Complete Machine Learning and Deep Learning With H2O in R
Complete Machine Learning and Deep Learning With H2O in R
Source file ⇒ CompleteMLDLWith-H2OinR.rmd
Read in Data From Different Sources
## [1] "C:/Users/HP/Desktop/CompleteMDLWithH2OinR_MinervaSingh/rfiles"
setwd("C:/Users/HP/Desktop/CompleteMDLWithH2OinR_MinervaSingh/rfiles")
#read in the CSV data UCL website:
#https://archive.ics.uci.edu/ml/datasets/Wine+Quality
winer1=read.csv("winequality-red.csv",header=T)
#header= T will read in column names as well
head(winer1)## fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality
## 1 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
## 2 7.8;0.88;0;2.6;0.098;25;67;0.9968;3.2;0.68;9.8;5
## 3 7.8;0.76;0.04;2.3;0.092;15;54;0.997;3.26;0.65;9.8;5
## 4 11.2;0.28;0.56;1.9;0.075;17;60;0.998;3.16;0.58;9.8;6
## 5 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
## 6 7.4;0.66;0;1.8;0.075;13;40;0.9978;3.51;0.56;9.4;5
## fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality
## 6.7;0.46;0.24;1.7;0.077;18;34;0.9948;3.39;0.6;10.6;6 : 4
## 7.2;0.36;0.46;2.1;0.074;24;44;0.99534;3.4;0.85;11;7 : 4
## 7.2;0.695;0.13;2;0.076;12;20;0.99546;3.29;0.54;10.1;5 : 4
## 7.5;0.51;0.02;1.7;0.084;13;31;0.99538;3.36;0.54;10.5;6: 4
## 11.5;0.18;0.51;4;0.104;4;23;0.9996;3.28;0.97;10.1;6 : 3
## 6.4;0.64;0.21;1.8;0.081;14;31;0.99689;3.59;0.66;9.8;5 : 3
## (Other) :1577
winer1=read.csv("winequality-red.csv",header=T,sep=",")
#header= T will read in column names as well
head(winer1)## fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality
## 1 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
## 2 7.8;0.88;0;2.6;0.098;25;67;0.9968;3.2;0.68;9.8;5
## 3 7.8;0.76;0.04;2.3;0.092;15;54;0.997;3.26;0.65;9.8;5
## 4 11.2;0.28;0.56;1.9;0.075;17;60;0.998;3.16;0.58;9.8;6
## 5 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
## 6 7.4;0.66;0;1.8;0.075;13;40;0.9978;3.51;0.56;9.4;5
## fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality
## 6.7;0.46;0.24;1.7;0.077;18;34;0.9948;3.39;0.6;10.6;6 : 4
## 7.2;0.36;0.46;2.1;0.074;24;44;0.99534;3.4;0.85;11;7 : 4
## 7.2;0.695;0.13;2;0.076;12;20;0.99546;3.29;0.54;10.1;5 : 4
## 7.5;0.51;0.02;1.7;0.084;13;31;0.99538;3.36;0.54;10.5;6: 4
## 11.5;0.18;0.51;4;0.104;4;23;0.9996;3.28;0.97;10.1;6 : 3
## 6.4;0.64;0.21;1.8;0.081;14;31;0.99689;3.59;0.66;9.8;5 : 3
## (Other) :1577
#specify the correct seperator
winer=read.table("winequality-red.csv",header=T,sep=";")
#header= T will read in column names as well
head(winer)## fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
## 1 7.4 0.70 0.00 1.9 0.076
## 2 7.8 0.88 0.00 2.6 0.098
## 3 7.8 0.76 0.04 2.3 0.092
## 4 11.2 0.28 0.56 1.9 0.075
## 5 7.4 0.70 0.00 1.9 0.076
## 6 7.4 0.66 0.00 1.8 0.075
## free.sulfur.dioxide total.sulfur.dioxide density pH sulphates alcohol
## 1 11 34 1 3.5 0.56 9.4
## 2 25 67 1 3.2 0.68 9.8
## 3 15 54 1 3.3 0.65 9.8
## 4 17 60 1 3.2 0.58 9.8
## 5 11 34 1 3.5 0.56 9.4
## 6 13 40 1 3.5 0.56 9.4
## quality
## 1 5
## 2 5
## 3 5
## 4 6
## 5 5
## 6 5
## fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
## Min. : 4.6 Min. :0.12 Min. :0.00 Min. : 0.9 Min. :0.01
## 1st Qu.: 7.1 1st Qu.:0.39 1st Qu.:0.09 1st Qu.: 1.9 1st Qu.:0.07
## Median : 7.9 Median :0.52 Median :0.26 Median : 2.2 Median :0.08
## Mean : 8.3 Mean :0.53 Mean :0.27 Mean : 2.5 Mean :0.09
## 3rd Qu.: 9.2 3rd Qu.:0.64 3rd Qu.:0.42 3rd Qu.: 2.6 3rd Qu.:0.09
## Max. :15.9 Max. :1.58 Max. :1.00 Max. :15.5 Max. :0.61
## free.sulfur.dioxide total.sulfur.dioxide density pH
## Min. : 1 Min. : 6 Min. :0.99 Min. :2.7
## 1st Qu.: 7 1st Qu.: 22 1st Qu.:1.00 1st Qu.:3.2
## Median :14 Median : 38 Median :1.00 Median :3.3
## Mean :16 Mean : 46 Mean :1.00 Mean :3.3
## 3rd Qu.:21 3rd Qu.: 62 3rd Qu.:1.00 3rd Qu.:3.4
## Max. :72 Max. :289 Max. :1.00 Max. :4.0
## sulphates alcohol quality
## Min. :0.33 Min. : 8.4 Min. :3.0
## 1st Qu.:0.55 1st Qu.: 9.5 1st Qu.:5.0
## Median :0.62 Median :10.2 Median :6.0
## Mean :0.66 Mean :10.4 Mean :5.6
## 3rd Qu.:0.73 3rd Qu.:11.1 3rd Qu.:6.0
## Max. :2.00 Max. :14.9 Max. :8.0
##Read in excel data
#excel
#summary(boston1)
library(readxl)
dfb <- read_excel("boston1.xls")
head(dfb)## # A tibble: 6 x 10
## MV INDUS NOX RM TAX PT LSTAT X__1 X__2 X__3
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <lgl> <chr>
## 1 24 2.31 53.8 6.58 296 15.3 4.98 NA NA Subset of Boston housin~
## 2 21.6 7.07 46.9 6.42 242 17.8 9.14 NA NA data of Harrison and Ru~
## 3 34.7 7.07 46.9 7.18 242 17.8 4.03 NA NA (1978). Each case is o~
## 4 33.4 2.18 45.8 7.00 222 18.7 2.94 NA NA Census tract in the Bos~
## 5 36.2 2.18 45.8 7.15 222 18.7 5.33 NA NA <NA>
## 6 28.7 2.18 45.8 6.43 222 18.7 5.21 NA NA <NA>
## MV INDUS NOX RM TAX
## Min. : 5 Min. : 0.5 Min. :38 Min. :3.6 Min. :187
## 1st Qu.:17 1st Qu.: 5.2 1st Qu.:45 1st Qu.:5.9 1st Qu.:279
## Median :21 Median : 9.7 Median :54 Median :6.2 Median :330
## Mean :23 Mean :11.1 Mean :55 Mean :6.3 Mean :408
## 3rd Qu.:25 3rd Qu.:18.1 3rd Qu.:62 3rd Qu.:6.6 3rd Qu.:666
## Max. :50 Max. :27.7 Max. :87 Max. :8.8 Max. :711
## PT LSTAT X__1 X__2 X__3
## Min. :12.6 Min. : 2 Mode:logical Mode:logical Length:506
## 1st Qu.:17.4 1st Qu.: 7 NA's:506 NA's:506 Class :character
## Median :19.1 Median :11 Mode :character
## Mean :18.5 Mean :13
## 3rd Qu.:20.2 3rd Qu.:17
## Max. :22.0 Max. :38
##################################################################
### Read in data from Wikipedia HTML tables
library(rvest)
#Summer olympics medal tally
url <- "https://en.wikipedia.org/wiki/2016_Summer_Olympics_medal_table"
medal_tally <- url %>% read_html() %>%
html_nodes(xpath='//*[@id="mw-content-text"]/div/table[2]') %>% html_table(fill=TRUE)
## copy xpath
## //*[@id="mw-content-text"]/div/table[2]
# //*[@id="mw-content-text"]/div/table[2]
medal_tally <- medal_tally[[1]]
head(medal_tally)## Rank NOC Gold Silver Bronze Total
## 1 1 United States (USA) 46 37 38 121
## 2 2 Great Britain (GBR) 27 23 17 67
## 3 3 China (CHN) 26 18 26 70
## 4 4 Russia (RUS) 19 17 20 56
## 5 5 Germany (GER) 17 10 15 42
## 6 6 Japan (JPN) 12 8 21 41
#WHS Sites in the UK
url2="https://en.wikipedia.org/wiki/List_of_World_Heritage_Sites_in_the_United_Kingdom_and_the_British_Overseas_Territories"
whsuk <- url2 %>% read_html() %>%
html_nodes(xpath='//*[@id="mw-content-text"]/div/table[3]') %>% html_table(fill=TRUE)
whsuk <- whsuk[[1]]
head(whsuk)## Name Image
