 8 0 2
06-06-2020 Los Lagos 17 0 0 985 13 0 17
06-06-2020 Aysén 0 0 0 19 0 0 0
06-06-2020 Magallanes 9 0 0 1,081 19 0 4
06-06-2020 No Informado 0 0 4,459 0 0 103,817 NA
07-06-2020 Arica y Parinacota 31 1 0 850 10 0 11
07-06-2020 Tarapacá 156 2 0 3,250 32 0 41
07-06-2020 Antofagasta 121 0 0 3,154 47 0 51
07-06-2020 Atacama 25 0 0 306 0 0 2
07-06-2020 Coquimbo 92 0 0 990 5 0 10
07-06-2020 Valparaíso 282 2 0 4,862 93 0 91
07-06-2020 Metropolitana 5,268 89 0 108,462 1,273 0 1,174
07-06-2020 O’Higgins 72 0 0 1,183 25 0 36
07-06-2020 Maule 140 0 0 2,109 24 0 42
07-06-2020 Ñuble 20 1 0 1,490 25 0 13
07-06-2020 Biobío 105 0 0 2,595 13 0 47
07-06-2020 Araucanía 56 1 0 2,377 50 0 16
07-06-2020 Los Ríos 17 0 0 417 8 0 2
07-06-2020 Los Lagos 18 0 0 1,003 13 0 17
07-06-2020 Aysén 1 0 0 20 0 0 1
07-06-2020 Magallanes 1 0 0 1,082 19 0 4
07-06-2020 No Informado 0 0 4,333 0 0 108,150 NA
08-06-2020 Arica y Parinacota 24 -2 0 874 8 0 10
08-06-2020 Tarapacá 142 3 0 3,392 35 0 44
08-06-2020 Antofagasta 91 -2 0 3,245 45 0 53
08-06-2020 Atacama 33 0 0 339 0 0 2
08-06-2020 Coquimbo 133 0 0 1,123 5 0 11
08-06-2020 Valparaíso 287 -8 0 5,149 85 0 91
08-06-2020 Metropolitana 3,674 677 0 112,136 1,950 0 1,182
08-06-2020 O’Higgins 72 -3 0 1,255 22 0 36
08-06-2020 Maule 67 -6 0 2,176 18 0 49
08-06-2020 Ñuble 62 -7 0 1,552 18 0 16
08-06-2020 Biobío 56 -2 0 2,651 11 0 46
08-06-2020 Araucanía 33 -18 0 2,410 32 0 16
08-06-2020 Los Ríos 8 0 0 425 8 0 2
08-06-2020 Los Lagos 7 -1 0 1,010 12 0 18
08-06-2020 Aysén 1 0 0 21 0 0 1
08-06-2020 Magallanes 6 -4 0 1,088 15 0 4
08-06-2020 No Informado 0 0 4,098 0 0 112,248 NA
09-06-2020 Arica y Parinacota 40 0 0 914 8 0 12
09-06-2020 Tarapacá 99 0 0 3,491 35 0 45
09-06-2020 Antofagasta 157 0 0 3,402 45 0 55
09-06-2020 Atacama 9 0 0 348 0 0 2
09-06-2020 Coquimbo 52 0 0 1,175 5 0 13
09-06-2020 Valparaíso 242 0 0 5,391 85 0 95
09-06-2020 Metropolitana 2,990 18 0 115,126 1,968 0 1,172
09-06-2020 O’Higgins 62 1 0 1,317 23 0 34
09-06-2020 Maule 113 0 0 2,289 18 0 44
09-06-2020 Ñuble 32 0 0 1,584 18 0 16
09-06-2020 Biobío 43 0 0 2,694 11 0 46
09-06-2020 Araucanía 35 0 0 2,445 32 0 16
09-06-2020 Los Ríos 21 0 0 446 8 0 2
09-06-2020 Los Lagos 18 0 0 1,028 12 0 20
09-06-2020 Aysén 0 0 0 21 0 0 1
09-06-2020 Magallanes 0 0 0 1,088 15 0 4
09-06-2020 No Informado 0 0 5,113 0 0 117,361 NA
10-06-2020 Arica y Parinacota 16 2 0 930 10 0 13
10-06-2020 Tarapacá 100 11 0 3,591 46 0 42
10-06-2020 Antofagasta 157 11 0 3,559 56 0 58
10-06-2020 Atacama 17 0 0 365 0 0 1
10-06-2020 Coquimbo 81 1 0 1,256 6 0 17
10-06-2020 Valparaíso 223 14 0 5,614 99 0 98
10-06-2020 Metropolitana 4,620 147 0 119,746 2,115 0 1,179
10-06-2020 O’Higgins 125 3 0 1,442 26 0 37
10-06-2020 Maule 151 0 0 2,440 18 0 44
10-06-2020 Ñuble 32 2 0 1,616 20 0 13
10-06-2020 Biobío 152 0 0 2,846 11 0 45
10-06-2020 Araucanía 43 1 0 2,488 33 0 16
10-06-2020 Los Ríos 6 0 0 452 8 0 2
10-06-2020 Los Lagos 13 0 0 1,041 12 0 20
10-06-2020 Aysén 0 0 0 21 0 0 1
10-06-2020 Magallanes 1 0 0 1,089 15 0 4
10-06-2020 No Informado 0 0 4,479 0 0 121,840 NA
#ableExtra::add_footnote("Full Information Obtained By ivanMSC/COVID19_Chile", notation = "none")
library(tidyverse)
library(gganimate)
library(gapminder)
library(gifski)

library(dplyr)
# ... but if an error occurs, tell me what happened: 
casos <- readr::read_csv("https://raw.githubusercontent.com/ivanMSC/COVID19_Chile/master/covid19_chile.csv")%>%
  dplyr::mutate(date_posixct=lubridate::parse_date_time(as.character(Fecha),orders="dmY")) 
## Parsed with column specification:
## cols(
##   Fecha = col_character(),
##   Region = col_character(),
##   `Nuevo Confirmado` = col_double(),
##   `Nuevo Muerte` = col_double(),
##   `Nuevo Recuperado` = col_double(),
##   `Acum Confirmado` = col_double(),
##   `Acum Muerte` = col_double(),
##   `Acum Recuperado` = col_double(),
##   `Casos UCI` = col_double()
## )
manualcolors<-c('black','forestgreen', 'red2', 'orange', 'cornflowerblue', 
                'magenta', 'darkolivegreen4',  
                'indianred1', 'tan4', 'darkblue', 
                'mediumorchid1','firebrick4',  'yellowgreen', 'gray20', 'tan3',
                "tan1",'darkgray', 'wheat4', '#DDAD4B', 'chartreuse', 'seagreen1',
                'moccasin', 'mediumvioletred', 'seagreen','cadetblue1',
                "darkolivegreen1" ,"tan2" ,   "tomato3" , "#7CE3D8","gainsboro")

