Home

Column

Fecha de la Actualización

2020-05-27

Casos Nuevos Totales

4328

Casos Activos

47908

Incidencia por Millón de Habitantes

4078.3

Región con Mayor Casos en Chile

Metropolitana

Column

Casos Totales en Chile

82289

Casos Nuevos Sintomáticos

3956

Casos Recuperados

33540

Mortalidad por Millón de Habitantes

42.2

Comuna con Mayor Casos en Chile

Santiago

Column

Fallecidos Totales en Chile

841

Casos Nuevos Asintomáticos

372

Letalidad %

1

Cantidad de Test Diarios

488041

País con Mayor Casos

Estados Unidos de América

Comunas

Column

Comparativo

Column

Lineal

Logarítmico

Casos

Muertes

Casos

Column

Lineal

Logarítmico

Muertes

Column

Lineal

Logarítmico

Casos Totales

Casos UCI

Fallecidos Totales

Gráfico

Gráfico

Puntual

Acumulada

Diarios

Totales

Mapas

Column

Chile

Tablas

Column

Top Casos Confirmados por Comuna

Top Casos Confirmados por Región

Top Casos Confirmados por País

R0 Estimado

Column

Método Bayesiano

1.18 (1.13-1.22)

Método de Crecimiento Exponencial

1.31 (1.3-1.32)

Método de Máxima Verosimilitud

1.6 (1.58-1.62)

Método de Tasa de Ataque

1.00216 (1.00214-1.00217)

Método Tiempo Dependiente

1.126 (0.788-1.464)