## 1 Blaenavon Industrial Landscape NA
## 2 Blenheim Palace NA
## 3 Canterbury Cathedral, St Augustine's Abbey, and St Martin's Church NA
## 4 Castles and Town Walls of King Edward in Gwynedd NA
## 5 City of Bath NA
## 6 Cornwall and West Devon Mining Landscape NA
## Location
## 1 Blaenavon, Wales51°47'N 3°05'W<U+FEFF> / <U+FEFF>51.78°N 3.08°W<U+FEFF> / 51.78; -3.08<U+FEFF> (Blaenavon Industrial Landscape)[14]
## 2 Woodstock, Oxfordshire, England51°50'28<U+2033>N 1°21'40<U+2033>W<U+FEFF> / <U+FEFF>51.841°N 1.361°W<U+FEFF> / 51.841; -1.361<U+FEFF> (Blenheim Palace)[15]
## 3 Canterbury, Kent, England51°17'N 1°05'E<U+FEFF> / <U+FEFF>51.28°N 1.08°E<U+FEFF> / 51.28; 1.08<U+FEFF> (Canterbury Cathedral, St Augustine's Abbey, and St Martin's Church)[16]
## 4 Conwy, Isle of Anglesey and Gwynedd, Wales53°08'20<U+2033>N 4°16'34<U+2033>W<U+FEFF> / <U+FEFF>53.139°N 4.276°W<U+FEFF> / 53.139; -4.276<U+FEFF> (Castles and Town Walls of King Edward in Gwynedd)[19]
## 5 Bath, Somerset, England51°22'48<U+2033>N 2°21'36<U+2033>W<U+FEFF> / <U+FEFF>51.380°N 2.360°W<U+FEFF> / 51.380; -2.360<U+FEFF> (City of Bath)[21]
## 6 Cornwall and Devon, England50°08'N 5°23'W<U+FEFF> / <U+FEFF>50.13°N 5.38°W<U+FEFF> / 50.13; -5.38<U+FEFF> (Cornwall and West Devon Mining Landscape)[22]
## Date UNESCO data
## 1 19th century[14] 984; 2000;iii, iv[14]
## 2 1705–1722[15] 425; 1987;ii, iv[15]
## 3 11th century[16] 496; 1988;i, ii, vi[16]
## 4 13th–14th centuries[19] 374; 1986;i, iii, iv[19]
## 5 1st–19th centuries[21] 428; 1987;i, ii, iv[21]
## 6 18th and 19th centuries[22] 1,215; 2006;ii, iii, iv[22]
## Description
## 1 In the 19th century, Wales was the world's foremost producer of iron and coal. Blaenavon is an example of the landscape created by the industrial processes associated with the production of these materials. The site includes quarries, public buildings, workers' housing, and a railway.[14]
## 2 Blenheim Palace, the residence of John Churchill, 1st Duke of Marlborough, was designed by architects John Vanbrugh and Nicholas Hawksmoor. The associated park was landscaped by Capability Brown. The palace celebrated victory over the French and is significant for establishing English Romantic Architecture as a separate entity from French Classical Architecture.[15]
## 3 St Martin's Church is the oldest church in England. The church and St Augustine's Abbey were founded during the early stages of the introduction of Christianity to the Anglo-Saxons. The cathedral exhibits Romanesque and Gothic architecture, and is the seat of the Church of England.[16][17][18]
## 4 During the reign of Edward I of England (1272–1307), a series of castles was constructed in Wales with the purpose of subduing the population and establishing English colonies in Wales. The World Heritage Site covers many castles including Beaumaris, Caernarfon, Conwy, and Harlech. The castles of Edward I are considered the pinnacle of military architecture by military historians.[19][20]
## 5 Founded by the Romans as a spa, an important centre of the wool industry in the medieval period, and a spa town in the 18th century, Bath has a varied history. The city is preserved for its Roman remains and Palladian architecture.[21]
## 6 Tin and copper mining in Devon and Cornwall boomed in the 18th and 19th centuries, and at its peak the area produced two-thirds of the world's copper. The techniques and technology involved in deep mining developed in Devon and Cornwall were used around the world.[22]
#################################################################
### JSON-->Javascript Object Notation
library(rjson)
#name/url of json file
json_file <- "http://api.worldbank.org/country?per_page=10®ion=OED&lendingtype=LNX&format=json"
#json data is stored in json_data
json_data <- fromJSON(file=json_file)
#you can see that this json file has two objects in the outer most list
json_data[[1]]## $page
## [1] 1
##
## $pages
## [1] 4
##
## $per_page
## [1] "10"
##
## $total
## [1] 32
## [[1]]
## [[1]]$id
## [1] "AUS"
##
## [[1]]$iso2Code
## [1] "AU"
##
## [[1]]$name
## [1] "Australia"
##
## [[1]]$region
## [[1]]$region$id
## [1] "EAS"
##
## [[1]]$region$value
## [1] "East Asia & Pacific"
##
##
## [[1]]$adminregion
## [[1]]$adminregion$id
## [1] ""
##
## [[1]]$adminregion$value
## [1] ""
##
##
## [[1]]$incomeLevel
## [[1]]$incomeLevel$id
## [1] "HIC"
##
## [[1]]$incomeLevel$value
## [1] "High income"
##
##
## [[1]]$lendingType
## [[1]]$lendingType$id
## [1] "LNX"
##
## [[1]]$lendingType$value
## [1] "Not classified"
##
##
## [[1]]$capitalCity
## [1] "Canberra"
##
## [[1]]$longitude
## [1] "149.129"
##
## [[1]]$latitude
## [1] "-35.282"
##
##
## [[2]]
## [[2]]$id
## [1] "AUT"
##
## [[2]]$iso2Code
## [1] "AT"
##
## [[2]]$name
## [1] "Austria"
##
## [[2]]$region
## [[2]]$region$id
## [1] "ECS"
##
## [[2]]$region$value
## [1] "Europe & Central Asia"
##
##
## [[2]]$adminregion
## [[2]]$adminregion$id
## [1] ""
##
## [[2]]$adminregion$value
## [1] ""
##
##
## [[2]]$incomeLevel
## [[2]]$incomeLevel$id
## [1] "HIC"
##
## [[2]]$incomeLevel$value
## [1] "High income"
##
##
## [[2]]$lendingType
## [[2]]$lendingType$id
## [1] "LNX"
##
## [[2]]$lendingType$value
## [1] "Not classified"
##
##
## [[2]]$capitalCity
## [1] "Vienna"
##
## [[2]]$longitude
## [1] "16.3798"
##
## [[2]]$latitude
## [1] "48.2201"
##
##
## [[3]]
## [[3]]$id
## [1] "BEL"
##
## [[3]]$iso2Code
## [1] "BE"
##
## [[3]]$name
## [1] "Belgium"
##
## [[3]]$region
## [[3]]$region$id
## [1] "ECS"
##
## [[3]]$region$value
## [1] "Europe & Central Asia"
##
##
## [[3]]$adminregion
## [[3]]$adminregion$id
## [1] ""
##
## [[3]]$adminregion$value
## [1] ""
##
##
## [[3]]$incomeLevel
## [[3]]$incomeLevel$id
## [1] "HIC"
##
## [[3]]$incomeLevel$value
## [1] "High income"
##
##
## [[3]]$lendingType
## [[3]]$lendingType$id
## [1] "LNX"
##
## [[3]]$lendingType$value
## [1] "Not classified"
##
##
## [[3]]$capitalCity
## [1] "Brussels"
##
## [[3]]$longitude
## [1] "4.36761"
##
## [[3]]$latitude
## [1] "50.8371"
##
##
## [[4]]
## [[4]]$id
## [1] "CAN"
##
## [[4]]$iso2Code
## [1] "CA"
##
## [[4]]$name
## [1] "Canada"
##
## [[4]]$region
## [[4]]$region$id
## [1] "NAC"
##
## [[4]]$region$value
## [1] "North America"
##
##
## [[4]]$adminregion
## [[4]]$adminregion$id
## [1] ""
##
## [[4]]$adminregion$value
## [1] ""
##
##
## [[4]]$incomeLevel
## [[4]]$incomeLevel$id
## [1] "HIC"
##
## [[4]]$incomeLevel$value
## [1] "High income"
##
##
## [[4]]$lendingType