#casos_region <- readr::read_csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto3/CasosTotalesCumulativo.csv")  %>%
#  reshape2::melt()%>%
#  dplyr::mutate(date_posixct=lubridate::parse_date_time(as.character(variable),orders="Ymd")) %>% 
#  dplyr::select(-variable)
casos_region <- casos %>% dplyr::select(Region, `Nuevo Confirmado`, date_posixct) %>% dplyr::rename("value"=`Nuevo Confirmado`)
gap  <- casos_region %>%
  dplyr::group_by(Region) %>%
  dplyr::mutate(confirmed_cases=cumsum(value)) %>%
  dplyr::ungroup() %>%
  dplyr::filter(Region!="Total")

total_gap_max  <- gap %>% dplyr::filter(Region!="Total")%>%
  dplyr::slice(which.max(confirmed_cases))
total_gap_max  <-as.numeric(unlist(total_gap_max["confirmed_cases"]))+10000

ggplot(gap, aes(x=reorder(Region, as.numeric(confirmed_cases)),y=confirmed_cases,fill=Region))+
  geom_bar(stat="identity")+
  theme(legend.position="non",axis.text.y=element_blank(),
        axis.title.y=element_blank())+
  geom_text(aes(label=paste0("",confirmed_cases),vjust=1,hjust=-0.1,color="black",size=3.5))+
  coord_flip()+
  labs(title=' Figure 7a. Cumulative Cases per Region,\n {frame_time}', x = "", y = "Cumulative Cases",
       caption = "Sources: Datasets from\nhttps://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto3/CasosTotalesCumulativo.csv")+
  theme(plot.title = element_text(hjust = 0, size = 22),
        axis.ticks.y = element_blank(),  # These relate to the axes post-flip
        axis.text.y  = element_blank(),  # These relate to the axes post-flip
        plot.margin = margin(1,1,1,3, "cm")) +
  guides(color = FALSE, fill = FALSE,size=F) +
  transition_time(as.Date(date_posixct))+
  theme_classic()+
  theme(plot.title = element_text(color="darkblue"))+
  ylim(0,total_gap_max)+
  ease_aes("linear")+
  theme(plot.caption = element_text(hjust = 0, face = "italic",size=9))+
  # shadow_mark() +
  enter_grow() +
  enter_fade()

#also: margin(t, r, l, b)
#animate(pp, 200, fps = 10, duration = 20, width = 800, height = 600)
#animate(pp, renderer= gifski_renderer("gganim.gif"))
#gg_animate(pp)
#<br>

#Also, more cases reported are women (See Figure 7).
library(gghighlight)

#Cambiar a PCR 
rate <- readr::read_csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto12/bulk/producto7.csv")  %>% 
  dplyr::select(Region,Fecha,Tasa)%>%
  reshape2::melt()%>%
  dplyr::mutate(date_posixct=lubridate::parse_date_time(as.character(value),orders="Ymd")) %>% 
  dplyr::select(-variable)

rate %>%
  #dplyr::filter(Ventiladores!="total") %>%
  dplyr::mutate(Tasa=round(as.numeric(Tasa),2)) %>%
  dplyr::mutate(RM=ifelse(Region=="Metropolitana",1,0))%>%
  dplyr::group_by(RM)%>%
  dplyr::mutate(Mean_Rate=mean(Tasa,na.rm=T),Median_Rate=median(Tasa,na.rm=T))%>%
  dplyr::ungroup() %>%
  dplyr::mutate(tooltip=paste0(Region,"=",Tasa))%>%
  ggplot(aes(x=date_posixct,y=Tasa, group=RM))+
  scale_x_datetime(breaks=scales::date_breaks("1 week"),labels = scales::date_format("%d/%m"),
                   limits = as.POSIXct(c('2020-04-01 09:00:00',as.character(Sys.time()))))+
  stat_smooth(method = "lm", se = T) + 
  stat_summary(geom = "point", fun.y = mean, shape = 15, size = 3, alpha=0.5, color="blue") + 
  stat_quantile(quantiles = c(0.25, 0.5, 0.75), color= "black", linetype="dashed") +
  facet_grid(. ~ RM,labeller =as_labeller(c(`0` = "Rest of Regions", `1` = "Metropolitan")))+   
  #  geom_line(aes(x = date_posixct, y = Tasa, color=factor(Region)),size=1) +
  #  gghighlight(Region == "Metropolitana")+
  sjPlot::theme_sjplot2() +
  labs(title=' Figure 7b. Linear trends of Rate of PCRs', x="Dates",
       caption = "Sources: Datasets from\nraw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto20/NumeroVentiladores.csv")+
  theme(plot.title = element_text(color="darkblue"),
        legend.position = "bottom")+
  theme(plot.caption = element_text(hjust = 0, face = "italic",size=9))

#fig <- plotly::plot_ly(casos_sex, labels = ~Sexo, values = ~n, type = 'pie')
#fig <- fig %>% plotly::layout(title = 'Figure 7. Pie Chart of Cases by Sex')
#print(fig)
#library(rAmCharts)
# piechart_rjs(casos, cex = 1, plot = TRUE, jupyter = FALSE, dir = "Figure 7. Pie Chart of Cases by Sex")
#  amPie(data = vents)  %>%
##  amOptions(main = "Figure 7. Pie Chart of Vents", mainColor = "darkblue", mainSize = 15,
##           theme = "light", legend = TRUE, legendPosition = "bottom",
##            creditsPosition = "bottom-right")

#  ggPieDonut(casos_sex, aes(pies=n, colors=Sexo),interactive=TRUE, addPieLabel = TRUE, addDonutLabel = TRUE,
#  showRatioDonut = TRUE, showRatioPie = TRUE, title = "Figure 7. Pie Chart of Cases by Sex", labelposition = 2, polar = F, use.label= F, use.labels = TRUE)
casos_ventiladores <- readr::read_csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto20/NumeroVentiladores.csv")  %>%
  reshape2::melt()%>%
  dplyr::mutate(date_posixct=lubridate::parse_date_time(as.character(variable),orders="Ymd")) %>% 
  dplyr::select(-variable)

casos_ventiladores %>%
  dplyr::group_by(date_posixct) %>%
  dplyr::filter(Ventiladores!="total") %>%
  dplyr::mutate(ifelse(Ventiladores=="disponibles","Available","Occupied"))%>%
  dplyr::mutate(percent=round(value/sum(value),2)) %>% 
  dplyr::ungroup() %>%
  ggplot(aes(x=1,y=percent,fill=Ventiladores))+
  geom_col(width=1)+
  coord_polar(theta="y",start=1.2)+
  geom_text(aes(label=scales::percent(percent)),position= position_stack(vjust=.5))+
  guides(color = FALSE, size=F) +
  transition_time(as.Date(date_posixct))+
  theme_void()+
  labs(title=' Figure 7c. Pie Chart of Vents,\n {frame_time}',
       caption = "Sources: Datasets from\nraw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto20/NumeroVentiladores.csv")+
  theme(plot.title = element_text(color="darkblue"))+
  theme(plot.caption = element_text(hjust = 0, face = "italic",size=9))+
  # ylim(0,total_gap_max)+
  ease_aes("linear")


As shown in Figures 7a and b, Metropolitan Region has more cases with covid than the rest of the country, increasing the rate of diagnosed with covid by PCRs administered. There are no information regarding the amount of vents by region and their availability status, but at the national level, the percentage of occupied vents tend to increase by each day.