Column

Column

---
title: "Covid19 Chile"
output: 
  flexdashboard::flex_dashboard:
    source_code: embed
    orientation: column
    vertical_layout: fill
    theme: flatly
---

```{r setup, include=FALSE}
library(flexdashboard)
library(R0)
library(tidyverse)
library(highcharter)
library(DT)
library(reshape)
library(data.table)
library(ggplot2)

corona_cases<-read.csv("https://covid.ourworldindata.org/data/owid-covid-data.csv", header = TRUE, sep = ",")
population<-read.csv("https://covid.ourworldindata.org/data/ecdc/locations.csv", header = TRUE, sep = ",")
corona_total<-merge(population, corona_cases, by = "location")
corona_total<-filter(corona_total, corona_total$total_cases >= 1|corona_total$total_deaths >=1)
corona_total<-mutate(corona_total, 
                     incidenciaX1000 = corona_total$new_cases/corona_total$population.x * 1000, 
                     mortalidadX1000 = corona_total$new_deaths/corona_total$population.x * 1000,
                     incidenciaX1000000 = corona_total$total_cases/corona_total$population.x * 1000000,
                     mortalidadX1000000 = corona_total$total_deaths/corona_total$population.x * 1000000,
                     letalidad = corona_total$new_deaths/corona_total$new_cases * 100, 
                     letalidad_acumulada = corona_total$total_deaths/corona_total$total_cases * 100,
                     total_cases_log = log10(corona_total$total_cases)
                     )
target<-c("United States",
          "Italy",
          "Argentina",
          "Brazil",
          "Bolivia",
          "Colombia",
          "Ecuador",
          "Paraguay",
          "Peru",
          "Uruguay",
          "Venezuela",
          "Germany",
          "France",
          "Spain",
          "China",
          "South Korea",
          "Japan"
          )
target2<-c("Chile")
target3<-c("United States",
           "Italy",
           "Argentina",
           "Brazil",
           "Bolivia",
           "Colombia",
           "Ecuador",
           "Paraguay",
           "Peru",
           "Uruguay",
           "Venezuela",
           "Germany",
           "France",
           "Spain",
           "China",
           "South Korea",
           "Japan",
           "Chile")
corona_dinamic_graph<-filter(corona_total, corona_total$location %in% target)
corona_dinamic_graph2<-filter(corona_total, corona_total$location %in% target2)
corona_table<-filter(corona_total, corona_total$location %in% target3)
corona_dinamic_graph<-arrange(corona_dinamic_graph, corona_dinamic_graph$date)
corona_dinamic_graph2<-arrange(corona_dinamic_graph2, corona_dinamic_graph2$date)
corona_dinamic_graph<-mutate(corona_dinamic_graph, new_date = as.Date(corona_dinamic_graph$date))
corona_dinamic_graph2<-mutate(corona_dinamic_graph2, new_date = as.Date(corona_dinamic_graph2$date))
total_casos_chile<-max(corona_dinamic_graph2$total_cases, na.rm = TRUE)
total_muertes_chile<-max(corona_dinamic_graph2$total_deaths, na.rm = TRUE)
total_test_chile<-max(corona_dinamic_graph2$total_tests, na.rm = TRUE)
incidencia_chile<-round(last(corona_dinamic_graph2$incidenciaX1000000), 1)
mortalidad_chile<-round(last(corona_dinamic_graph2$mortalidadX1000000), 1)
letalidad_chile<-round(last(corona_dinamic_graph2$letalidad_acumulada), 1)
chile_totales_nacionales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto5/TotalesNacionales.csv", header = TRUE, sep = ",", check.names = TRUE)
casos_nuevos_sintomaticos<-chile_totales_nacionales[1,ncol(chile_totales_nacionales)]
casos_totales<-chile_totales_nacionales[2,ncol(chile_totales_nacionales)]
casos_recuperados<-chile_totales_nacionales[3,ncol(chile_totales_nacionales)]
casos_fallecidos<-chile_totales_nacionales[4,ncol(chile_totales_nacionales)]
casos_activos<-chile_totales_nacionales[5,ncol(chile_totales_nacionales)]
casos_nuevos_asintomaticos<-chile_totales_nacionales[6,ncol(chile_totales_nacionales)]
casos_nuevos_totales<-chile_totales_nacionales[7,ncol(chile_totales_nacionales)]
regiones_nuevo<-c("Arica y Parinacota", "Tarapaca", "Antofagasta", "Atacama", "Coquimbo", "Valparaiso", 
              "Metropolitana", "OHiggins", "Maule", "Nuble", "Biobio", "Araucania", "Los Rios", "Los Lagos", "Aysen", "Magallanes", "Total")
corona_cases_chile<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto3/CasosTotalesCumulativo.csv", header = TRUE, sep = ",")
corona_cases_chile<-cbind.data.frame(corona_cases_chile, regiones_nuevo)
col_idx <- grep("regiones_nuevo", names(corona_cases_chile))
corona_cases_chile <-corona_cases_chile[, c(col_idx, (1:ncol(corona_cases_chile))[-col_idx])]
names(corona_cases_chile)<-sub("^X", "", names(corona_cases_chile))
mapdata<-get_data_from_map(download_map_data("countries/cl/cl-all"))