## [[4]]$lendingType$id
## [1] "LNX"
##
## [[4]]$lendingType$value
## [1] "Not classified"
##
##
## [[4]]$capitalCity
## [1] "Ottawa"
##
## [[4]]$longitude
## [1] "-75.6919"
##
## [[4]]$latitude
## [1] "45.4215"
##
##
## [[5]]
## [[5]]$id
## [1] "CHE"
##
## [[5]]$iso2Code
## [1] "CH"
##
## [[5]]$name
## [1] "Switzerland"
##
## [[5]]$region
## [[5]]$region$id
## [1] "ECS"
##
## [[5]]$region$value
## [1] "Europe & Central Asia"
##
##
## [[5]]$adminregion
## [[5]]$adminregion$id
## [1] ""
##
## [[5]]$adminregion$value
## [1] ""
##
##
## [[5]]$incomeLevel
## [[5]]$incomeLevel$id
## [1] "HIC"
##
## [[5]]$incomeLevel$value
## [1] "High income"
##
##
## [[5]]$lendingType
## [[5]]$lendingType$id
## [1] "LNX"
##
## [[5]]$lendingType$value
## [1] "Not classified"
##
##
## [[5]]$capitalCity
## [1] "Bern"
##
## [[5]]$longitude
## [1] "7.44821"
##
## [[5]]$latitude
## [1] "46.948"
##
##
## [[6]]
## [[6]]$id
## [1] "CZE"
##
## [[6]]$iso2Code
## [1] "CZ"
##
## [[6]]$name
## [1] "Czech Republic"
##
## [[6]]$region
## [[6]]$region$id
## [1] "ECS"
##
## [[6]]$region$value
## [1] "Europe & Central Asia"
##
##
## [[6]]$adminregion
## [[6]]$adminregion$id
## [1] ""
##
## [[6]]$adminregion$value
## [1] ""
##
##
## [[6]]$incomeLevel
## [[6]]$incomeLevel$id
## [1] "HIC"
##
## [[6]]$incomeLevel$value
## [1] "High income"
##
##
## [[6]]$lendingType
## [[6]]$lendingType$id
## [1] "LNX"
##
## [[6]]$lendingType$value
## [1] "Not classified"
##
##
## [[6]]$capitalCity
## [1] "Prague"
##
## [[6]]$longitude
## [1] "14.4205"
##
## [[6]]$latitude
## [1] "50.0878"
##
##
## [[7]]
## [[7]]$id
## [1] "DEU"
##
## [[7]]$iso2Code
## [1] "DE"
##
## [[7]]$name
## [1] "Germany"
##
## [[7]]$region
## [[7]]$region$id
## [1] "ECS"
##
## [[7]]$region$value
## [1] "Europe & Central Asia"
##
##
## [[7]]$adminregion
## [[7]]$adminregion$id
## [1] ""
##
## [[7]]$adminregion$value
## [1] ""
##
##
## [[7]]$incomeLevel
## [[7]]$incomeLevel$id
## [1] "HIC"
##
## [[7]]$incomeLevel$value
## [1] "High income"
##
##
## [[7]]$lendingType
## [[7]]$lendingType$id
## [1] "LNX"
##
## [[7]]$lendingType$value
## [1] "Not classified"
##
##
## [[7]]$capitalCity
## [1] "Berlin"
##
## [[7]]$longitude
## [1] "13.4115"
##
## [[7]]$latitude
## [1] "52.5235"
##
##
## [[8]]
## [[8]]$id
## [1] "DNK"
##
## [[8]]$iso2Code
## [1] "DK"
##
## [[8]]$name
## [1] "Denmark"
##
## [[8]]$region
## [[8]]$region$id
## [1] "ECS"
##
## [[8]]$region$value
## [1] "Europe & Central Asia"
##
##
## [[8]]$adminregion
## [[8]]$adminregion$id
## [1] ""
##
## [[8]]$adminregion$value
## [1] ""
##
##
## [[8]]$incomeLevel
## [[8]]$incomeLevel$id
## [1] "HIC"
##
## [[8]]$incomeLevel$value
## [1] "High income"
##
##
## [[8]]$lendingType
## [[8]]$lendingType$id
## [1] "LNX"
##
## [[8]]$lendingType$value
## [1] "Not classified"
##
##
## [[8]]$capitalCity
## [1] "Copenhagen"
##
## [[8]]$longitude
## [1] "12.5681"
##
## [[8]]$latitude
## [1] "55.6763"
##
##
## [[9]]
## [[9]]$id
## [1] "ESP"
##
## [[9]]$iso2Code
## [1] "ES"
##
## [[9]]$name
## [1] "Spain"
##
## [[9]]$region
## [[9]]$region$id
## [1] "ECS"
##
## [[9]]$region$value
## [1] "Europe & Central Asia"
##
##
## [[9]]$adminregion
## [[9]]$adminregion$id
## [1] ""
##
## [[9]]$adminregion$value
## [1] ""
##
##
## [[9]]$incomeLevel
## [[9]]$incomeLevel$id
## [1] "HIC"
##
## [[9]]$incomeLevel$value
## [1] "High income"
##
##
## [[9]]$lendingType
## [[9]]$lendingType$id
## [1] "LNX"
##
## [[9]]$lendingType$value
## [1] "Not classified"
##
##
## [[9]]$capitalCity
## [1] "Madrid"
##
## [[9]]$longitude
## [1] "-3.70327"
##
## [[9]]$latitude
## [1] "40.4167"
##
##
## [[10]]
## [[10]]$id
## [1] "EST"
##
## [[10]]$iso2Code
## [1] "EE"
##
## [[10]]$name
## [1] "Estonia"
##
## [[10]]$region
## [[10]]$region$id
## [1] "ECS"
##
## [[10]]$region$value
## [1] "Europe & Central Asia"
##
##
## [[10]]$adminregion
## [[10]]$adminregion$id
## [1] ""
##
## [[10]]$adminregion$value
## [1] ""
##
##
## [[10]]$incomeLevel
## [[10]]$incomeLevel$id
## [1] "HIC"
##
## [[10]]$incomeLevel$value
## [1] "High income"
##
##
## [[10]]$lendingType
## [[10]]$lendingType$id
## [1] "LNX"
##
## [[10]]$lendingType$value
## [1] "Not classified"
##
##
## [[10]]$capitalCity
## [1] "Tallinn"
##
## [[10]]$longitude
## [1] "24.7586"
##
## [[10]]$latitude
## [1] "59.4392"
#you can access any particular object from the json data as shown below
d3 <- lapply(json_data[[2]], function(x) c(x["id"], x["iso2Code"]))
d3 <- do.call(rbind, d3)
d3## id iso2Code
## [1,] "AUS" "AU"
## [2,] "AUT" "AT"
## [3,] "BEL" "BE"
## [4,] "CAN" "CA"
## [5,] "CHE" "CH"
## [6,] "CZE" "CZ"
## [7,] "DEU" "DE"
## [8,] "DNK" "DK"
## [9,] "ESP" "ES"
## [10,] "EST" "EE"
d4 <- lapply(json_data[[2]], function(x) c(x["id"], x["iso2Code"], x$region["id"], x$region["value"], x["capitalCity"]))
d4 <- do.call(rbind, d4)
d4## id iso2Code id value capitalCity
## [1,] "AUS" "AU" "EAS" "East Asia & Pacific" "Canberra"
## [2,] "AUT" "AT" "ECS" "Europe & Central Asia" "Vienna"
## [3,] "BEL" "BE" "ECS" "Europe & Central Asia" "Brussels"
## [4,] "CAN" "CA" "NAC" "North America" "Ottawa"
## [5,] "CHE" "CH" "ECS" "Europe & Central Asia" "Bern"
## [6,] "CZE" "CZ" "ECS" "Europe & Central Asia" "Prague"
## [7,] "DEU" "DE" "ECS" "Europe & Central Asia" "Berlin"
## [8,] "DNK" "DK" "ECS" "Europe & Central Asia" "Copenhagen"
## [9,] "ESP" "ES" "ECS" "Europe & Central Asia" "Madrid"
## [10,] "EST" "EE" "ECS" "Europe & Central Asia" "Tallinn"
#other example
json_file <- "skorea.json"
#json data is stored in json_data
json_data <- fromJSON(file=json_file)
#you can access your data as simply shown below
json_data[[1]]## $Description
## [1] ""
##
## $Image
## [1] "/wiki/File:MuryeongsTomb.jpg"
##
## $Criteria
## [1] "Cultural: (ii)(iii)"
##
## $Site
## [1] "Baekje Historic Areas"
##
## $`Area ha (acre)`
## [1] "135 (330)"
##
## $Location
## [1] "South Chungcheong, North Jeolla"
##
## $Year
## [1] "2015"
## $Description
## [1] ""
##
## $Image
## [1] "/wiki/File:Korea-Gwangju-Gochang_Dolmens_5350-06.JPG"
##
## $Criteria
## [1] "Cultural: (iii)"
##
## $Site
## [1] "Gochang, Hwasun and Ganghwa Dolmen Sites"
##
## $`Area ha (acre)`
## [1] ""
##
## $Location
## [1] "Incheon, North Jeolla, South Jeolla"
##
## $Year
## [1] "2000"
## $Description
## [1] ""
##
## $Image
## [1] "/wiki/File:Haeinsa_Temple_(6222053899).jpg"
##
## $Criteria
## [1] "Cultural: (iv)(vi)"
##
## $Site
## [1] "Haeinsa Temple Janggyeong Panjeon, the Depositories for the Tripitaka Koreana Woodblocks"
##
## $`Area ha (acre)`
## [1] ""
##
## $Location
## [1] "South Gyeongsang"
##
## $Year
## [1] "1995"
#or you can extract some usefull data