Also, we created a map with the cases by region (from data obtained in this link), and coloring those regions that have more cases. As can be seen, more cases tend to group in the Metropolitan Region


library(dplyr)
library(choroplethr)
library(choroplethrMaps)
library(choroplethrAdmin1)
#_#_#_#_#__#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#__#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#__#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#__#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#__#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#__#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#__#_#_#_#_#_#_#_#_#_#_#_#_#_#_#_#__#_#_#_#_#_#_#_#_#_#_#_

#"https://raw.githubusercontent.com/demm94/Covid19-CL/master/15-03-2020.csv"
##MODO JSON

casos <- readr::read_csv("https://raw.githubusercontent.com/ivanMSC/COVID19_Chile/master/covid19_chile.csv")

minsal_casos_sin_hosp_region<-as.data.frame(cbind(minsal_casos_sin_hosp,cod=rbind("15","01","02",
                                                                                  "03","04", "05", "13", "06", "07","16",
                                                                                  "08","09","14", "10", "11","12")))
library(ggplot2)
data(admin1.map, package="choroplethrAdmin1")
#get_admin1_regions("chile") # falta ñuble po la cresta
chile.map = admin1.map[admin1.map$admin == "chile" & admin1.map$long > -80, ]
#ggplot(chile.map, aes(long, lat, group=group)) + geom_polygon() + coord_map()

arica <- list(v ="01", n = "region de arica y parinacota")
tarapaca <- list(v = "02", n= "region de tarapaca")
antofagasta <- list(v = "6.24",n = "region de antofagasta")
atacama <- list(v = 6.66, n = "region de atacama")
coquimbo <- list(v = 6.93, n = "region de coquimbo")
valparaiso <- list(v = 7.19,n = "region de valparaiso")
metropolitana <- list(v = 6.33, n = "region metropolitana de santiago")
ohiggins <- list(v = 5.27, n = "region del libertador general bernardo o'higgins")
maule <- list(v = 5.99, n = "region del maule")
nuble <- list(v = 5.99, n = "region de ñuble")
biobio <- list(v = 8.07, n = "region del biobio")
araucania <- list(v = 6.07, n = "region de la araucania")
losrios <- list(v = 4.72, n = "region de los rios")
loslagos <- list(v = 3.82, n = "region de los lagos")
aysen <- list(v = 3.84, n = "region aisen del general carlos ibanez del campo")
magallanes <- list(v = 2.63, n = "region de magallanes y de la antartica chilena")

dat2 <- data.frame(
  region = c(arica$n,tarapaca$n,antofagasta$n,atacama$n,coquimbo$n,valparaiso$n,
             metropolitana$n,ohiggins$n,maule$n,nuble$n, biobio$n,araucania$n,losrios$n,
             loslagos$n,aysen$n,magallanes$n)
)

datos_region = chilemapas:: generar_regiones(mapa = chilemapas::mapa_comunas)

#chilemapas::codigos_territoriales %>% dplyr::group_by(nombre_region) %>% distinct(codigo_region)

dat2<-datos_region %>%
  dplyr:::left_join(as_tibble(minsal_casos_sin_hosp_region), by=c("codigo_region"="cod.V1")) %>%
  dplyr::mutate(tooltip=paste0(`Región`,"=",`Totales`),
                `Totales`= as.numeric(gsub(",","",`Totales`)))
#p <- admin1_choropleth(country.name = "chile", 
#                       df           = dat2, 
#                       title        = "Figure 8. Cases By Region", 
#                       legend       = "No. of cases")
#p+scale_x_continuous(limits=c(0, 152)) #Restringir a Chile continental

#admin1_region_choropleth(df= dat2,
#                         title        = "Figure 8. Cases By Region", 
#                         legend       = "No. of cases")

#x_map=purrr::map_dbl(dat2$geometry, ~sf::st_centroid(.x)[[1]])
#y_map=purrr::map_dbl(dat2$geometry, ~sf::st_centroid(.x)[[2]])

suppressPackageStartupMessages(library(ggiraph))
suppressPackageStartupMessages(library(sf))
library("RColorBrewer")

gg2<-ggplot(data=dat2) +
  #geom_sf(aes(fill=as.numeric(dat2$value))) +
  theme_minimal() +
  geom_sf_interactive(aes(fill = cut(as.numeric(dat2$`Totales`),round(quantile(as.numeric(dat2$`Totales`),na.rm=T),0), include.lowest=TRUE,dig.lab=10,right=T), tooltip = tooltip, data_id = codigo_region))+
  scale_fill_brewer(palette="Reds",na.value="grey80") +
  labs(title='Figure 8. Cases By Region', subtitle='By quantiles',
       caption='Source: https://www.gob.cl/coronavirus/casosconfirmados.html',fill="No. of cases\n(quantiles)")+
  theme(plot.title = element_text(color="darkblue"))
# geom_sf(data = dat2, aes(fill = value)) +
#  coord_sf( expand = T)
tooltip_css <- "background-color:gray;color:white;font-style:italic;padding:10px;border-radius:10px 20px 10px 20px;"

ggiraph(code = {print(gg2)}, tooltip_extra_css = tooltip_css, tooltip_opacity = .75 )

Incidence Rate


Must keep in mind that the amount of cases are not enough for a statistically significant extrapolation. That is why we should remain cautious when interpreting and predicting the behaviour of this disease. Another limitation is that the date of reporting could be a biased estimate because it is different than the date of symptom onset. the date of onset The incidence rate is the rate at which new cases of the outcome of interest occur in a population (the speed of which cases develop). We also bootstrapped the incidence in order to produce a more reliable estimates.


#https://quizlet.com/218253657/cumulative-incidence-vs-incidence-rate-vs-prevalence-flash-cards/
#Raw incidence rate
#This function can be used to bootstrap incidence objects. Bootstrapping is done by sampling with replacement the original input dates. See details for more information on how this is implemented.

if (format(Sys.time(),"%H")<12) {
  today <- format(Sys.time()-3600*24, "%Y-%m-%d")
} else {
  today <- format(Sys.time(), "%Y-%m-%d")
}
#format(Sys.time()'%d-%m-%Y')
library(splitstackshape)

casos_sin_recuperados<-casos %>%
  dplyr::mutate(Fecha=lubridate::parse_date_time(Fecha,"dmY"))%>%
  dplyr::select(Fecha,`Nuevo Confirmado`) %>%
  dplyr::group_by(Fecha) %>%
  summarise(incidence=sum(`Nuevo Confirmado`))%>%
  splitstackshape::expandRows(., "incidence") %>%
  data.frame()

cl_incidence <- incidence::incidence(casos_sin_recuperados$Fecha, last_date=today)
cl_incidence <- bootstrap(cl_incidence)
#cl_incidence_cum <- bootstrap(cumulate(cl_incidence)) #no sirve de nada, conceptualmente es
#The proportion of an outcome-free population that develop the outcome of interest in a specified time period
print(cl_incidence)
## <incidence object>
## [148496 cases from days 2020-03-03 to 2020-06-10]
## 
## $counts: matrix with 100 rows and 1 columns
## $n: 148496 cases in total
## $dates: 100 dates marking the left-side of bins
## $interval: 1 day
## $timespan: 100 days
## $cumulative: FALSE


We fitted a log-linear model to our epidemic curve. Typically, two models are fitted, one for the growth-phase and one for the decay phase. Fow now, we cannot determine a decay phase, that is why we only fitted the growth rate


#Raw incidence rate
#The function fit fits two exponential models to incidence data, of the form: log(y) = r ∗ t + b
#where ’y’ is the incidence, ’t’ is time (in days), ’r’ is the growth rate, and ’b’ is the origin
#Fit exponential models to incidence da

cl_incidence_fit <- incidence::fit(cl_incidence, split = NULL)

# plot the incidence data and the model fit
plot(cl_incidence, color="black", alpha=.4) %>% 
  add_incidence_fit(cl_incidence_fit) +  
  sjPlot::theme_sjplot2() +
  ggtitle( "Figure 9. Incidence Rate of Cases By Days (Fitted in lines)")+
  labs(x="Days passed")+
  theme(axis.text.x = element_text(angle =25, hjust = 1, size = 8)) +
  theme(plot.title = element_text(color="darkblue"))


From that model, we can extract various (very preliminary at this early stage) parameters of interest: the growth rate is 0.07 (95% CI 0.06 – 0.08), which is equivalent to a doubling time of 9.78 days (95% CI 9 – 10.71 days). For a discussion about exponential growth in COVID-19, see Siegel (2020, March 17).