mapdata<-mutate(mapdata, regiones_codigo = mapdata$`hc-a2`)
regiones_code<-data.frame("regiones_codigo"=c("AY", "TA", "AN", "AT", "CO", "VS", "RM", "LI", "ML", "ML","BI", "LA", "AR", "LL", "AI", "MA", "TO"))
corona_cases_chile<-cbind(corona_cases_chile, regiones_code)
col_idx <- grep("regiones_codigo", names(corona_cases_chile))
corona_cases_chile <-corona_cases_chile[, c(col_idx, (1:ncol(corona_cases_chile))[-col_idx])]
corona_cases_chile <- corona_cases_chile[-nrow(corona_cases_chile),]
mapdata<-merge(mapdata, corona_cases_chile, by = "regiones_codigo")
data_fake <- mapdata %>%
  select(code = regiones_codigo) %>% 
  mutate(value = mapdata[,ncol(mapdata)])
comunas_region_totales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto1/Covid-19.csv", header = TRUE, sep = ",")
names(comunas_region_totales)<-sub("^X", "", names(comunas_region_totales))
comunas_region_totales<-select(comunas_region_totales, -Tasa)
casos_por_comuna<-comunas_region_totales[,ncol(comunas_region_totales)]
nombre_comunas<-comunas_region_totales$Comuna
top_comunas<-cbind.data.frame(nombre_comunas, casos_por_comuna)
top_comunas<-arrange(top_comunas, -top_comunas$casos_por_comuna)
names(top_comunas)[names(top_comunas) == "casos_por_comuna"] <- "Casos"
names(top_comunas)[names(top_comunas) == "nombre_comunas"] <- "Comuna"
region_new<-c("Arica y Parinacota", "Tarapaca", "Antofagasta", "Atacama", "Coquimbo", "Valparaiso", 
              "Metropolitana", "OHiggins", "Maule", "Nuble", "Biobio", "Araucania", "Los Rios", "Los Lagos", "Aysen", "Magallanes", "Total")
region_totales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto3/CasosTotalesCumulativo.csv", header = TRUE, sep = ",")
region_totales<-cbind.data.frame(region_totales, region_new)
col_idx <- grep("region_new", names(region_totales))
region_totales <- region_totales[, c(col_idx, (1:ncol(region_totales))[-col_idx])]
names(region_totales)<-sub("^X", "", names(region_totales))
casos_por_region<-region_totales[,ncol(region_totales)]
nombre_region<-region_totales$region_new
top_regiones<-cbind.data.frame(nombre_region, casos_por_region)
top_regiones<-arrange(top_regiones, -top_regiones$casos_por_region)
top_regiones<-top_regiones %>% slice(-1)
names(top_regiones)[names(top_regiones) == "casos_por_region"] <- "Casos"
names(top_regiones)[names(top_regiones) == "nombre_region"] <- "Región"
corona_cases<-read.csv("https://covid.ourworldindata.org/data/owid-covid-data.csv", header = TRUE, sep = ",")
iso_pais<-read.csv("https://gist.githubusercontent.com/brenes/1095110/raw/0d30463c80403c19384323d8267f48e8ef5e8e8d/paises.csv", header = TRUE, sep = ",",encoding = "UTF-8", stringsAsFactors = FALSE)
iso_pais = rename(iso_pais, c(iso3 = "iso_code"))
corona_cases<-mutate(corona_cases, new_date = as.Date(corona_cases$date))
corona_cases<-subset(corona_cases, corona_cases$new_date == Sys.Date())
corona_cases<-arrange(corona_cases, -corona_cases$total_cases)
corona_cases<-corona_cases %>% slice(-1)
corona_cases<-merge(iso_pais, corona_cases, by = "iso_code")
#corona_cases<-as.data.frame(corona_cases)
top_pais<-select(corona_cases, nombre, total_cases)
top_pais<-arrange(top_pais, -total_cases)
names(top_pais)[names(top_pais) == "total_cases"] <- "Casos"
names(top_pais)[names(top_pais) == "nombre"] <- "País"
chile_g4<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto5/TotalesNacionales.csv", header = TRUE, sep = ",", check.names = TRUE)
names(chile_g4)<-sub("^X", "", names(chile_g4))
chile_g4t<-transpose(chile_g4)
fecha<-c(colnames(chile_g4))
chile_g4t<-cbind.data.frame(fecha, chile_g4t)
chile_g4t<-chile_g4t %>% slice(-1)
fecha2<-chile_g4t$fecha
fecha2<-chartr(".", "-", fecha2)
fecha2<-as.Date(fecha2)
chile_g4t<-cbind.data.frame(fecha2, chile_g4t)
chile_g4t$V1<-as.numeric(as.character(chile_g4t$V1))#casos nuevos con sintomas
chile_g4t$V2<-as.numeric(as.character(chile_g4t$V2))#casos totales
chile_g4t$V3<-as.numeric(as.character(chile_g4t$V3))#casos recuperados
chile_g4t$V4<-as.numeric(as.character(chile_g4t$V4))#fallecidos
chile_g4t$V5<-as.numeric(as.character(chile_g4t$V5))#casos activos
chile_g4t$V6<-as.numeric(as.character(chile_g4t$V6))#casos nuevos sin sintomas
chile_g4t$V7<-as.numeric(as.character(chile_g4t$V7))#casos nuevos totales
datos_genero_edad<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto16/CasosGeneroEtario.csv", header = TRUE, sep = ",", check.names = FALSE)
grupo_edad<-sub(" años| y más años", "", datos_genero_edad$`Grupo de edad`)
grupo_edad<-sub("80", "80 y mas", grupo_edad)
datos_genero_edad<-cbind.data.frame(grupo_edad, datos_genero_edad)
datos_genero_edad<-select(datos_genero_edad, -'Grupo de edad')
f<-filter(datos_genero_edad, datos_genero_edad$Sexo == "F")