d <- lapply(json_data, function(x) c(x['Image'], x['Criteria'], x['Site'], x['Area ha (acre)']))
d <- do.call(rbind, d)
d## Image
## [1,] "/wiki/File:MuryeongsTomb.jpg"
## [2,] "/wiki/File:Korea-Gwangju-Gochang_Dolmens_5350-06.JPG"
## [3,] "/wiki/File:Juhamnu,_Changdeokgung_-_Seoul,_Korea.JPG"
## [4,] "/wiki/File:Korea-Gyeongju-Bunhwangsa-Lanterns-03.jpg"
## [5,] "/wiki/File:Haeinsa_Temple_(6222053899).jpg"
## [6,] "/wiki/File:Hahoe_8784.jpg"
## [7,] "/wiki/File:Hwaseong2.jpg"
## [8,] "/wiki/File:KOCIS_Halla_Mountain_in_Jeju-do_(6387785543).jpg"
## [9,] "/wiki/File:Chongmyo_repository_(1509268349).jpg"
## [10,] "/wiki/File:Khitai5.jpg"
## [11,] "/wiki/File:Sejong_tomb_1.jpg"
## [12,] "/wiki/File:Bulguk_Tempel.jpg"
## Criteria
## [1,] "Cultural: (ii)(iii)"
## [2,] "Cultural: (iii)"
## [3,] "Cultural: (ii)(iii)(iv)"
## [4,] "Cultural: (ii)(iii)"
## [5,] "Cultural: (iv)(vi)"
## [6,] "Cultural: (iii)(iv)"
## [7,] "Cultural: (ii)(iii)"
## [8,] "Natural: (vii)(viii)"
## [9,] "Cultural: (iv)"
## [10,] "Cultural: (ii)(iv)"
## [11,] "Cultural: (iii)(iv)(vi)"
## [12,] "Cultural: (i)(iv)"
## Site
## [1,] "Baekje Historic Areas"
## [2,] "Gochang, Hwasun and Ganghwa Dolmen Sites"
## [3,] "Changdeokgung Palace Complex"
## [4,] "Gyeongju Historic Areas"
## [5,] "Haeinsa Temple Janggyeong Panjeon, the Depositories for the Tripitaka Koreana Woodblocks"
## [6,] "Historic Villages of Korea: Hahoe and Yangdong"
## [7,] "Hwaseong Fortress"
## [8,] "Jeju Volcanic Island and Lava Tubes"
## [9,] "Jongmyo Shrine"
## [10,] "Namhansanseong"
## [11,] "Royal Tombs of the Joseon Dynasty"
## [12,] "Seokguram Grotto and Bulguksa Temple"
## Area ha (acre)
## [1,] "135 (330)"
## [2,] ""
## [3,] ""
## [4,] "2,880 (7,100)"
## [5,] ""
## [6,] "600 (1,500)"
## [7,] ""
## [8,] "9,475 (23,410)"
## [9,] "19 (47)"
## [10,] "409 (1,010)"
## [11,] "1,891 (4,670)"
## [12,] ""
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 1 2 3 4
## [3,] 1 2 3 4
## [4,] 1 2 3 4
## [5,] 1 2 3 4
## [6,] 1 2 3 4
## [7,] 1 2 3 4
## [8,] 1 2 3 4
## [9,] 1 2 3 4
## [10,] 1 2 3 4
## [11,] 1 2 3 4
## [12,] 1 2 3 4
## [[1]]
## [1] "/wiki/File:MuryeongsTomb.jpg"
##
## [[2]]
## [1] "/wiki/File:Korea-Gwangju-Gochang_Dolmens_5350-06.JPG"
##
## [[3]]
## [1] "/wiki/File:Juhamnu,_Changdeokgung_-_Seoul,_Korea.JPG"
##
## [[4]]
## [1] "/wiki/File:Korea-Gyeongju-Bunhwangsa-Lanterns-03.jpg"
##
## [[5]]
## [1] "/wiki/File:Haeinsa_Temple_(6222053899).jpg"
##
## [[6]]
## [1] "/wiki/File:Hahoe_8784.jpg"
##
## [[7]]
## [1] "/wiki/File:Hwaseong2.jpg"
##
## [[8]]
## [1] "/wiki/File:KOCIS_Halla_Mountain_in_Jeju-do_(6387785543).jpg"
##
## [[9]]
## [1] "/wiki/File:Chongmyo_repository_(1509268349).jpg"
##
## [[10]]
## [1] "/wiki/File:Khitai5.jpg"
##
## [[11]]
## [1] "/wiki/File:Sejong_tomb_1.jpg"
##
## [[12]]
## [1] "/wiki/File:Bulguk_Tempel.jpg"
## $Image
## [1] "/wiki/File:MuryeongsTomb.jpg"
##
## $Criteria
## [1] "Cultural: (ii)(iii)"
##
## $Site
## [1] "Baekje Historic Areas"
##
## $`Area ha (acre)`
## [1] "135 (330)"
######################################################################
library(h2o)
#Start up a 1-node H2O server on your local machine, and allow it to use all CPU cores and up to 2GB of memory:
#
h2o.init(nthreads=-1, max_mem_size="2G")## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 6 minutes 40 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.31 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
h2o.removeAll() ## clean slate - just in case the cluster was already running
glass = h2o.importFile("glassClass.csv")##
|
| | 0%
|
|======================================================================| 100%
## RI Na Mg Al Si K Ca Ba Fe Type
## 1 1.5 14 4.5 1.1 72 0.06 8.8 0 0.00 1
## 2 1.5 14 3.6 1.4 73 0.48 7.8 0 0.00 1
## 3 1.5 14 3.5 1.5 73 0.39 7.8 0 0.00 1
## 4 1.5 13 3.7 1.3 73 0.57 8.2 0 0.00 1
## 5 1.5 13 3.6 1.2 73 0.55 8.1 0 0.00 1
## 6 1.5 13 3.6 1.6 73 0.64 8.1 0 0.26 1
## RI Na Mg Al
## Min. :1.511 Min. :10.73 Min. :0.000 Min. :0.290
## 1st Qu.:1.517 1st Qu.:12.91 1st Qu.:2.115 1st Qu.:1.190
## Median :1.518 Median :13.30 Median :3.480 Median :1.360
## Mean :1.518 Mean :13.41 Mean :2.685 Mean :1.445
## 3rd Qu.:1.519 3rd Qu.:13.82 3rd Qu.:3.600 3rd Qu.:1.630
## Max. :1.534 Max. :17.38 Max. :4.490 Max. :3.500
## Si K Ca Ba
## Min. :69.81 Min. :0.0000 Min. : 5.430 Min. :0.000
## 1st Qu.:72.28 1st Qu.:0.1225 1st Qu.: 8.240 1st Qu.:0.000
## Median :72.79 Median :0.5550 Median : 8.600 Median :0.000
## Mean :72.65 Mean :0.4971 Mean : 8.957 Mean :0.175
## 3rd Qu.:73.09 3rd Qu.:0.6100 3rd Qu.: 9.172 3rd Qu.:0.000
## Max. :75.41 Max. :6.2100 Max. :16.190 Max. :3.150
## Fe Type
## Min. :0.00000 Min. :1.00
## 1st Qu.:0.00000 1st Qu.:1.00
## Median :0.00000 Median :2.00
## Mean :0.05701 Mean :2.78
## 3rd Qu.:0.10000 3rd Qu.:3.00
## Max. :0.51000 Max. :7.00
## K Counts
## 1 0.00 30
## 2 0.02 1
## 3 0.03 1
## 4 0.04 2
## 5 0.05 1
## 6 0.06 4
##
## [65 rows x 2 columns]
Data Preprocessing
Removing NAs
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
## Ozone Solar.R Wind Temp Month
## Min. : 1 Min. : 7 Min. : 1.7 Min. :56 Min. :5
## 1st Qu.: 18 1st Qu.:116 1st Qu.: 7.4 1st Qu.:72 1st Qu.:6
## Median : 32 Median :205 Median : 9.7 Median :79 Median :7
## Mean : 42 Mean :186 Mean :10.0 Mean :78 Mean :7
## 3rd Qu.: 63 3rd Qu.:259 3rd Qu.:11.5 3rd Qu.:85 3rd Qu.:8
## Max. :168 Max. :334 Max. :20.7 Max. :97 Max. :9
## NA's :37 NA's :7
## Day
## Min. : 1.0
## 1st Qu.: 8.0
## Median :16.0
## Mean :15.8
## 3rd Qu.:23.0
## Max. :31.0
##
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 7 23 299 8.6 65 5 7
## 8 19 99 13.8 59 5 8
## Ozone Solar.R Wind Temp Month
## Min. : 1 Min. : 7 Min. : 2.3 Min. :57 Min. :5.0
## 1st Qu.: 18 1st Qu.:114 1st Qu.: 7.4 1st Qu.:71 1st Qu.:6.0
## Median : 31 Median :207 Median : 9.7 Median :79 Median :7.0
## Mean : 42 Mean :185 Mean : 9.9 Mean :78 Mean :7.2
## 3rd Qu.: 62 3rd Qu.:256 3rd Qu.:11.5 3rd Qu.:84 3rd Qu.:9.0
## Max. :168 Max. :334 Max. :20.7 Max. :97 Max. :9.0
## Day
## Min. : 1.0
## 1st Qu.: 9.0
## Median :16.0
## Mean :15.9
## 3rd Qu.:22.5
## Max. :31.0
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 7 23 299 8.6 65 5 7
