## ─ Attaching packages ────────────────────────── tidyverse 1.3.0 ─
## ✓ ggplot2 3.3.0     ✓ purrr   0.3.4
## ✓ tibble  3.0.1     ✓ dplyr   0.8.5
## ✓ tidyr   1.0.3     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ─ Conflicts ─────────────────────────── tidyverse_conflicts() ─
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Loading required package: sp
## ### Welcome to rworldmap ###
## For a short introduction type :   vignette('rworldmap')
## Checking rgeos availability: FALSE
##      Note: when rgeos is not available, polygon geometry     computations in maptools depend on gpclib,
##      which has a restricted licence. It is disabled by default;
##      to enable gpclib, type gpclibPermit()
## 
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
## 
##     select
## The following object is masked from 'package:tidyr':
## 
##     extract
## Google's Terms of Service: https://cloud.google.com/maps-platform/terms/.
## Please cite ggmap if you use it! See citation("ggmap") for details.
## Linking to GEOS 3.7.2, GDAL 2.4.2, PROJ 5.2.0
## rgdal: version: 1.4-8, (SVN revision 845)
##  Geospatial Data Abstraction Library extensions to R successfully loaded
##  Loaded GDAL runtime: GDAL 2.4.2, released 2019/06/28
##  Path to GDAL shared files: /Library/Frameworks/R.framework/Versions/4.0/Resources/library/rgdal/gdal
##  GDAL binary built with GEOS: FALSE 
##  Loaded PROJ.4 runtime: Rel. 5.2.0, September 15th, 2018, [PJ_VERSION: 520]
##  Path to PROJ.4 shared files: /Library/Frameworks/R.framework/Versions/4.0/Resources/library/rgdal/proj
##  Linking to sp version: 1.4-1
## Loading required package: acs
## Loading required package: XML
## 
## Attaching package: 'acs'
## The following object is masked from 'package:dplyr':
## 
##     combine
## The following object is masked from 'package:base':
## 
##     apply

In-Class Exercise 1: Countries I Have Visited So Far

## 4 codes from your data successfully matched countries in the map
## 0 codes from your data failed to match with a country code in the map
## 239 codes from the map weren't represented in your data

In-Class Exercise 2: Places in administratice areas of Taiwan you have visited so far

Show the administratice areas of Taiwan

## Reading layer `TWN_adm2' from data source `/Users/haolunfu/Documents/資料管理/week10/TWN_adm/TWN_adm2.shp' using driver `ESRI Shapefile'
## Simple feature collection with 21 features and 18 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 119.3138 ymin: 21.89653 xmax: 122.1085 ymax: 25.63431
## CRS:            4326
##  [1] "Kaohsiung City" "Taipei City"    "Changhwa"       "Chiayi"        
##  [5] "Hsinchu"        "Hualien"        "Ilan"           "Kaohsiung"     
##  [9] "Keelung City"   "Miaoli"         "Nantou"         "Penghu"        
## [13] "Pingtung"       "Taichung"       "Taichung City"  "Tainan"        
## [17] "Tainan City"    "Taipei"         "Taitung"        "Taoyuan"       
## [21] "Yunlin"

I haven’t been to off shore of Taiwan.

In-Class Exercise 3: Map an area of Tainan city to include three of your favorite places to eat as landmarks.

Exercise 1:

Load data file

## Reading layer `TWN_adm2' from data source `/Users/haolunfu/Documents/資料管理/week10/TWN_adm/TWN_adm2.shp' using driver `ESRI Shapefile'
## Simple feature collection with 21 features and 18 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 119.3138 ymin: 21.89653 xmax: 122.1085 ymax: 25.63431
## CRS:            4326
## Simple feature collection with 6 features and 18 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 120.1185 ymin: 22.60095 xmax: 121.7513 ymax: 25.13074
## CRS:            4326
##   ID_0 ISO NAME_0 ID_1    NAME_1  ID_2         NAME_2         VARNAME_2
## 1  228 TWN Taiwan 3048 Kaohsiung 33637 Kaohsiung City      Gaoxiong Shi
## 2  228 TWN Taiwan 3050    Taipei 33638    Taipei City        Taibei Shi
## 3  228 TWN Taiwan 3051    Taiwan 33639       Changhwa Zhanghua|Changhua
## 4  228 TWN Taiwan 3051    Taiwan 33640         Chiayi       Jiayi|Chiai
## 5  228 TWN Taiwan 3051    Taiwan 33641        Hsinchu            Xinzhu
## 6  228 TWN Taiwan 3051    Taiwan 33642        Hualien            Hualia
##   NL_NAME_2   HASC_2 CC_2         TYPE_2            ENGTYPE_2 VALIDFR_2
## 1      <NA> TW.KH.KC <NA>     Chuan-shih Special Municipality      1979
## 2      <NA> TW.TP.TC <NA>     Chuan-shih Special Municipality      1967
## 3      <NA> TW.TW.CG <NA> District|Hsien               County      1951
## 4      <NA> TW.TW.CH <NA> District|Hsien               County      1951
## 5      <NA> TW.TW.HH <NA> District|Hsien               County      1951
## 6      <NA> TW.TW.HL <NA> District|Hsien               County      1951
##   VALIDTO_2 REMARKS_2 Shape_Leng  Shape_Area                       geometry
## 1   Present      <NA>  0.5856767 0.006017124 MULTIPOLYGON (((120.239 22....
## 2   Present      <NA>  0.6103200 0.023792317 MULTIPOLYGON (((121.5258 24...
## 3   Present      <NA>  2.4738100 0.105527533 MULTIPOLYGON (((120.4176 24...
## 4   Present      <NA>  3.0710987 0.152489131 MULTIPOLYGON (((120.1526 23...
## 5   Present      <NA>  2.0131853 0.155745500 MULTIPOLYGON (((120.9146 24...
## 6   Present      <NA>  3.8199624 0.415714667 MULTIPOLYGON (((121.5018 23...