casos_sin_recuperados<- casos_sin_recuperados %>%
  dplyr::mutate(Sexo=ifelse(Sexo=="Hombre", "Masculino", Sexo))
cl_incidence_sex <- incidence(lubridate::parse_date_time(casos_sin_recuperados$Fecha,"dmY"), groups = casos_sin_recuperados$Sexo)
plot(cl_incidence_sex, stack=T, border="white",
     col_pal = incidence_pal1_light, labels_week = F)+
  sjPlot::theme_sjplot2() +
  ggtitle( "Figure 10. Incidence Rate of Cases By Sex")+
  labs(x="Days passed")+
  theme(legend.position="bottom")+
  theme(axis.text.x = element_text(angle =25, hjust = 1, size = 8)) +
  theme(plot.title = element_text(color="darkblue"))
library(dplyr)
library(incidence)

casos <- readr::read_csv("https://raw.githubusercontent.com/ivanMSC/COVID19_Chile/master/covid19_chile.csv")

if (format(Sys.time(),"%H")<12) {
  today <- format(Sys.time()-3600*24, "%Y-%m-%d")
} else {
  today <- format(Sys.time(), "%Y-%m-%d")
}

casos_sin_recuperados<-casos %>%
  dplyr::mutate(Fecha=lubridate::parse_date_time(Fecha,"dmY"))%>%
  dplyr::select(Fecha,`Nuevo Confirmado`) %>%
  dplyr::group_by(Fecha) %>%
  summarise(incidence=sum(`Nuevo Confirmado`))%>%
  splitstackshape::expandRows(., "incidence") %>%
  data.frame()

casos_muertos<-casos %>%
  dplyr::mutate(Fecha=lubridate::parse_date_time(Fecha,"dmY"))%>%
  dplyr::select(Fecha,`Nuevo Muerte`) %>%
  dplyr::group_by(Fecha) %>%
  summarise(incidence=sum(`Nuevo Muerte`))%>%
  splitstackshape::expandRows(., "incidence") %>%
  data.frame()


cl_incidence_muertos <- incidence::incidence(casos_muertos$Fecha,last_date=today)
cl_incidence_muertos <- bootstrap(cl_incidence_muertos)

cl_incidence_fit_deaths <- incidence::fit(cl_incidence_muertos, split = NULL)

# plot the incidence data and the model fit
plot(cl_incidence_muertos, color="black", alpha=.4) %>% 
  add_incidence_fit(cl_incidence_fit_deaths) +  
  sjPlot::theme_sjplot2() +
  ggtitle( "Figure 10. Incidence Rate of Deaths By Days (Fitted in lines)")+
  labs(x="Days passed")+
  #ylim(0,75)+
  theme(axis.text.x = element_text(angle =25, hjust = 1, size = 8)) +
  theme(plot.title = element_text(color="darkblue"))


Must take note that starting from March 19, sex is not published by MINSAL, so the incidence rate must be hardly estimated by sex. However, we have information of deaths up to the date (See Figure 10). The estimated growth rate is 0.05 (95% CI 0.05 – 0.06), which is equivalent to a doubling time of 12.84 days (95% CI 11.39 – 14.73 days). Also, must take note that of the total cases, only 1.67% are dead by now. Differently put, per 100,000 diagnosed, only 1667 would end dead.


tipo_caso <-casos %>%
  dplyr::select(Fecha,`Nuevo Confirmado`, `Nuevo Muerte`) %>%
  dplyr::mutate(date=lubridate::parse_date_time(casos$Fecha,"dmY")) %>%
  dplyr::select(-Fecha) %>%
  reshape2::melt(id = "date", 
                 measured.vars=c("Nuevo Confirmado","Nuevo Muerte","Nuevo Recuperado"),
                 na.rm = TRUE) %>%
  dplyr::mutate(variable= ifelse(variable=="Nuevo Confirmado", "Confirmed",
                                 ifelse(variable=="Nuevo Muerte", "Dead", variable))) %>%
  dplyr::mutate(value=as.numeric(value))%>%
                                        #ifelse(variable=="Nuevo Confirmado", "Confirmed", variable)))) %>%
  dplyr::filter(value>0)%>%
  #expandRows(., "value") %>%
  data.frame() %>%
tidyr::uncount(value, .remove = FALSE)


cl_incidence_tipo_caso <- incidence(tipo_caso$date, groups=tipo_caso$variable)

#cl_incidence_tipo_caso[,1:2]

plot(cl_incidence_tipo_caso[,1:2], stack=T, border=NA, labels_week = FALSE,
     color = c( Confirmed = "brown", Dead= "black"), alpha=.75)+ 
  theme(legend.position="bottom") +
  ggtitle( "Figure 11. Incidence Rate of Cases By Condition")+
  labs(caption= "Excluded recovered cateogry due to misleading formula to estimate recovered (+14 days)")+
  theme(panel.background = element_rect(fill = NA)) +  #para que nos e vea el fondo
  #  scale_x_date(labels = scales::date_format("%b %Y"))
  sjPlot::theme_sjplot2() +
  theme(axis.text.x = element_text(angle = 35, hjust = 1, size = 8)) +
  theme(legend.position="bottom")+
  theme(plot.title = element_text(color="darkblue"))


Must take note that deaths have been increasing, but still show a low proportion in comparison to cases reported (See Figure 11).


Describing Transmission of COVID

We also estimated the basic reproduction number (R 0) in the growth phase of the epidemic. Differently put, is the estimated mean number of new secondary cases caused by a an infected individual over his/her infectious period, assuming a totally susceptible population. This number will let us infer how manageable can be an infectuous disease. There are a few studies that estimate serial intervals (SI) up to date: Li et al., (2020) fitted a gamma distribution model based on cases reported by Jan 22, 2020, getting an estimated SI (M=7.5, SD=3.4). A model using a using the lognormal distribution identifies an estimated mean serial interval of 4.7 days (SD= 2.9) in mainland China during Jan 21 to Feb 8, 2020 (Nishiura, Linton & Akhmetzhanov, 2020). However, Zhao, et al. (pre-print) using a gamma distribution, estimates a mean of 4.4 days (SD=3.0) in Hong-Kong from Jan 16 to Feb 15, 2020, but their findings are not published and peer-reviewed yet.


We used several informative priors distributions for several serial interval based on the abovementioned studies.


library(distcrete)
library(epitrix)
mu <- 7.5  # days
sigma <- 3.4  # days
param <- gamma_mucv2shapescale(mu, sigma/mu)

w0 <- distcrete("gamma", interval = 1, shape = param$shape, scale = param$scale, 
                w = 0)

growth_R00 <- lm2R0_sample(cl_incidence_fit$model, w0)
hist(growth_R00, col = "#009999", border = "white", main = "",
     xlab="Estimated growth")
title("Figure 12. Distribution of R0 (Li, et al.,2020)", col.main = "darkblue")


According a model assuming a gamma distribution and providing a distribution according Li, et al. (2020), the estimated mean of the serial interval in Chile is 1.6 (SD= 0.03), meaning that the disease spread around 4.7 times less than the estimates from Wuhan.


library(distcrete)
library(epitrix)
mu <- 4.7  # days
sigma <- 2.9  # days
param <- gamma_mucv2shapescale(mu, sigma/mu)

w <- distcrete("gamma", interval = 1, shape = param$shape, scale = param$scale, 
               w = 0)

growth_R0 <- lm2R0_sample(cl_incidence_fit$model, w)
hist(growth_R0, col = "darkolivegreen3", border = "white", main = "",
     xlab="Estimated growth")
title("Figure 13. Distribution of R0 (Nishiura, et al.,2020)", col.main = "darkblue")


According a model assuming a gamma distribution and providing a distribution according Nishiura, et al. (2020), the estimated mean of the serial interval in Chile is 1.32 (SD= 0.01), meaning that the disease spread around 3.6 times less than the estimates from mainland China.


library(distcrete)
library(epitrix)
mu <- 4.4  # days
sigma <- 3  # days
param <- gamma_mucv2shapescale(mu, sigma/mu)

w2 <- distcrete("gamma", interval = 1, shape = param$shape, scale = param$scale, 
                w = 0)

growth_R02 <- lm2R0_sample(cl_incidence_fit$model, w2)
hist(growth_R02, col = "antiquewhite3", alpha=.7, border = "white", main="",
     xlab="Estimated growth")
title("Figure 14. Distribution of R0 (Zhao, et al.)", col.main = "darkblue")

According a model assuming a gamma distribution and providing a distribution according Zhao, et al. (in press), the estimated mean of the serial interval in Chile is 1.29 (SD= 0.01), meaning that the disease spread around 3.4 times less than the estimates from Hong-Kong.