## 8 19 99 13.8 59 5 8
## Ozone Solar.R Wind Temp Month
## Min. : 1 Min. : 7 Min. : 2.3 Min. :57 Min. :5.0
## 1st Qu.: 18 1st Qu.:114 1st Qu.: 7.4 1st Qu.:71 1st Qu.:6.0
## Median : 31 Median :207 Median : 9.7 Median :79 Median :7.0
## Mean : 42 Mean :185 Mean : 9.9 Mean :78 Mean :7.2
## 3rd Qu.: 62 3rd Qu.:256 3rd Qu.:11.5 3rd Qu.:84 3rd Qu.:9.0
## Max. :168 Max. :334 Max. :20.7 Max. :97 Max. :9.0
## Day
## Min. : 1.0
## 1st Qu.: 9.0
## Median :16.0
## Mean :15.9
## 3rd Qu.:22.5
## Max. :31.0
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 0 0 14.3 56 5 5
## 6 28 0 14.9 66 5 6
## Ozone Solar.R Wind Temp Month
## Min. : 0 Min. : 0 Min. : 1.7 Min. :56 Min. :5
## 1st Qu.: 4 1st Qu.: 95 1st Qu.: 7.4 1st Qu.:72 1st Qu.:6
## Median : 21 Median :194 Median : 9.7 Median :79 Median :7
## Mean : 32 Mean :177 Mean :10.0 Mean :78 Mean :7
## 3rd Qu.: 46 3rd Qu.:256 3rd Qu.:11.5 3rd Qu.:85 3rd Qu.:8
## Max. :168 Max. :334 Max. :20.7 Max. :97 Max. :9
## Day
## Min. : 1.0
## 1st Qu.: 8.0
## Median :16.0
## Mean :15.8
## 3rd Qu.:23.0
## Max. :31.0
## replcae missing values with average values
meanOzone=mean(airquality$Ozone,na.rm=T)
# remove NAs while computing mean of Ozone
#with na mean value will be na
aqty.fix=ifelse(is.na(airquality$Ozone),meanOzone,airquality$Ozone)
summary(aqty.fix)## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 21 42 42 46 168
## Wind Temp Month Day Solar.R Ozone
## 111 1 1 1 1 1 1 0
## 35 1 1 1 1 1 0 1
## 5 1 1 1 1 0 1 1
## 2 1 1 1 1 0 0 2
## 0 0 0 0 7 37 44
#111 observations with no values
library(VIM) #visualize the pattern of NAs
mp <- aggr(aqty2, col=c('navyblue','yellow'),
numbers=TRUE, sortVars=TRUE,
labels=names(aqty2), cex.axis=.7,
gap=3, ylab=c("Missing data","Pattern"))##
## Variables sorted by number of missings:
## Variable Count
## Ozone 0.242
## Solar.R 0.046
## Wind 0.000
## Temp 0.000
## Month 0.000
## Day 0.000
#72.5% observations in the entire data have no missing values
#22.9% missing values in Ozone
#impute
#500 iterataions of predictive mean mapping for imputing
#5 datasets
im_aqty<- mice(aqty2, m=5, maxit = 50, method = 'pmm', seed = 500)##
## iter imp variable
## 1 1 Ozone Solar.R
## 1 2 Ozone Solar.R
## 1 3 Ozone Solar.R
## 1 4 Ozone Solar.R
## 1 5 Ozone Solar.R
## 2 1 Ozone Solar.R
## 2 2 Ozone Solar.R
## 2 3 Ozone Solar.R
## 2 4 Ozone Solar.R
## 2 5 Ozone Solar.R
## 3 1 Ozone Solar.R
## 3 2 Ozone Solar.R
## 3 3 Ozone Solar.R
## 3 4 Ozone Solar.R
## 3 5 Ozone Solar.R
## 4 1 Ozone Solar.R
## 4 2 Ozone Solar.R
## 4 3 Ozone Solar.R
## 4 4 Ozone Solar.R
## 4 5 Ozone Solar.R
## 5 1 Ozone Solar.R
## 5 2 Ozone Solar.R
## 5 3 Ozone Solar.R
## 5 4 Ozone Solar.R
## 5 5 Ozone Solar.R
## 6 1 Ozone Solar.R
## 6 2 Ozone Solar.R
## 6 3 Ozone Solar.R
## 6 4 Ozone Solar.R
## 6 5 Ozone Solar.R
## 7 1 Ozone Solar.R
## 7 2 Ozone Solar.R
## 7 3 Ozone Solar.R
## 7 4 Ozone Solar.R
## 7 5 Ozone Solar.R
## 8 1 Ozone Solar.R
## 8 2 Ozone Solar.R
## 8 3 Ozone Solar.R
## 8 4 Ozone Solar.R
## 8 5 Ozone Solar.R
## 9 1 Ozone Solar.R
## 9 2 Ozone Solar.R
## 9 3 Ozone Solar.R
## 9 4 Ozone Solar.R
## 9 5 Ozone Solar.R
## 10 1 Ozone Solar.R
## 10 2 Ozone Solar.R
## 10 3 Ozone Solar.R
## 10 4 Ozone Solar.R
## 10 5 Ozone Solar.R
## 11 1 Ozone Solar.R
## 11 2 Ozone Solar.R
## 11 3 Ozone Solar.R
## 11 4 Ozone Solar.R
## 11 5 Ozone Solar.R
## 12 1 Ozone Solar.R
## 12 2 Ozone Solar.R
## 12 3 Ozone Solar.R
## 12 4 Ozone Solar.R
## 12 5 Ozone Solar.R
## 13 1 Ozone Solar.R
## 13 2 Ozone Solar.R
## 13 3 Ozone Solar.R
## 13 4 Ozone Solar.R
## 13 5 Ozone Solar.R
## 14 1 Ozone Solar.R
## 14 2 Ozone Solar.R
## 14 3 Ozone Solar.R
## 14 4 Ozone Solar.R
## 14 5 Ozone Solar.R
## 15 1 Ozone Solar.R
## 15 2 Ozone Solar.R
## 15 3 Ozone Solar.R
## 15 4 Ozone Solar.R
## 15 5 Ozone Solar.R
## 16 1 Ozone Solar.R
## 16 2 Ozone Solar.R
## 16 3 Ozone Solar.R
## 16 4 Ozone Solar.R
## 16 5 Ozone Solar.R
## 17 1 Ozone Solar.R
## 17 2 Ozone Solar.R
## 17 3 Ozone Solar.R
## 17 4 Ozone Solar.R
## 17 5 Ozone Solar.R
## 18 1 Ozone Solar.R
## 18 2 Ozone Solar.R
## 18 3 Ozone Solar.R
## 18 4 Ozone Solar.R
## 18 5 Ozone Solar.R
## 19 1 Ozone Solar.R
## 19 2 Ozone Solar.R
## 19 3 Ozone Solar.R
## 19 4 Ozone Solar.R
## 19 5 Ozone Solar.R
## 20 1 Ozone Solar.R
## 20 2 Ozone Solar.R
## 20 3 Ozone Solar.R
## 20 4 Ozone Solar.R
## 20 5 Ozone Solar.R
## 21 1 Ozone Solar.R
## 21 2 Ozone Solar.R
## 21 3 Ozone Solar.R
## 21 4 Ozone Solar.R
## 21 5 Ozone Solar.R
## 22 1 Ozone Solar.R
## 22 2 Ozone Solar.R
## 22 3 Ozone Solar.R
## 22 4 Ozone Solar.R
## 22 5 Ozone Solar.R
## 23 1 Ozone Solar.R
## 23 2 Ozone Solar.R
## 23 3 Ozone Solar.R
## 23 4 Ozone Solar.R
## 23 5 Ozone Solar.R
## 24 1 Ozone Solar.R
## 24 2 Ozone Solar.R
## 24 3 Ozone Solar.R
## 24 4 Ozone Solar.R
## 24 5 Ozone Solar.R
## 25 1 Ozone Solar.R
## 25 2 Ozone Solar.R
## 25 3 Ozone Solar.R
## 25 4 Ozone Solar.R
## 25 5 Ozone Solar.R
## 26 1 Ozone Solar.R
## 26 2 Ozone Solar.R
## 26 3 Ozone Solar.R
## 26 4 Ozone Solar.R
## 26 5 Ozone Solar.R
## 27 1 Ozone Solar.R
## 27 2 Ozone Solar.R
## 27 3 Ozone Solar.R
## 27 4 Ozone Solar.R
## 27 5 Ozone Solar.R
## 28 1 Ozone Solar.R
## 28 2 Ozone Solar.R
## 28 3 Ozone Solar.R
## 28 4 Ozone Solar.R
## 28 5 Ozone Solar.R
## 29 1 Ozone Solar.R
## 29 2 Ozone Solar.R
## 29 3 Ozone Solar.R
## 29 4 Ozone Solar.R
## 29 5 Ozone Solar.R
## 30 1 Ozone Solar.R
## 30 2 Ozone Solar.R
## 30 3 Ozone Solar.R
## 30 4 Ozone Solar.R
## 30 5 Ozone Solar.R
## 31 1 Ozone Solar.R
## 31 2 Ozone Solar.R
## 31 3 Ozone Solar.R
## 31 4 Ozone Solar.R
## 31 5 Ozone Solar.R
## 32 1 Ozone Solar.R
## 32 2 Ozone Solar.R
## 32 3 Ozone Solar.R
## 32 4 Ozone Solar.R
## 32 5 Ozone Solar.R
## 33 1 Ozone Solar.R
## 33 2 Ozone Solar.R
## 33 3 Ozone Solar.R
## 33 4 Ozone Solar.R
## 33 5 Ozone Solar.R
## 34 1 Ozone Solar.R
## 34 2 Ozone Solar.R
## 34 3 Ozone Solar.R
## 34 4 Ozone Solar.R
## 34 5 Ozone Solar.R
## 35 1 Ozone Solar.R
## 35 2 Ozone Solar.R
## 35 3 Ozone Solar.R
## 35 4 Ozone Solar.R
## 35 5 Ozone Solar.R
## 36 1 Ozone Solar.R
## 36 2 Ozone Solar.R
## 36 3 Ozone Solar.R
## 36 4 Ozone Solar.R
## 36 5 Ozone Solar.R
## 37 1 Ozone Solar.R
## 37 2 Ozone Solar.R
## 37 3 Ozone Solar.R
## 37 4 Ozone Solar.R
## 37 5 Ozone Solar.R
## 38 1 Ozone Solar.R
## 38 2 Ozone Solar.R
## 38 3 Ozone Solar.R
## 38 4 Ozone Solar.R
## 38 5 Ozone Solar.R
## 39 1 Ozone Solar.R
## 39 2 Ozone Solar.R
## 39 3 Ozone Solar.R
## 39 4 Ozone Solar.R
## 39 5 Ozone Solar.R
## 40 1 Ozone