m<-filter(datos_genero_edad, datos_genero_edad$Sexo == "M")
fm<-select(f, +ncol(f)) + select(m, +ncol(m))
colnames(fm)<-c("Total")
grupo<-c(datos_genero_edad[1:17,1])
fm<-cbind(grupo, fm)

#pacientes UCI por grupo de edad

datos_uci_edad<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto9/HospitalizadosUCIEtario.csv", header = TRUE, sep = ",", check.names = FALSE)

#pacientes fallecidos por grupo de edad#

datos_fallecidos_edad<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto10/FallecidosEtario.csv", header = TRUE, sep = ",", check.names = FALSE)

datos_comuna_sem_epi<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto15/FechaInicioSintomasHistorico_std.csv", header = TRUE, sep = ",", check.names = FALSE)
#target_comunas<-c("Estacion Central", "Santiago", "Las Condes", "Ancud", "Dalcahue", "Castro", "Puente Alto")
target_comunas<-c(head(top_comunas$Comuna, n = 20L))
semana_epi<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto15/SemanasEpidemiologicas.csv", header =  TRUE, sep = ",", check.names = FALSE)
datos_comuna_sem_epi<-filter(datos_comuna_sem_epi, datos_comuna_sem_epi$Comuna %in% target_comunas)
datos_comuna_sem_epi<-mutate(datos_comuna_sem_epi, fecha_std = as.Date(datos_comuna_sem_epi$Publicacion))
semana_epi_t<-transpose(semana_epi)
names(semana_epi_t)<-c("Inicio", "Fin")
nombre_semanas<-colnames(semana_epi)
semana_epi_t<-cbind(nombre_semanas, semana_epi_t)
names(semana_epi_t)<-c("Semana Epidemiologica", "Fecha de Inicio", "Fecha de Fin")
datos_comuna_sem_epi<-merge(datos_comuna_sem_epi, semana_epi_t, by = "Semana Epidemiologica")
datos_comuna_sem_epi<-mutate(datos_comuna_sem_epi, f_inicio = as.Date.character(datos_comuna_sem_epi$`Fecha de Inicio`), f_termino = as.Date.character(datos_comuna_sem_epi$`Fecha de Fin`))
datos_comuna_sem_epi<-unite(datos_comuna_sem_epi, "se_fechas", f_inicio:f_termino ,sep = " ", remove = FALSE, na.rm = FALSE)

#vector de incidencias para estimacion r0#

incidencias_michi<-chile_totales_nacionales[7,3:ncol(chile_totales_nacionales)]
incidencias_michi<-as_vector(incidencias_michi)

#estimacion R0 ultimos 14 días#

mGT<-generation.time("gamma", c(5, 2))
estR0<-estimate.R(incidencias_michi, mGT, begin = as.numeric(length(incidencias_michi) - 14), end = as.numeric(length(incidencias_michi)), methods=c("EG", "ML", "TD", "AR", "SB"),pop.size=19116209, nsim=1000)

#EG#

ro_eg_rvalue<-round(estR0$estimates$EG$R, 2)
ro_eg_conf_int<-round(estR0$estimates$EG$conf.int, 2)

ro_eg_conf_int[1]
ro_eg_conf_int[2]

ro_eg<-paste0(ro_eg_rvalue, " ", "(", ro_eg_conf_int[1], "-", ro_eg_conf_int[2], ")")

#ML#

ro_ml_rvalue<-round(estR0$estimates$ML$R, 3)
ro_ml_conf_int<-round(estR0$estimates$ML$conf.int, 3)

ro_ml_conf_int[1]
ro_ml_conf_int[2]

ro_ml<-paste0(ro_ml_rvalue, " ", "(", ro_ml_conf_int[1], "-", ro_ml_conf_int[2], ")")

#AR#

ro_ar_rvalue<-round(estR0$estimates$AR$R, 5)
ro_ar_conf_int<-round(estR0$estimates$AR$conf.int, 5)

ro_ar_conf_int[1]
ro_ar_conf_int[2]

ro_ar<-paste0(ro_ar_rvalue, " ", "(", ro_ar_conf_int[1], "-", ro_ar_conf_int[2], ")")

#TD#

ro_ad_rvalue<-estR0$estimates$TD$R
ro_ad_rvalue<-unname(ro_ad_rvalue, force = FALSE)
ro_ad_rvalue<-round(ro_ad_rvalue[14],3)

ro_ad_conf_int<-estR0$estimates$TD$conf.int

ro_ad<-paste0(ro_ad_rvalue, " ", "(", round(ro_ad_conf_int[14,1], 3), "-", round(ro_ad_conf_int[14,2], 3), ")")

#SB#

ro_sb<-paste0(
  round(last(estR0$estimates$SB$R), 3), 
  " ", 
  "(",
  round(estR0$estimates$SB$conf.int[14,1],3),
  "-",
  round(estR0$estimates$SB$conf.int[14,2], 3),
  ")"
)

#dataframes#

chile_totales_nacionales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto5/TotalesNacionales.csv", 
                                   header = TRUE, 
                                   sep = ",", 
                                   check.names = FALSE)

#vector de incidencias para estimacion r0#

incidencias<-chile_totales_nacionales[7,3:ncol(chile_totales_nacionales)]
incidencias<-as_vector(incidencias)

#ro toda la pandemia#

mGT2<-generation.time("gamma", c(5, 2))
estR02<-estimate.R(incidencias, mGT2, begin = 1, end = as.numeric(length(incidencias)), methods=c("SB"),
                   pop.size=19116209, nsim=1000)

#ro ultimos 14 dias#

mGT3<-generation.time("gamma", c(5, 2))
estR03<-estimate.R(incidencias, mGT3, begin = as.numeric(length(incidencias) - 14), end = as.numeric(length(incidencias)), methods=c("SB"),
                   pop.size=19116209, nsim=1000)

#graficos#

#data preparation#

ro_sb_graph1<-cbind(estR02$estimates$SB$R, estR02$estimates$SB$conf.int)
ro_sb_graph2<-cbind(estR03$estimates$SB$R, estR03$estimates$SB$conf.int)

colnames(ro_sb_graph1)<-c("ro", "ci_low", "ci_upp")
colnames(ro_sb_graph2)<-c("ro", "ci_low", "ci_upp")