If we want to estimate the effective reproduction number on a daily basis to track the progression and transmissibility throughout an epidemic from the analysis of time series of incidence (Cori, Ferguson, Fraser, Cauchemez, 2013), we used the overall ranges provided by the three studies, by getting their average mean, std. deviation, and confindence intervals as minimum and maximum values in estimation.


It is necessary to capture the variation in the serial interval distribution between cases. We incorporated this uncertainty around the SI distribution. The estimates obtained were resampled 2,500 times to adjust confidence intervals.

#
#For the estimation of the force of infection λ, for the serial interval we’ll use a discrete γ distribution with a mean of 5.0 days and a standard deviation of 3.4.

#https://www.repidemicsconsortium.org/earlyR/
#https://en.wikipedia.org/wiki/Force_of_infection

#For estimating R, we need estimates of the mean and standard deviation of the serial interval, i.e. the delay between primary and secondary symptom onset dates. This has been quantified durin the West African EVD outbreak (WHO Ebola Response Team (2014) NEJM 371:1481–1495):

#effective reproduction number plots, and force-of-infection λ plots
#assessment of how well containment efforts are succeeding (assuming that case detection and reporting doesn’t change)

library(earlyR)

## estimate the reproduction number (method "uncertain_si")

#res <- get_R(cl_incidence, si_mean = mu, si_sd = sigma)

##FUENTES

#https://www.ijidonline.com/action/showPdf?pii=S1201-9712%2820%2930119-3
#mean and standard deviation (SD) of the serial interval were estimated at 
#4.7 days (95% CrI: 3.7, 6.0) and 2.9 days (95% CrI: 1.9, 4.9), 

#https://www.medrxiv.org/content/10.1101/2020.02.21.20026559v1.full.pdf
# 4.4 days (95%CI: 2.9−6.7) 43 and SD of SI at 3.0 days (95%CI: 1.8−5.8) 

#https://www.nejm.org/doi/full/10.1056/NEJMoa2001316
#With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), 
#the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9)

#incidence_cl_format<- casos %>%
#                      dplyr::filter(Tipo_de_caso=="Confirmado") %>%
#                      dplyr::group_by(Fecha) %>%
#                      dplyr::count() %>%
#                      dplyr::rename("I"="n", "dates"="Fecha") %>%
#                      dplyr::ungroup() %>%
#                      dplyr::mutate(dates=as.Date(dates, "%d-%m-%Y"))%>%
#                      data.frame()
incidence_cl_format<-casos %>%
  dplyr::select(Fecha,`Nuevo Confirmado`) %>%
  dplyr::mutate(Fecha=lubridate::parse_date_time(Fecha,"dmY")) %>%
  dplyr::group_by(Fecha) %>%
  dplyr::arrange(Fecha)%>%
  summarise(I=sum(`Nuevo Confirmado`))
#%>%
#  expandRows(., "incidence") %>%
#  data.frame()
#
m=mean(c(4.7,4.4,7.5))
m_sd=sd(c(4.7,4.4,7.5))
m_lo=mean(c(3.7,2.9,5.3))
m_up=mean(c(6.0,6.7,19))

sd=mean(c(2.9,3.0,2.2))
sd_sd=mean(c(2.9,3.0,2.2))
sd_lo=mean(c(1.9,1.8,1.4))
sd_up=mean(c(4.9,5.8,3.9))
res <- estimate_R(incidence_cl_format, method = "uncertain_si",
                  config = make_config(list(
                    mean_si = m, 
                    std_mean_si = m_sd,
                    min_mean_si = m_lo, 
                    max_mean_si = m_up,
                    std_si = sd, 
                    std_std_si = sd_sd,
                    min_std_si = sd_lo, 
                    max_std_si = sd_up,
                    n1 = 2500, n2 = 2500)))
#represent infectiousness over time 
#This figure shows the global force of infection over time
#Note that the vertical scale for the bars is arbitrary, and only represents the relative force of infection
#eSTIMATED MABDA FOR chile (asSSUMING SERIAL INTERVAL MEAN , SD)

#https://rdrr.io/github/reconhub/earlyR/src/R/plot.earlyR.R

plot(res,what = "R")+ ggtitle("Figure 15. Estimated R0")+
  theme(panel.background = element_rect(fill = "white")) +  
  labs(subtitle= "Assuming uncertain SI's, in range of literature", y="Basic Reproduction Number (R0)")+#para que nos e vea el fondo
  #  scale_x_date(labels = scales::date_format("%b %Y"))
  sjPlot::theme_sjplot2() +
  theme(legend.position="bottom") +
  theme(plot.title = element_text(color="darkblue"))

#plot(res, "lambdas", scale = length(lubridate::parse_date_time(casos$Fecha,"dmY")) + 1)
#abline(v = lubridate::parse_date_time(casos$Fecha,"dmY"), lwd = 3, col = "grey")
#abline(v = today, col = "blue", lty = 2, lwd = 2)
#points(lubridate::parse_date_time(casos$Fecha,"dmY"), seq_along(lubridate::parse_date_time(casos$Fecha,"dmY")), pch = 20, cex = 3) 
# labs(title = "Force of infection over time",
#               x = "Days",
#               y = "ylab")

#R: a dataframe containing: the times of start and end of each time window considered ; the posterior mean, std, and 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975 quantiles of the reproduction number for each time window.
#
#method: the method used to estimate R, one of "non_parametric_si", "parametric_si", "uncertain_si", "si_from_data" or "si_from_sample"
#
#si_distr: a vector or dataframe (depending on the method) containing the discrete serial interval distribution(s) used for estimation
#
#SI.Moments: a vector or dataframe (depending on the method) containing the mean and std of the discrete serial interval distribution(s) used for estimation
#https://github.com/annecori/EpiEstim/tree/master/R
#https://rdrr.io/cran/EpiEstim/man/estimate_R.html
#https://www.ijidonline.com/action/showPdf?pii=S1201-9712%2820%2930119-3
#https://github.com/reconhub/earlyR/
#https://cran.r-project.org/web/packages/epiR/epiR.pdf
#https://timchurches.github.io/blog/posts/2020-03-01-analysing-covid-19-2019-ncov-outbreak-data-with-r-part-2/#modelling-epidemic-trajectory-in-hubei-province-using-log-linear-models
#https://cran.r-project.org/web/packages/EpiEstim/EpiEstim.pdf
#https://rdrr.io/cran/EpiEstim/src/R/estimate_R.R
# https://www.rdocumentation.org/packages/EpiEstim/versions/2.2-1/topics/estimate_R
#https://www.repidemicsconsortium.org/earlyR/articles/earlyR.html
#https://timchurches.github.io/blog/posts/2020-02-18-analysing-covid-19-2019-ncov-outbreak-data-with-r-part-1/#estimating-changes-in-the-effective-reproduction-number
#https://www.repidemicsconsortium.org/projections/

The last estimated reproduction number of an epidemic, given the incidence time series and the serial interval distribution, is around 1.09 (1.06- 1.14), which means that, each person with COVID-19 would, on average, infect 1.09 other people in a totally susceptible population. However, this index is starting to decrease, so we may take into account that simulations are based on the trend until a given time (10-06-2020).