Solar.R
## 40 2 Ozone Solar.R
## 40 3 Ozone Solar.R
## 40 4 Ozone Solar.R
## 40 5 Ozone Solar.R
## 41 1 Ozone Solar.R
## 41 2 Ozone Solar.R
## 41 3 Ozone Solar.R
## 41 4 Ozone Solar.R
## 41 5 Ozone Solar.R
## 42 1 Ozone Solar.R
## 42 2 Ozone Solar.R
## 42 3 Ozone Solar.R
## 42 4 Ozone Solar.R
## 42 5 Ozone Solar.R
## 43 1 Ozone Solar.R
## 43 2 Ozone Solar.R
## 43 3 Ozone Solar.R
## 43 4 Ozone Solar.R
## 43 5 Ozone Solar.R
## 44 1 Ozone Solar.R
## 44 2 Ozone Solar.R
## 44 3 Ozone Solar.R
## 44 4 Ozone Solar.R
## 44 5 Ozone Solar.R
## 45 1 Ozone Solar.R
## 45 2 Ozone Solar.R
## 45 3 Ozone Solar.R
## 45 4 Ozone Solar.R
## 45 5 Ozone Solar.R
## 46 1 Ozone Solar.R
## 46 2 Ozone Solar.R
## 46 3 Ozone Solar.R
## 46 4 Ozone Solar.R
## 46 5 Ozone Solar.R
## 47 1 Ozone Solar.R
## 47 2 Ozone Solar.R
## 47 3 Ozone Solar.R
## 47 4 Ozone Solar.R
## 47 5 Ozone Solar.R
## 48 1 Ozone Solar.R
## 48 2 Ozone Solar.R
## 48 3 Ozone Solar.R
## 48 4 Ozone Solar.R
## 48 5 Ozone Solar.R
## 49 1 Ozone Solar.R
## 49 2 Ozone Solar.R
## 49 3 Ozone Solar.R
## 49 4 Ozone Solar.R
## 49 5 Ozone Solar.R
## 50 1 Ozone Solar.R
## 50 2 Ozone Solar.R
## 50 3 Ozone Solar.R
## 50 4 Ozone Solar.R
## 50 5 Ozone Solar.R
## Class: mids
## Number of multiple imputations: 5
## Imputation methods:
## Ozone Solar.R Wind Temp Month Day
## "pmm" "pmm" "" "" "" ""
## PredictorMatrix:
## Ozone Solar.R Wind Temp Month Day
## Ozone 0 1 1 1 1 1
## Solar.R 1 0 1 1 1 1
## Wind 1 1 0 1 1 1
## Temp 1 1 1 0 1 1
## Month 1 1 1 1 0 1
## Day 1 1 1 1 1 0
## 1 2 3 4 5
## 5 6 32 14 18 6
## 10 12 23 27 21 41
## 25 8 19 6 14 19
## 26 32 9 28 19 28
## 27 18 22 37 18 9
## 32 59 47 44 45 52
## 33 16 16 20 11 18
## 34 1 13 13 37 13
## 35 44 71 40 40 71
## 36 35 64 89 35 39
## 37 14 13 30 30 44
## 39 115 91 135 168 82
## 42 64 77 168 66 76
## 43 61 91 135 82 91
## 45 23 29 45 44 59
## 46 45 63 29 45 32
## 52 16 71 47 52 52
## 53 20 64 35 23 49
## 54 45 37 40 52 35
## 55 20 39 23 20 7
## 56 13 40 45 36 45
## 57 36 35 52 46 44
## 58 32 16 21 23 23
## 59 16 52 31 39 28
## 60 23 14 13 44 24
## 61 40 85 48 71 48
## 65 23 16 23 28 59
## 72 59 47 29 52 35
## 75 35 89 59 59 108
## 83 32 23 23 44 35
## 84 28 47 35 7 35
## 102 115 85 80 168 91
## 103 16 39 16 32 47
## 107 12 22 41 22 23
## 115 24 22 16 21 36
## 119 64 78 82 61 78
## 150 12 32 12 21 16
## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 6 115 14.3 56 5 5
## 6 28 274 14.9 66 5 6
Using pipe operator %>%
################################################################
library(magrittr)
library(dplyr)
head(iris)## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## tells R to take the value of that which is to the left
## and pass it to the right as an argument
## Select Columns
iris %>% select(Species,Petal.Width)## Species Petal.Width
## 1 setosa 0.2
## 2 setosa 0.2
## 3 setosa 0.2
## 4 setosa 0.2
## 5 setosa 0.2
## 6 setosa 0.4
## 7 setosa 0.3
## 8 setosa 0.2
## 9 setosa 0.2
## 10 setosa 0.1
## 11 setosa 0.2
## 12 setosa 0.2
## 13 setosa 0.1
## 14 setosa 0.1
## 15 setosa 0.2
## 16 setosa 0.4
## 17 setosa 0.4
## 18 setosa 0.3
## 19 setosa 0.3
## 20 setosa 0.3
## 21 setosa 0.2
## 22 setosa 0.4
## 23 setosa 0.2
## 24 setosa 0.5
## 25 setosa 0.2
## 26 setosa 0.2
## 27 setosa 0.4
## 28 setosa 0.2
## 29 setosa 0.2
## 30 setosa 0.2
## 31 setosa 0.2
## 32 setosa 0.4
## 33 setosa 0.1
## 34 setosa 0.2
## 35 setosa 0.2
## 36 setosa 0.2
## 37 setosa 0.2
## 38 setosa 0.1
## 39 setosa 0.2
## 40 setosa 0.2
## 41 setosa 0.3
## 42 setosa 0.3
## 43 setosa 0.2
## 44 setosa 0.6
## 45 setosa 0.4
## 46 setosa 0.3
## 47 setosa 0.2
## 48 setosa 0.2
## 49 setosa 0.2
## 50 setosa 0.2
## 51 versicolor 1.4
## 52 versicolor 1.5
## 53 versicolor 1.5
## 54 versicolor 1.3
## 55 versicolor 1.5
## 56 versicolor 1.3
## 57 versicolor 1.6
## 58 versicolor 1.0
## 59 versicolor 1.3
## 60 versicolor 1.4
## 61 versicolor 1.0
## 62 versicolor 1.5
## 63 versicolor 1.0
## 64 versicolor 1.4
## 65 versicolor 1.3
## 66 versicolor 1.4
## 67 versicolor 1.5
## 68 versicolor 1.0
## 69 versicolor 1.5
## 70 versicolor 1.1
## 71 versicolor 1.8
## 72 versicolor 1.3
## 73 versicolor 1.5
## 74 versicolor 1.2
## 75 versicolor 1.3
## 76 versicolor 1.4
## 77 versicolor 1.4
## 78 versicolor 1.7
## 79 versicolor 1.5
## 80 versicolor 1.0
## 81 versicolor 1.1
## 82 versicolor 1.0
## 83 versicolor 1.2
## 84 versicolor 1.6
## 85 versicolor 1.5
## 86 versicolor 1.6
## 87 versicolor 1.5
## 88 versicolor 1.3
## 89 versicolor 1.3
## 90 versicolor 1.3
## 91 versicolor 1.2
## 92 versicolor 1.4
## 93 versicolor 1.2
## 94 versicolor 1.0
## 95 versicolor 1.3
## 96 versicolor 1.2
## 97 versicolor 1.3
## 98 versicolor 1.3
## 99 versicolor 1.1
## 100 versicolor 1.3
## 101 virginica 2.5
## 102 virginica 1.9
## 103 virginica 2.1
## 104 virginica 1.8
## 105 virginica 2.2
## 106 virginica 2.1
## 107 virginica 1.7
## 108 virginica 1.8
## 109 virginica 1.8
## 110 virginica 2.5
## 111 virginica 2.0
## 112 virginica 1.9
## 113 virginica 2.1
## 114 virginica 2.0
## 115 virginica 2.4
## 116 virginica 2.3
## 117 virginica 1.8
## 118 virginica 2.2
## 119 virginica 2.3
## 120 virginica 1.5
## 121 virginica 2.3
## 122 virginica 2.0
## 123 virginica 2.0
## 124 virginica 1.8
## 125 virginica 2.1
## 126 virginica 1.8
## 127 virginica 1.8
## 128 virginica 1.8
## 129 virginica 2.1
## 130 virginica 1.6
## 131 virginica 1.9
## 132 virginica 2.0
## 133 virginica 2.2
## 134 virginica 1.5
## 135 virginica 1.4
## 136 virginica 2.3
## 137 virginica 2.4
## 138 virginica 1.8
## 139 virginica 1.8
## 140 virginica 2.1
## 141 virginica 2.4
## 142 virginica 2.3
## 143 virginica 1.9
## 144 virginica 2.3
## 145 virginica 2.5
## 146 virginica 2.3
## 147 virginica 1.9
## 148 virginica 2.0
## 149 virginica 2.3
## 150 virginica 1.8
## Species Petal.Width
## 1 setosa 0.2
## 2 setosa 0.2
## 3 setosa 0.2
## 4 setosa 0.2
## 5 setosa 0.2
## 6 setosa 0.4
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2