Exercise 3: The data for age fisrt have sex across several countries.

Load data file

##                          Date X1.1.2005
## 1    Age of first sex- Global      17.3
## 2     Age of first sex- India      19.8
## 3   Age of first sex- Vietnam      19.6
## 4 Age of first sex- Indonesia      19.1
## 5  Age of first sex- Malaysia      19.0
## 6    Age of first sex- Taiwan      18.9
##      region value
## 1    global  17.3
## 2     india  19.8
## 3   vietnam  19.6
## 4 indonesia  19.1
## 5  malaysia  19.0
## 6    taiwan  18.9

Plot

## Warning in super$initialize(country.map, user.df): Your data.frame contains the
## following regions which are not mappable: global, hong kong, singapore, serbia &
## montenegro, united states
## Warning in self$bind(): The following regions were missing and are being set
## to NA: afghanistan, angola, azerbaijan, moldova, madagascar, mexico, macedonia,
## mali, myanmar, montenegro, mongolia, mozambique, mauritania, burundi, malawi,
## namibia, niger, nigeria, nicaragua, nepal, oman, pakistan, panama, peru,
## philippines, papua new guinea, united states of america, north korea, benin,
## paraguay, qatar, romania, russia, rwanda, western sahara, saudi arabia, sudan,
## burkina faso, south sudan, senegal, solomon islands, sierra leone, el salvador,
## somaliland, somalia, republic of serbia, suriname, bangladesh, slovenia,
## swaziland, syria, chad, togo, tajikistan, turkmenistan, east timor, trinidad
## and tobago, tunisia, united republic of tanzania, uganda, ukraine, uruguay,
## uzbekistan, the bahamas, venezuela, vanuatu, yemen, zambia, zimbabwe, bosnia
## and herzegovina, belarus, albania, belize, bolivia, brazil, brunei, bhutan,
## botswana, central african republic, united arab emirates, ivory coast, cameroon,
## democratic republic of the congo, republic of congo, colombia, costa rica,
## cuba, northern cyprus, cyprus, argentina, djibouti, dominican republic, algeria,
## ecuador, egypt, eritrea, armenia, estonia, ethiopia, fiji, gabon, georgia,
## ghana, antarctica, guinea, gambia, guinea bissau, equatorial guinea, guatemala,
## guyana, honduras, haiti, hungary, iran, iraq, jamaica, jordan, kazakhstan,
## kenya, kyrgyzstan, cambodia, south korea, kosovo, kuwait, laos, lebanon,
## liberia, libya, sri lanka, lesotho, lithuania, luxembourg, latvia, morocco
## Scale for 'fill' is already present. Adding another scale for 'fill', which
## will replace the existing scale.

Exercise 4: Flood in schools in Taipei

## OGR data source with driver: ESRI Shapefile 
## Source: "/Users/haolunfu/Documents/資料管理/week10/flood-in-school/flood50.shp", layer: "flood50"
## with 5103 features
## It has 5 fields
## OGR data source with driver: ESRI Shapefile 
## Source: "/Users/haolunfu/Documents/資料管理/week10/flood-in-school/tpecity_school.shp", layer: "tpecity_school"
## with 198 features
## It has 3 fields
## Integer64 fields read as strings:  STUDENTS

##     TEXTSTRING   ID STUDENTS
## 1     士林國中    1       95
## 2     士林國小    2       93
## 8     明德國中   33      113
## 9     文林國小   39      213
## 13    富安國小   48       63
## 26    士東國小  300       52
## 42    大湖國小  681       92
## 52    百齡國小  730      163
## 61    新湖國小  837       24
## 67    民生國中  849       35
## 72    中山國中  863      200
## 73    五常國中  864       91
## 74    五常國小  865       55
## 75    吉林國小  882       91
## 78    劍潭國小  903      204
## 80    蓬萊國小  913      119
## 81    雙蓮國小  915       24
## 82    日新國小  916      201
## 83    民權國中  917      186
## 84    大同國小  918       25
## 87    太平國小  924       91
## 89    大橋國小  926      161
## 91    華江國小  979       99
## 98    龍山國小 1051       87
## 100   仁愛國小 1059       56
## 101   仁愛國中 1060      133
## 106   長春國小 1085       48
## 119   永吉國中 1199      101
## 123   木柵國中 1247      118
## 124   國光劇校 1248       68
## 131   興隆國小 1276       63
## 134   建安國小 1287       43
## 138   忠孝國小 1306      152
## 149   雙園國小 1362      110
## 174   興福國中 1575       85
## 175   溪口國小 1576      168
## [1] 3722