Simulations of Possible Trajectories

We made around 100,000 simulations by determining each serial interval to proyect the cumulative incidence in 60 days.


cl_incidence_2_pred1 <- incidence::incidence(as.Date(as.character(casos_sin_recuperados$Fecha)))
#tuve q omitirla
cl_incidence_2_pred1 <- bootstrap(cl_incidence_2_pred1)

library(ggplot2)
library(projections)
set.seed(2754)
pred1 <- project(cl_incidence_2_pred1, R = res$R$"Mean(R)"[length(res$R$"Mean(R)")], si = growth_R0, n_days = 60, n_sim = 100000)
pred2 <- project(cl_incidence_2_pred1, R = res$R$"Mean(R)"[length(res$R$"Mean(R)")], si = growth_R00, n_days = 60, n_sim = 100000)
pred3 <- project(cl_incidence_2_pred1, R = res$R$"Mean(R)"[length(res$R$"Mean(R)")], si = growth_R02, n_days = 60, n_sim = 100000)

#agregar el intercept
cum_pred1_mean<- apply(cumulate(pred1),1,mean)
cum_pred2_mean<- apply(cumulate(pred2),1,mean)
cum_pred3_mean<- apply(cumulate(pred3),1,mean)

cum_pred1_lo<-apply(cumulate(pred1), 1, quantile,probs=c(.025,.975))[1,]
cum_pred2_lo<-apply(cumulate(pred2), 1, quantile,probs=c(.025,.975))[1,]
cum_pred3_lo<-apply(cumulate(pred3), 1, quantile,probs=c(.025,.975))[1,]
cum_pred1_up<-apply(cumulate(pred1), 1, quantile,probs=c(.025,.975))[2,]
cum_pred2_up<-apply(cumulate(pred2), 1, quantile,probs=c(.025,.975))[2,]
cum_pred3_up<-apply(cumulate(pred3), 1, quantile,probs=c(.025,.975))[2,]

num1=as.numeric(cum_pred1_mean[60])
num2=as.numeric(cum_pred2_mean[60])
num3=as.numeric(cum_pred3_mean[60])
#export proyections
#df1 <-as.data.table(cbind(M=apply(pred, 1, mean),
#              lo=apply(pred, 1, range)[1,],
#              up=apply(pred, 1, range)[2,]),keep.rownames = T) %>% dplyr::rename("date"="rn")
#ggplot(df1, aes(x = date, y = M)) +
#  geom_jitter(alpha = .3) + geom_smooth()
library(ggpubr)

library(gridExtra)
plot1<- plot(cumulate(pred1)+cumulate(cl_incidence_2_pred1)$n) + ggtitle( "Li, et al.")+ theme(axis.title.y = element_blank())
plot2<- plot(cumulate(pred2)+cumulate(cl_incidence_2_pred1)$n)+ ggtitle( "Nishiura, et al.") +theme(axis.title.y = element_blank())
plot3<- plot(cumulate(pred3)+cumulate(cl_incidence_2_pred1)$n)+ ggtitle( "Zhao, et al.")+ theme(axis.title.y = element_blank())
mezcla<-ggpubr::ggarrange(plot1, plot2, plot3, nrow=3,
                          label.y="Predictive Cumulative Incidence",
                          common.legend = TRUE, legend="right")
ggpubr::annotate_figure(mezcla,
                        top = ggpubr::text_grob("Figure 16. Projected Cum. Incidence Assuming Different SIs", color = "darkblue", size = 14))


Figure 16 shows that in the first (Li et al.) of the three proposed escenarios, we could get around 281,513 (CI95% 280525-282499) confirmed cases with COVID-19 in the next 60 days. In the second,we could get around 281,602 (CI95% 280612-282586) confirmed cases with COVID-19 in the next 60 days. In the third, we could get around 281,628 (CI95% 280639-282621) confirmed cases with COVID-19 in the next 60 days.

SIR Models

We set the population for Chile in 18,730,000 people. Also, we created the vector Infected which takes in the info from the coronavirus data. SIR (Susceptible-Infected-Recovered) models, the dynamics of the outbreak and uses three differential equations, in order to do so: dS, dI, and dR, you can think of them as the rate of change for Susceptibles, Infected and Recovered for a given t. Beta is the parameter that controls the transition between Susceptibles and Infected and Gamma controls the transition between Infected and Recovered. These models assumes that the infection is quite short, so the population does not have enough time to change (1), There is a constant rate in infected and contacts (2), and elimination rate (recovery/death) is constant over time, We used a parameter of deaths of 1.67%, as stated above.


library(deSolve)
c1 <- coronavirus %>%
  #dplyr::filter(country == "Chile") %>%
  select(date,type,cases) %>%
  dplyr::group_by(date,type) %>%
  summarise(total_cases = sum(cases))
c2 <- c1[which(c1$type=="confirmed" ),]
c2$cumtotal_cases <- cumsum(c2$total_cases)

pop <-18730000 #población chile
Infected <- as.integer(c2$cumtotal_cases)
Dia <- 1:length(Infected)
SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/pop * I * S
    dI <- beta/pop * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = pop-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Dia, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", lower = c(0, 0), upper = c(1, 1)) # optimize with some sensible conditions
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
#Opt_par
t <- 1:150 # time in days
fit <- data.frame(ode(y = init, times = t, func = SIR, parms = Opt_par))

R0 <- setNames(Opt_par["beta"] / Opt_par["gamma"], "R0")
Height <- fit[fit$I == max(fit$I), "I", drop = FALSE] # height of pandemic
Max_Dead <- max(fit$I) * (dim(casos_muertos)[1]/dim(casos_sin_recuperados)[1]) # max deaths with supposed 2% mortality rate
require(scales)

days_passed_chile_max<-coronavirus_plot_tiempo_por_paises_prim_caso %>%
  dplyr::group_by(country) %>% 
  dplyr::filter(country=="Chile", days_passed==max(days_passed)) %>%
  dplyr::select(days_passed) %>% as.numeric()

graph11 <- fit %>% gather(key, value, -time)
bigplot <- ggplot(graph11, mapping = aes(x = time, y = value, color = key) ) +   
  geom_line(size =1.25)+  
  scale_color_manual( values = 
                        c("darkred", "darkolivegreen3","cadetblue4"))+ 
  theme(
    plot.title = element_text(size = 12, face = "bold",hjust = 0.5),
    plot.caption = element_text(size = 8, face = "italic"),
    legend.position="top",
    legend.title = element_blank(),
    legend.box = "horizontal" ,
    legend.text=element_text(size=8.5),
    panel.grid.minor = element_blank(), 
    panel.grid.major = element_line(color = "gray50", size = 0.5),
    panel.grid.major.x = element_blank(),
    panel.background = element_blank(),
    line = element_blank(),
    axis.ticks.length = unit(.15, "cm"),
    axis.ticks.y = element_blank(),
    axis.title.x = element_text(color="black", 
                                size=12),
    axis.title.y = element_text(color="black",
                                size=10,
                                face="italic"))+
  sjPlot::theme_sjplot2() +
  geom_vline(xintercept = days_passed_chile_max) +
    scale_y_log10(labels = scales::comma) +

#  scale_y_continuous(expand = c(0, 0),
 ##                   breaks=seq(0.0,50000000,5000000), 
   #                  labels = scales::unit_format(unit = "M", scale = 1e-6),
    #                 name = "Number of subjects (in Millions)")+
  
  scale_x_continuous(expand = c(0, 0),
                     name = "Days")+
  labs(title = "Figure 17a.SIR Model 2019-nCov for Chilean population",
       subtitle= "Based on Worldwide dynamics", 
        y = "People (Log)",
       caption = "Info taken from RamiKrispin. Adapted model from Learning Machines.\nObtained from: https://medium.com/@daniel.pena.chaves/simple-coronavirus-model-using-r-cf6b1bc93949\n S=Susceptible, I=Infected,R=Recovered; Vertical Line= Last date of reported data")+
  theme(legend.position="bottom") +
  theme(plot.title = element_text(color="darkblue"))+
  theme(plot.caption = element_text(hjust = 0, face= "italic"))
bigplot

It assumes an R0, or the number of healthy people that get infected per number of infected people, of , the height is at day 150 with 13,173,252 infected, and a maximum of 219,560 dead. The transition between Susceptibles and Infected is around 0.08 and the transition between Infected and Recovered is around 0.