## 3 4.7 3.2 1.3 0.2
## 4 4.6 3.1 1.5 0.2
## 5 5.0 3.6 1.4 0.2
## 6 5.4 3.9 1.7 0.4
## 7 4.6 3.4 1.4 0.3
## 8 5.0 3.4 1.5 0.2
## 9 4.4 2.9 1.4 0.2
## 10 4.9 3.1 1.5 0.1
## 11 5.4 3.7 1.5 0.2
## 12 4.8 3.4 1.6 0.2
## 13 4.8 3.0 1.4 0.1
## 14 4.3 3.0 1.1 0.1
## 15 5.8 4.0 1.2 0.2
## 16 5.7 4.4 1.5 0.4
## 17 5.4 3.9 1.3 0.4
## 18 5.1 3.5 1.4 0.3
## 19 5.7 3.8 1.7 0.3
## 20 5.1 3.8 1.5 0.3
## 21 5.4 3.4 1.7 0.2
## 22 5.1 3.7 1.5 0.4
## 23 4.6 3.6 1.0 0.2
## 24 5.1 3.3 1.7 0.5
## 25 4.8 3.4 1.9 0.2
## 26 5.0 3.0 1.6 0.2
## 27 5.0 3.4 1.6 0.4
## 28 5.2 3.5 1.5 0.2
## 29 5.2 3.4 1.4 0.2
## 30 4.7 3.2 1.6 0.2
## 31 4.8 3.1 1.6 0.2
## 32 5.4 3.4 1.5 0.4
## 33 5.2 4.1 1.5 0.1
## 34 5.5 4.2 1.4 0.2
## 35 4.9 3.1 1.5 0.2
## 36 5.0 3.2 1.2 0.2
## 37 5.5 3.5 1.3 0.2
## 38 4.9 3.6 1.4 0.1
## 39 4.4 3.0 1.3 0.2
## 40 5.1 3.4 1.5 0.2
## 41 5.0 3.5 1.3 0.3
## 42 4.5 2.3 1.3 0.3
## 43 4.4 3.2 1.3 0.2
## 44 5.0 3.5 1.6 0.6
## 45 5.1 3.8 1.9 0.4
## 46 4.8 3.0 1.4 0.3
## 47 5.1 3.8 1.6 0.2
## 48 4.6 3.2 1.4 0.2
## 49 5.3 3.7 1.5 0.2
## 50 5.0 3.3 1.4 0.2
## 51 7.0 3.2 4.7 1.4
## 52 6.4 3.2 4.5 1.5
## 53 6.9 3.1 4.9 1.5
## 54 5.5 2.3 4.0 1.3
## 55 6.5 2.8 4.6 1.5
## 56 5.7 2.8 4.5 1.3
## 57 6.3 3.3 4.7 1.6
## 58 4.9 2.4 3.3 1.0
## 59 6.6 2.9 4.6 1.3
## 60 5.2 2.7 3.9 1.4
## 61 5.0 2.0 3.5 1.0
## 62 5.9 3.0 4.2 1.5
## 63 6.0 2.2 4.0 1.0
## 64 6.1 2.9 4.7 1.4
## 65 5.6 2.9 3.6 1.3
## 66 6.7 3.1 4.4 1.4
## 67 5.6 3.0 4.5 1.5
## 68 5.8 2.7 4.1 1.0
## 69 6.2 2.2 4.5 1.5
## 70 5.6 2.5 3.9 1.1
## 71 5.9 3.2 4.8 1.8
## 72 6.1 2.8 4.0 1.3
## 73 6.3 2.5 4.9 1.5
## 74 6.1 2.8 4.7 1.2
## 75 6.4 2.9 4.3 1.3
## 76 6.6 3.0 4.4 1.4
## 77 6.8 2.8 4.8 1.4
## 78 6.7 3.0 5.0 1.7
## 79 6.0 2.9 4.5 1.5
## 80 5.7 2.6 3.5 1.0
## 81 5.5 2.4 3.8 1.1
## 82 5.5 2.4 3.7 1.0
## 83 5.8 2.7 3.9 1.2
## 84 6.0 2.7 5.1 1.6
## 85 5.4 3.0 4.5 1.5
## 86 6.0 3.4 4.5 1.6
## 87 6.7 3.1 4.7 1.5
## 88 6.3 2.3 4.4 1.3
## 89 5.6 3.0 4.1 1.3
## 90 5.5 2.5 4.0 1.3
## 91 5.5 2.6 4.4 1.2
## 92 6.1 3.0 4.6 1.4
## 93 5.8 2.6 4.0 1.2
## 94 5.0 2.3 3.3 1.0
## 95 5.6 2.7 4.2 1.3
## 96 5.7 3.0 4.2 1.2
## 97 5.7 2.9 4.2 1.3
## 98 6.2 2.9 4.3 1.3
## 99 5.1 2.5 3.0 1.1
## 100 5.7 2.8 4.1 1.3
## 101 6.3 3.3 6.0 2.5
## 102 5.8 2.7 5.1 1.9
## 103 7.1 3.0 5.9 2.1
## 104 6.3 2.9 5.6 1.8
## 105 6.5 3.0 5.8 2.2
## 106 7.6 3.0 6.6 2.1
## 107 4.9 2.5 4.5 1.7
## 108 7.3 2.9 6.3 1.8
## 109 6.7 2.5 5.8 1.8
## 110 7.2 3.6 6.1 2.5
## 111 6.5 3.2 5.1 2.0
## 112 6.4 2.7 5.3 1.9
## 113 6.8 3.0 5.5 2.1
## 114 5.7 2.5 5.0 2.0
## 115 5.8 2.8 5.1 2.4
## 116 6.4 3.2 5.3 2.3
## 117 6.5 3.0 5.5 1.8
## 118 7.7 3.8 6.7 2.2
## 119 7.7 2.6 6.9 2.3
## 120 6.0 2.2 5.0 1.5
## 121 6.9 3.2 5.7 2.3
## 122 5.6 2.8 4.9 2.0
## 123 7.7 2.8 6.7 2.0
## 124 6.3 2.7 4.9 1.8
## 125 6.7 3.3 5.7 2.1
## 126 7.2 3.2 6.0 1.8
## 127 6.2 2.8 4.8 1.8
## 128 6.1 3.0 4.9 1.8
## 129 6.4 2.8 5.6 2.1
## 130 7.2 3.0 5.8 1.6
## 131 7.4 2.8 6.1 1.9
## 132 7.9 3.8 6.4 2.0
## 133 6.4 2.8 5.6 2.2
## 134 6.3 2.8 5.1 1.5
## 135 6.1 2.6 5.6 1.4
## 136 7.7 3.0 6.1 2.3
## 137 6.3 3.4 5.6 2.4
## 138 6.4 3.1 5.5 1.8
## 139 6.0 3.0 4.8 1.8
## 140 6.9 3.1 5.4 2.1
## 141 6.7 3.1 5.6 2.4
## 142 6.9 3.1 5.1 2.3
## 143 5.8 2.7 5.1 1.9
## 144 6.8 3.2 5.9 2.3
## 145 6.7 3.3 5.7 2.5
## 146 6.7 3.0 5.2 2.3
## 147 6.3 2.5 5.0 1.9
## 148 6.5 3.0 5.2 2.0
## 149 6.2 3.4 5.4 2.3
## 150 5.9 3.0 5.1 1.8
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2
## 3 4.7 3.2 1.3 0.2
## 4 4.6 3.1 1.5 0.2
## 5 5.0 3.6 1.4 0.2
## 6 5.4 3.9 1.7 0.4
## Sepal.Length Sepal.Width Petal.Length
## 1 5.1 3.5 1.4
## 2 4.9 3.0 1.4
## 3 4.7 3.2 1.3
## 4 4.6 3.1 1.5
## 5 5.0 3.6 1.4
## 6 5.4 3.9 1.7
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.1 3.5 1.4 0.2
## 2 4.9 3.0 1.4 0.2
## 3 4.7 3.2 1.3 0.2
## 4 4.6 3.1 1.5 0.2
## 5 5.0 3.6 1.4 0.2
## 6 5.4 3.9 1.7 0.4
## Petal.Width Species
## 1 0.2 setosa
## 2 0.2 setosa
## 3 0.2 setosa
## 4 0.2 setosa
## 5 0.2 setosa
## 6 0.4 setosa
## Sepal.Length Sepal.Width Species
## 1 5.1 3.5 setosa
## 2 4.9 3.0 setosa
## 3 4.7 3.2 setosa
## 4 4.6 3.1 setosa
## 5 5.0 3.6 setosa
## 6 5.4 3.9 setosa
## Species
## 1 setosa
## 2 setosa
## 3 setosa
## 4 setosa
## 5 setosa
## 6 setosa
## 7 setosa
## 8 setosa
## 9 setosa
## 10 setosa
## 11 setosa
## 12 setosa
## 13 setosa
## 14 setosa
## 15 setosa
## 16 setosa
## 17 setosa
## 18 setosa
## 19 setosa
## 20 setosa
## 21 setosa
## 22 setosa
## 23 setosa
## 24 setosa
## 25 setosa
## 26 setosa
## 27 setosa
## 28 setosa
## 29 setosa
## 30 setosa
## 31 setosa
## 32 setosa
## 33 setosa
## 34 setosa
## 35 setosa
## 36 setosa
## 37 setosa
## 38 setosa
## 39 setosa
## 40 setosa
## 41 setosa
## 42 setosa
## 43 setosa
## 44 setosa
## 45 setosa
## 46 setosa
## 47 setosa
## 48 setosa
## 49 setosa
## 50 setosa
## 51 versicolor
## 52 versicolor
## 53 versicolor
## 54 versicolor
## 55 versicolor
## 56 versicolor
## 57 versicolor
## 58 versicolor
## 59 versicolor
## 60 versicolor
## 61 versicolor
## 62 versicolor
## 63 versicolor
## 64 versicolor
## 65 versicolor
## 66 versicolor
## 67 versicolor
## 68 versicolor
## 69 versicolor
## 70 versicolor
## 71 versicolor
## 72 versicolor
## 73 versicolor
## 74 versicolor
## 75 versicolor
## 76 versicolor
## 77 versicolor
## 78 versicolor
## 79 versicolor
## 80 versicolor
## 81 versicolor
## 82 versicolor
## 83 versicolor
## 84 versicolor
## 85 versicolor
## 86 versicolor
## 87 versicolor
## 88 versicolor
## 89 versicolor
## 90 versicolor
## 91 versicolor
## 92 versicolor
## 93 versicolor
## 94 versicolor
## 95 versicolor
## 96 versicolor
## 97 versicolor
## 98 versicolor
## 99 versicolor
## 100 versicolor
## 101 virginica
## 102 virginica
## 103 virginica
## 104 virginica
## 105 virginica
## 106 virginica
## 107 virginica
## 108 virginica
## 109 virginica
## 110 virginica
## 111 virginica
## 112 virginica
## 113 virginica
## 114 virginica
## 115 virginica
## 116 virginica
## 117 virginica
## 118 virginica
## 119 virginica
## 120 virginica
## 121 virginica
## 122 virginica
## 123 virginica
## 124 virginica
## 125 virginica
## 126 virginica
## 127 virginica
## 128 virginica
## 129 virginica
## 130 virginica
## 131 virginica
## 132 virginica
## 133 virginica
## 134 virginica
## 135 virginica
## 136 virginica
## 137 virginica
## 138 virginica
## 139 virginica
## 140 virginica
## 141 virginica
## 142 virginica
## 143 virginica
## 144 virginica
## 145 virginica
## 146 virginica
## 147 virginica
## 148 virginica
## 149 virginica
## 150 virginica
## Sepal.Width Petal.Width
## 1 3.5 0.2
## 2 3.0 0.2
## 3 3.2 0.2
## 4 3.1 0.2
## 5 3.6 0.2
## 6 3.9 0.4
## Sepal.Length Petal.Length
## 1 5.1 1.4
## 2 4.9 1.4
## 3 4.7 1.3
## 4 4.6 1.5
## 5 5.0 1.4
## 6 5.4 1.7
Using tidyverse library
##############################################################
library(tidyverse)
##tidyverse is a coherent system of packages for
##data manipulation, exploration and visualization that share a common design philosophy.