```


Home
=====================================

Column
-------------------------------------
   
### Fecha de la Actualización

```{r}
articles <- Sys.Date()
valueBox(articles, icon = "body")
``` 

### Casos Nuevos Totales

```{r}
articles <- casos_nuevos_totales
valueBox(articles, icon = "body")
``` 
 
### Casos Activos

```{r}
spam <-casos_activos
valueBox(spam, 
         icon = "flask-sharp")
```

### Incidencia por Millón de Habitantes
    
```{r}
comments <- incidencia_chile
valueBox(comments, icon = "fas fa-skull-crossbones")
```
   
### Región con Mayor Casos en Chile

```{r}
comments <- top_regiones[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```


Column
-------------------------------------

### Casos Totales en Chile

```{r}
comments <- casos_totales
valueBox(comments, icon = "fas fa-skull-crossbones")
``` 

### Casos Nuevos Sintomáticos

```{r}
comments <- casos_nuevos_sintomaticos
valueBox(comments, icon = "fas fa-skull-crossbones")
``` 
 
### Casos Recuperados
 
```{r}
activ <- casos_recuperados
valueBox(activ, icon = "body")
```

### Mortalidad por Millón de Habitantes
    
```{r}
spam <- mortalidad_chile
valueBox(spam, 
         icon = "flask-sharp",
         color = ifelse(spam > 10, "warning", "primary"))
```

### Comuna con Mayor Casos en Chile

```{r}
comments <- top_comunas[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```

Column
-------------------------------------

### Fallecidos Totales en Chile

```{r}
spam <-casos_fallecidos
valueBox(spam, 
         icon = "flask-sharp")
```
 
### Casos Nuevos Asintomáticos

```{r}
recu <- casos_nuevos_asintomaticos
valueBox(recu, icon = "body")
```

### Letalidad %

```{r}
spam <-letalidad_chile
valueBox(spam, 
         icon = "flask-sharp", 
         color = ifelse(spam > 5, "warning", "primary"))
```

### Cantidad de Test Diarios

```{r}
comments <- total_test_chile
valueBox(comments, icon = "fas fa-skull-crossbones")
```