#https://www.statsandr.com/blog/covid-19-in-belgium/

# devtools::install_github("RamiKrispin/coronavirus")
`%>%` <- magrittr::`%>%`

# extract the cumulative incidence
df <- coronavirus %>%
  dplyr::filter(country == "Chile") %>%
  dplyr::group_by(date, type) %>%
  dplyr::summarise(total = sum(cases, na.rm = TRUE)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%
  dplyr::arrange(date) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(active = confirmed - death - recovered) %>%
  dplyr::mutate(
    confirmed_cum = cumsum(confirmed),
    death_cum = cumsum(death),
    recovered_cum = cumsum(recovered),
    active_cum = cumsum(active)
  )

# put the daily cumulative incidence numbers for Belgium from
# Feb 4 to March 30 into a vector called Infected
library(lubridate)

days_passed_chile_max_char<-coronavirus_plot_tiempo_por_paises_prim_caso %>%
  dplyr::group_by(country) %>% 
  dplyr::filter(country=="Chile", days_passed==max(days_passed)) %>%
  dplyr::select(date_posixct) %>% dplyr::mutate(date_posixct=as.character(as.Date(date_posixct))) %>% 
  ungroup()%>% data.frame() %>% unlist()%>% as.character() %>% unlist()
days_passed_chile_min_char<-coronavirus_plot_tiempo_por_paises_prim_caso %>%
  dplyr::group_by(country) %>% 
  dplyr::filter(country=="Chile", days_passed==min(days_passed)) %>%
  dplyr::select(date_posixct) %>% dplyr::mutate(date_posixct=as.character(as.Date(date_posixct))) %>% 
  ungroup()%>% data.frame() %>% unlist()%>% as.character() %>% unlist()


sir_start_date <- days_passed_chile_min_char
sir_end_date <- days_passed_chile_max_char
sir_start_date <- as.vector(sir_start_date)[2]
sir_end_date <-as.vector(sir_end_date)[2]

Infected <- subset(df, date >= ymd(sir_start_date) & date <= ymd(sir_end_date))$active_cum

# Create an incrementing Day vector the same length as our
# cases vector
Day <- 1:(length(Infected))

# now specify initial values for N, S, I and R
N <- 18730000
init <- c(
  S = N - Infected[1],
  I = Infected[1],
  R = 0
)

# define a function to calculate the residual sum of squares
# (RSS), passing in parameters beta and gamma that are to be
# optimised for the best fit to the incidence data
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[, 3]
  sum((Infected - fit)^2)
}

# now find the values of beta and gamma that give the
# smallest RSS, which represents the best fit to the data.
# Start with values of 0.5 for each, and constrain them to
# the interval 0 to 1.0

# install.packages("deSolve")
library(deSolve)

Opt <- optim(c(0.5, 0.5),
             RSS,
             method = "L-BFGS-B",
             lower = c(0, 0),
             upper = c(1, 1)
)

# check for convergence
invisible(Opt$message)

#The absolute value introduces a singularity: you may want to use a square instead, especially for gradient-based methods (such as L-BFGS).
#The denominator of your function can be zero.
#The fact that the parameters appear in products and that you allow them to be (arbitrarily close to) zero can also cause problems.

Opt_par <- setNames(Opt$par, c("beta", "gamma"))
invisible(Opt_par)


# time in days for predictions
t <- 1:as.integer(ymd(sir_end_date) + 1 - ymd(sir_start_date))

# get the fitted values from our SIR model
fitted_cumulative_incidence <- data.frame(ode(
  y = init, times = t,
  func = SIR, parms = Opt_par
))

# add a Date column and the observed incidence data
library(dplyr)
fitted_cumulative_incidence <- fitted_cumulative_incidence %>%
  mutate(
    Date = ymd(sir_start_date) + days(t - 1),
    Country = "Belgium",
    cumulative_incident_cases = Infected
  )

R0 <- as.numeric(Opt_par[1] / Opt_par[2])

invisible(R0)

# time in days for predictions
t <- 1:150

# get the fitted values from our SIR model
fitted_cumulative_incidence <- data.frame(ode(
  y = init, times = t,
  func = SIR, parms = Opt_par
))

# add a Date column and join the observed incidence data
fitted_cumulative_incidence <- fitted_cumulative_incidence %>%
  mutate(
    Date = ymd(sir_start_date) + days(t - 1),
    Country = "Belgium",
    cumulative_incident_cases = c(Infected, rep(NA, length(t) - length(Infected)))
  )

# plot the data
sir_corrected<-fitted_cumulative_incidence %>%
  ggplot(aes(x = Date)) +
  geom_line(aes(y = I, colour = "red"),size=1) +
  geom_line(aes(y = S, colour = "black"),size=1) +
  geom_line(aes(y = R, colour = "green"),size=1) +
  geom_point(aes(y = cumulative_incident_cases, colour = "blue")) +
  scale_y_log10(labels = scales::comma) +
  labs(
    y = "People (Log)",
    title = "Figure 17b. SIR Model 2019-nCov for Chilean population",
    subtitle= "Based on Chilean dynamics",
    caption = "Note. Vertical Line= Last reported data; Adapted model from https://www.statsandr.com/blog/covid-19-in-belgium/")+
  scale_colour_manual(
    name = "",
    values = c(red = "darkred", black = "cadetblue4", green = "darkolivegreen3", blue = "black"),
    labels = c("Susceptible", "Observed", "Recovered", "Infectious")
  ) +
  scale_x_date(date_breaks = "1 month", date_minor_breaks = "1 week", date_labels = "%b/%y")+
  sjPlot::theme_sjplot2() +
  theme(plot.title = element_text(color="darkblue", size=13.5))+
  theme(legend.position="bottom",
        panel.grid.minor = element_blank(), 
        panel.grid.major = element_line(color = "gray50", size = 0.3),
        panel.grid.major.x = element_blank(),
        panel.background = element_blank())+
  geom_vline(xintercept = as.Date(sir_end_date))+
  guides(size=F)

fit <- fitted_cumulative_incidence

# peak of pandemic
invisible(fit[fit$I == max(fit$I), c("Date", "I")])

# severe cases
max_infected <- max(fit$I)

# máximos muertos
invisible(max_infected* (dim(casos_muertos)[1]/dim(casos_sin_recuperados)[1]))
print(sir_corrected)


The estimated reproduction number (R0) in this model is estimated in 1.25. The possible peak of the pandemic would come in 2020-07-11 with an amount of 400,424 people infected. The maximum amount of deaths can be estimated in 6,674 people. The transition between Susceptibles and Infected is around 0.56 and the transition between Infected and Recovered is around 0.44.


Mobility Reports from Chile

#install.packages('gsheet')
library(gsheet)
google_date<-gsheet2tbl('https://docs.google.com/spreadsheets/d/1Kd8SLHFLohGKCuJHa3cxbhkTH9691BCd_1ryCKUM_UA/edit#gid=398361765')
## Warning: Missing column names filled in: 'X1' [1], 'X2' [2], 'X3' [3], 'X4' [4]
library(stringr)

hora_google<-substr(google_date[7,],unlist(str_locate_all(pattern ='[0-9][0-9].', google_date[7,]))[1],unlist(str_locate_all(pattern ='[0-9][0-9].', google_date[7,]))[1]+9)

We scrapped the data report from google generated at 2020-06-09 from this link. Apple mobility reports are available from this link. This approach was applied by Joachim Gassen (https://github.com/joachim-gassen/tidycovid19). Apple trends are understood as percentage x 100 of changes in each term relative to the baseline of Jan 13, 2020. Google Community Mobility Reports data for the frequency that people visit retail and recreation places expressed as a percentage x 100 change relative to the baseline period Jan 3 to Feb 6, 2020.


#bitmaps <- tidycovid19:::extract_line_graph_bitmaps("https://www.gstatic.com/covid19/mobility/2020-04-05_CL_Mobility_Report_en.pdf", 1)
#png_file <- tempfile("bitmap_", fileext = ".png")
#writePNG(bitmaps[[1]][[1]], "bitmap.png")
#df <- tidycovid19:::parse_line_graph_bitmap(bitmaps[[1]][[1]])

merged_dta <- download_merged_data(cached = TRUE, silent = TRUE)

merged_dta %>% 
  dplyr::filter(iso3c == "CHL", date >= "2020-03-03") %>%
  dplyr::mutate(gov_interventions = (soc_dist + mov_rest)/
                  max(soc_dist + mov_rest, na.rm = TRUE),
                lockdown = lockdown == 1) %>%
  dplyr::select(date, lockdown, starts_with("gcmr_"), starts_with("apple_")) %>%
  dplyr::select(-apple_mtr_transit)%>%
  tidyr::pivot_longer(cols = c("gcmr_retail_recreation","gcmr_grocery_pharmacy","gcmr_parks","gcmr_transit_stations","gcmr_workplaces","gcmr_residential","apple_mtr_driving","apple_mtr_walking"), names_to = "measure", values_to = "value") %>%
  na.omit() -> dta

merged_dta %>% 
  dplyr::filter(iso3c == "CHL", date < "2020-03-03") %>%
  dplyr::mutate(gov_interventions = (soc_dist + mov_rest)/
                  max(soc_dist + mov_rest, na.rm = TRUE),
                lockdown = lockdown == 1) %>%
  dplyr::select(date, lockdown, starts_with("gcmr_"), starts_with("apple_")) %>%
  dplyr::select(-apple_mtr_transit)%>%
  tidyr::pivot_longer(cols = c("gcmr_retail_recreation","gcmr_grocery_pharmacy","gcmr_parks","gcmr_transit_stations","gcmr_workplaces","gcmr_residential","apple_mtr_driving","apple_mtr_walking"), names_to = "measure", values_to = "value") %>%
  dplyr::filter(measure=="apple_mtr_driving"|measure=="apple_mtr_walking")%>%
  dplyr::group_by(measure) %>%   dplyr::summarise(mean=mean(value,na.rm=T),median=quantile(value,.5,na.rm=T),n=n()) -> dta_apple 

dta<- dta %>%
  dplyr::mutate(value=ifelse(measure=="apple_mtr_driving",((value-dta_apple$mean[1])/dta_apple$mean[1])*100,value))%>%
  dplyr::mutate(value=ifelse(measure=="apple_mtr_walking",((value-dta_apple$mean[2])/dta_apple$mean[2])*100,value))%>%
  dplyr::mutate(label=recode(measure, `gov_interventions` = "Intervent",
                             `gcmr_retail_recreation` = "Retail",
                             `gcmr_grocery_pharmacy` = "Grocery",
                             `gcmr_parks` = "Parks",
                             `gcmr_transit_stations` = "Stat",
                             `gcmr_workplaces` = "Workpl",
                             `gcmr_residential` = "Resid",
                             `apple_mtr_driving` = "Driven",
                             `apple_mtr_walking` = "Walked"
  ),
  measure=recode(measure, `gov_interventions` = "Goverment Interventions",
                 `gcmr_retail_recreation` = "Retail & recreation",
                 `gcmr_grocery_pharmacy` = "Grocery & pharmacy",
                 `gcmr_parks` = "Parks",
                 `gcmr_transit_stations` = "Transit stations",
                 `gcmr_workplaces` = "Workplaces",
                 `gcmr_residential` = "Residential",
                 `apple_mtr_driving` = "Meters Driven (Apple)",
                 `apple_mtr_walking` = "Meters Walked (Apple)"
  ))

dta$tooltip <- paste0(dta$label,"=",paste0(round(dta$value),"%"))
gg_google <- 
  #ggplot(dta, aes(x = date, y = value, group = measure, color = measure)) + 
  ggplot(dta,aes( hover_css = "fill:none;")) +#, ) +
  theme_minimal() +
  annotate("rect", xmin = min(dta$date[dta$lockdown]), xmax = max(dta$date), 
           ymin = -Inf, ymax = Inf, fill = "lightblue", color = NA, alpha = 0.2) +
  ggiraph::geom_point_interactive(aes(x = date,y = value, color=measure, tooltip=tooltip),size = .75) +
  scale_y_continuous(limits = c(-100,100)) +
  geom_line(aes(x = date, y = value, group = measure, color = measure),size=.9)   +
  labs(caption= "Note. value= Percentages of increase or decrease of mobility compared to the baseline\nShaded area: Date of Lockdown Policy from GOVERMENT MEASURES DATASET (ACAPS);\n Values could be lagged because of Data is from approximately 2-3 days prior.", title="Figure 18. Mobility Trends From Mobility Reports") +
  theme(legend.position="bottom") +
  scale_colour_ochre(name= "Measures",
                     palette="emu_woman_paired") +
  theme(plot.title = element_text(color="darkblue"))+
  labs(y=NULL, x=NULL)+
  theme(legend.text = element_text(size=7))+
  theme(legend.title = element_text(size=9))+
  theme(plot.caption = element_text(hjust = 0, face= "italic"))

tooltip_css <- "background-color:gray;color:white;font-style:italic;padding:10px;border-radius:10px 20px 10px 20px;"

#ggiraph(code = {print(gg_google)}, tooltip_extra_css = tooltip_css, tooltip_opacity = .65 )
x <- girafe(ggobj = gg_google)
x <- girafe_options(x,
                    opts_zoom(min = 1, max = 3) )

#The dots represents the lockdowns policies in the GOVERNMENT MEASURES DATASET available in this  [link](https://www.acaps.org/covid19-government-measures-dataset).

#fecha de cuarentena 
#https://www.minsal.cl/ministro-de-salud-anuncio-cuarentena-total-para-siete-comunas-de-la-rm/
x
#save.image(pasteo("G:/Mi unidad/covid19/prueba",format(Sys.time()-3600*24, '%Y_%m_%d'),".RData"))
save.image("G:/Mi unidad/covid19/prueba.RData")

Unfortunately and as said earlier, apple trends had a baseline of only one day, so we constructed a robust baseline using the mean of trends previous to our first case (2020-03-03) as a reference. These percentages must be interpreted as the part of the mean before the first diagnosed case in Chile that has increased/decreased from the same average meters driven/walked (115.68 and 97.52 meters, respectively).


As seen in Figure 18, mobility trends started decreasing since March 15, while policies were implemented since March 26 (more information on this link). The trends that diminished less are those related to grocery and pharmacy and workplaces, while the residential trend incremented from the baseline. One interesting fact is that mobility to parks decreased from last days of february, possibly due to other factors, such as the beginning of the school year.


Link to Control Methods… In construction

Academic Resources