### País con Mayor Casos

```{r}
comments <- top_pais[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```

Comunas
=====================================

Column
-------------------------------------
``` {r}
highchart() %>%
  hc_add_series(datos_comuna_sem_epi,
                "column",
                hcaes(x = datos_comuna_sem_epi$f_inicio,
                      y = datos_comuna_sem_epi$`Casos confirmados`,
                      group = datos_comuna_sem_epi$Comuna,
                      visible = FALSE)) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Confirmados de COVID19 por Semana Epidemiológica de las 20 comunas de Chile más afectadas") %>% 
  hc_xAxis(title = list(text = "Fecha de Inicio de la Semana Epidemiológica"),
           opposite = FALSE, 
           type = "datetime",
           tickmarkPlacement = "on", 
           tickLength = 0,
           plotLines = list(
             list(label = list(text = "Nueva Normalidad"),
                  color = "#FE0202",
                  width = 20,
                  value = 2020-04-20))) %>% 
  hc_yAxis(title = list(text = "Casos Confirmados"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "Comuna"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Comparativo
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V2, 
                ), visible = TRUE, name = "Casos Totales") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V1,
                ), visible = TRUE, name = "Casos Nuevos SINTOMÁTICOS") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V3, 
                ), visible = TRUE, name = "Casos Recuperados") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V4, 
                ), visible = TRUE, name = "Casos Fallecidos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V5, 
                ), visible = TRUE, name = "Casos Activos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V6, 
                ), visible = TRUE, name = "Casos Nuevos ASINTOMÁTICOS") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V7, 
                ), visible = TRUE, name = "Casos Nuevos Totales (SINTOMÁTICO Y ASINTOMÁTICOS") %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Comparativa de Casos Totales, Nuevos, Recuperados, Fallecidos y Activos de COVID19 en CHile") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V2, 
                ), visible = TRUE, name = "Casos Totales") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V1,
                ), visible = TRUE, name = "Casos Nuevos SINTOMÁTICOS") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V3, 
                ), visible = TRUE, name = "Casos Recuperados") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V4, 
                ), visible = TRUE, name = "Casos Fallecidos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V5, 
                ), visible = TRUE, name = "Casos Activos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V6, 
                ), visible = TRUE, name = "Casos Nuevos ASINTOMÁTICOS") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V7, 
                ), visible = TRUE, name = "Casos Nuevos Totales (SINTOMÁTICO Y ASINTOMÁTICOS") %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Comparativa de Casos Totales, Nuevos, Recuperados, Fallecidos y Activos de COVID19 en CHile") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "casos"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```


Casos {data-navmenu="Diarios"}
=====================================

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Nuevos de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Muertes {data-navmenu="Diarios"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Nuevas Muertes de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Casos {data-navmenu="Totales"}
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Casos Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Totales de COVID19 por día de infección (escala logarítmica") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Casos Totales"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Muertes {data-navmenu="Totales"}
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Muertes Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Muertes Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Muertes Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Muertes totales"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Casos Totales {data-navmenu="Grupos"}
=====================================

```{r}
highchart() %>%
  hc_add_series(datos_genero_edad, 
                "column", 
                hcaes(x = datos_genero_edad$grupo_edad, 
                      y = datos_genero_edad[,ncol(datos_genero_edad)],
                      group = datos_genero_edad$Sexo), visible = TRUE) %>%
  hc_add_series(fm,
                "column",
                hcaes(x = fm$grupo,
                      y = fm$Total),
                visible = FALSE, name = "Total") %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Totales por Grupo de Edad") %>% 
  hc_xAxis(title = list(text = "Grupo de Edad"),opposite = FALSE, categories = datos_genero_edad$grupo_edad) %>% 
  hc_yAxis(title = list(text = "Casos Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "Genero"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Casos UCI {data-navmenu="Grupos"}
=====================================

``` {r}
highchart() %>%
  hc_add_series(datos_uci_edad,
                "column",
                hcaes(x = datos_uci_edad$`Grupo de edad`,
                      y = datos_uci_edad[,ncol(datos_uci_edad)], 
                      visible = TRUE)) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos UCI por Grupo de Edad") %>% 
  hc_xAxis(title = list(text = "Grupo de Edad"),opposite = FALSE, categories = datos_uci_edad$`Grupo de edad`) %>% 
  hc_yAxis(title = list(text = "Tasos UCI"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "Género"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Fallecidos Totales {data-navmenu="Grupos"}
=====================================

``` {r}
highchart() %>%
  hc_add_series(datos_fallecidos_edad,
                "column",
                hcaes(x = datos_fallecidos_edad$`Grupo de edad`,
                      y = datos_fallecidos_edad[,ncol(datos_fallecidos_edad)], 
                      visible = TRUE)) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Fallecidos Totales por Grupo de Edad") %>% 
  hc_xAxis(title = list(text = "Grupo de Edad"),opposite = FALSE, categories = datos_uci_edad$`Grupo de edad`) %>% 
  hc_yAxis(title = list(text = "Fallecidos Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "Fallecidos"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```



Gráfico {data-navmenu="Incidencia"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$incidenciaX1000000,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$incidenciaX1000, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Incidencia de COVID19 por día de infección por millón de habitantes") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Incidencia"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Gráfico {data-navmenu="Mortalidad"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$mortalidadX1000000,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$mortalidadX1000, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Mortalidad de COVID19 por día de infección por millón de habitantes") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Mortalidad"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Puntual {data-navmenu="Letalidad"}
=====================================  
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$letalidad,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$letalidad, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Letalidad (%) de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Letalidad (%)"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Acumulada {data-navmenu="Letalidad"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$letalidad_acumulada,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$letalidad_acumulada, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Letalidad Acumulada (%) de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Letalidad Acumulada (%)"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Diarios {data-navmenu="Test"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_tests,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_tests, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Nuevos Tests Realizados de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos Tests"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Totales {data-navmenu="Test"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_tests,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_tests, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Tests Acumulados de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Tests Acumulados"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Mapas
=====================================

Column
-------------------------------------
    
### Chile
    
```{r plots, echo=FALSE}
hcmap("countries/cl/cl-all", data = data_fake, value = "value",
      joinBy = c("hc-a2", "code"), name = "Casos por Región",
      dataLabels = list(enabled = TRUE, format = '{point.name}'),
      borderColor = "#0048BA", borderWidth = 1, tooltip = list(valueDecimals = 0, valuePrefix = "Casos Totales = "))
```

Tablas
=====================================

Column {.tabset}
-------------------------------------

### Top Casos Confirmados por Comuna

```{r}
DT::datatable(top_comunas, options = list(
  bPaginate = FALSE
))
```

### Top Casos Confirmados por Región

```{r}
DT::datatable(top_regiones, options = list(
  bPaginate = FALSE
))
```

### Top Casos Confirmados por País

```{r}
DT::datatable(top_pais, options = list(
  bPaginate = FALSE
))
```

R0 Estimado
=====================================

Column {.tabset}
-------------------------------------

### Método Bayesiano

```{r}
comments <- ro_sb
valueBox(comments, icon = "fas fa-skull-crossbones")
``` 

### Método de Crecimiento Exponencial

```{r}
comments <- ro_eg
valueBox(comments, icon = "fas fa-skull-crossbones")
``` 

### Método de Máxima Verosimilitud

```{r}
comments <- ro_ml
valueBox(comments, icon = "fas fa-skull-crossbones")
``` 

### Método de Tasa de Ataque

```{r}
comments <- ro_ar
valueBox(comments, icon = "fas fa-skull-crossbones")
``` 

### Método Tiempo Dependiente

```{r}
comments <- ro_ad
valueBox(comments, icon = "fas fa-skull-crossbones")
```

Column {.tabset}
-------------------------------------

``` {r}
p1<-ggplot(ro_sb_graph1, aes(x=rownames(ro_sb_graph1), y=ro, color = "blue")) + geom_point(aes(x = rownames(ro_sb_graph1), y = ro)) + geom_line(aes(y = ro, x = rownames(ro_sb_graph1), color = "blue"))
p1<-p1+geom_ribbon(aes(x = 1:length(rownames(ro_sb_graph1)), ymin=ci_low, ymax=ci_upp, color = "red"), linetype=2, alpha=0.2)
p1
```

Column {.tabset}
-------------------------------------

``` {r}
p2<-ggplot(ro_sb_graph2, aes(x=rownames(ro_sb_graph2), y=ro, color = "blue")) + geom_point(aes(x = rownames(ro_sb_graph2), y = ro)) + geom_line(aes(y = ro, x = rownames(ro_sb_graph2), color = "blue"))
p2<-p2+geom_ribbon(aes(x = 1:length(rownames(ro_sb_graph2)), ymin=ci_low, ymax=ci_upp, color = "red"), linetype=2, alpha=0.2)
p2
```