### underpinned by tibbles
#vignette("tibble")
class(iris)## [1] "data.frame"
## # A tibble: 6 x 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <fct>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## # A tibble: 6 x 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ... with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
Basic EDA
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
##
## setosa versicolor virginica
## 50 50 50
## Improved data viz
library(ggplot2)
# relation bw Sepal length and width of 3 different species
qplot(Sepal.Length, Petal.Length, data = iris, color = Species)# We see that Iris setosa flowers have the narrowest petals.
qplot(Sepal.Length, Petal.Length, data = iris, color = Species, size = Petal.Width)##Add labels to the plot
qplot(Sepal.Length, Petal.Length, data = iris, color = Species,
xlab = "Sepal Length", ylab = "Petal Length",
main = "Sepal vs. Petal Length in Iris data")# Plot the number of movies each director has.
qplot(Species, data = iris, geom = "bar", ylab = "Samples/species")Unsupervised Classification with H2o
Implement k-Means Classification using H2o
#############
library(caret)
#library(mxnet)
# loading data
df=read.csv("covtype.csv") #predict if the tumor is
#malignant (M) or benign (B)
head(df)## Elevation Aspect Slope Horizontal_Distance_To_Hydrology
## 1 2596 51 3 258
## 2 2590 56 2 212
## 3 2804 139 9 268
## 4 2785 155 18 242
## 5 2595 45 2 153
## 6 2579 132 6 300
## Vertical_Distance_To_Hydrology Horizontal_Distance_To_Roadways Hillshade_9am
## 1 0 510 221
## 2 -6 390 220
## 3 65 3180 234
## 4 118 3090 238
## 5 -1 391 220
## 6 -15 67 230
## Hillshade_Noon Hillshade_3pm Horizontal_Distance_To_Fire_Points
## 1 232 148 6279
## 2 235 151 6225
## 3 238 135 6121
## 4 238 122 6211
## 5 234 150 6172
## 6 237 140 6031
## Wilderness_Area1 Wilderness_Area2 Wilderness_Area3 Wilderness_Area4
## 1 1 0 0 0
## 2 1 0 0 0
## 3 1 0 0 0
## 4 1 0 0 0
## 5 1 0 0 0
## 6 1 0 0 0
## Soil_Type1 Soil_Type2 Soil_Type3 Soil_Type4 Soil_Type5 Soil_Type6 Soil_Type7
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0
## Soil_Type8 Soil_Type9 Soil_Type10 Soil_Type11 Soil_Type12 Soil_Type13
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 1 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type14 Soil_Type15 Soil_Type16 Soil_Type17 Soil_Type18 Soil_Type19
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type20 Soil_Type21 Soil_Type22 Soil_Type23 Soil_Type24 Soil_Type25
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type26 Soil_Type27 Soil_Type28 Soil_Type29 Soil_Type30 Soil_Type31
## 1 0 0 0 1 0 0
## 2 0 0 0 1 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 1 0
## 5 0 0 0 1 0 0
## 6 0 0 0 1 0 0
## Soil_Type32 Soil_Type33 Soil_Type34 Soil_Type35 Soil_Type36 Soil_Type37
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type38 Soil_Type39 Soil_Type40 Cover_Type
## 1 0 0 0 5
## 2 0 0 0 5
## 3 0 0 0 2
## 4 0 0 0 2
## 5 0 0 0 5
## 6 0 0 0 2
## [1] 55
## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 7 minutes 17 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.38 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
## Elevation Aspect Slope Horizontal_Distance_To_Hydrology
## 1 2596 51 3 258
## 2 2590 56 2 212
## 3 2804 139 9 268
## 4 2785 155 18 242
## 5 2595 45 2 153
## 6 2579 132 6 300
## Vertical_Distance_To_Hydrology Horizontal_Distance_To_Roadways Hillshade_9am
## 1 0 510 221
## 2 -6 390 220
## 3 65 3180 234
## 4 118 3090 238
## 5 -1 391 220
## 6 -15 67 230
## Hillshade_Noon Hillshade_3pm Horizontal_Distance_To_Fire_Points
## 1 232 148 6279
## 2 235 151 6225
## 3 238 135 6121
## 4 238 122 6211
## 5 234 150 6172
## 6 237 140 6031
## Wilderness_Area1 Wilderness_Area2 Wilderness_Area3 Wilderness_Area4
## 1 1 0 0 0
## 2 1 0 0 0
## 3 1 0 0 0
## 4 1 0 0 0
## 5 1 0 0 0
## 6 1 0 0 0
## Soil_Type1 Soil_Type2 Soil_Type3 Soil_Type4 Soil_Type5 Soil_Type6 Soil_Type7
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0
## Soil_Type8 Soil_Type9 Soil_Type10 Soil_Type11 Soil_Type12 Soil_Type13
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 1 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type14 Soil_Type15 Soil_Type16 Soil_Type17 Soil_Type18 Soil_Type19
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type20 Soil_Type21 Soil_Type22 Soil_Type23 Soil_Type24 Soil_Type25
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type26 Soil_Type27 Soil_Type28 Soil_Type29 Soil_Type30 Soil_Type31
## 1 0 0 0 1 0 0
## 2 0 0 0 1 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 1 0
## 5 0 0 0 1 0 0
## 6 0 0 0 1 0 0
## Soil_Type32 Soil_Type33 Soil_Type34 Soil_Type35 Soil_Type36 Soil_Type37
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type38 Soil_Type39 Soil_Type40 Cover_Type
## 1 0 0 0 5
## 2 0 0 0 5
## 3 0 0 0 2
## 4 0 0 0 2
## 5 0 0 0 5
## 6 0 0 0 2
## Class 'H2OFrame' <environment: 0x000000003d89b4f8>
## - attr(*, "op")= chr "Parse"
## - attr(*, "id")= chr "d.hex"
## - attr(*, "eval")= logi FALSE
## - attr(*, "nrow")= int 581012
## - attr(*, "ncol")= int 55
## - attr(*, "types")=List of 55
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## - attr(*, "data")='data.frame': 10 obs. of 55 variables:
## ..$ Elevation : num 2596 2590 2804 2785 2595 ...
## ..$ Aspect : num 51 56 139 155 45 132 45 49 45 59
## ..$ Slope : num 3 2 9 18 2 6 7 4 9 10
## ..$ Horizontal_Distance_To_Hydrology : num 258 212 268 242 153 300 270 234 240 247
## ..$ Vertical_Distance_To_Hydrology : num 0 -6 65 118 -1 -15 5 7 56 11
## ..$ Horizontal_Distance_To_Roadways : num 510 390 3180 3090 391 67 633 573 666 636
## ..$ Hillshade_9am : num 221 220 234 238 220 230 222 222 223 228
## ..$ Hillshade_Noon : num 232 235 238 238 234 237 225 230 221 219
## ..$ Hillshade_3pm : num 148 151 135 122 150 140 138 144 133 124
## ..$ Horizontal_Distance_To_Fire_Points: num 6279 6225 6121 6211 6172 ...
## ..$ Wilderness_Area1 : num 1 1 1 1 1 1 1 1 1 1
## ..$ Wilderness_Area2 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Wilderness_Area3 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Wilderness_Area4 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type1 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type2 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type3 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type4 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type5 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type6 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type7 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type8 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type9 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type10 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type11 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type12 : num 0 0 1 0 0 0 0 0 0 0
## ..$ Soil_Type13 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type14 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type15 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type16 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type17 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type18 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type19 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type20 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type21 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type22 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type23 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type24 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type25 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type26 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type27 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type28 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type29 : num 1 1 0 0 1 1 1 1 1 1
## ..$ Soil_Type30 : num 0 0 0 1 0 0 0 0 0 0
## ..$ Soil_Type31 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type32 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type33 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type34 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type35 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type36 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type37 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type38 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type39 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Soil_Type40 : num 0 0 0 0 0 0 0 0 0 0
## ..$ Cover_Type : num 5 5 2 2 5 2 5 5 5 5
##
|
| | 0%
|
|======= | 10%
|
|============== | 20%
|
|======================================================================| 100%
par(mfrow = c(1,2))
d.ctrs = as.data.frame(d.km@model$centers)
plot(d.ctrs[,1:2])
plot(d.ctrs[,13:14])
title("K-Means Centers", outer = TRUE, line = -2.0)Implement PCA With H2O
library(caret)
#library(mxnet)
# loading data
df=read.csv("Seabmass_typ.csv") #predict if the tumor is
#malignant (M) or benign (B)
head(df)## Country AGB bio01 bio02 bio03 bio04 bio05 bio06 bio07 bio08 bio09 bio10 bio11
## 1 Vietnam 127 27 6.6 79 64 31 23 8.0 27 27 28 26
## 2 Vietnam 103 27 5.1 64 90 31 23 8.0 27 26 28 26
## 3 Vietnam 101 27 5.0 64 83 31 24 7.9 28 27 29 26
## 4 Vietnam 50 27 5.0 64 83 31 24 7.9 28 27 29 26
## 5 Vietnam 236 27 5.2 64 96 31 23 8.2 27 26 28 26
## 6 Vietnam 119 27 6.8 79 63 31 23 8.1 27 27 28 26
## bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 CanopyHt_1 cwd1km DEM_1km
## 1 2497 357 30 67 1044 156 565 591 3.3 61 3.4
## 2 1460 238 1 85 663 8 449 31 4.3 62 2.2
## 3 2290 345 7 70 1003 54 635 122 0.0 36 2.0
## 4 2290 345 7 70 1003 54 635 122 0.0 36 2.0
## 5 1421 237 1 84 645 10 434 31 8.5 60 4.0
## 6 2517 358 31 68 1045 159 563 567 0.0 59 3.9
## Slope1km soil1 soil2 soil4 SoilMois_1 Class
## 1 0.00048 1 1 1 132 Delta
## 2 0.00035 1 1 1 127 Delta
## 3 0.00086 1 1 1 90 Delta
## 4 0.00113 1 1 1 90 Delta
## 5 0.00023 1 1 1 132 Delta
## 6 0.00039 1 1 1 143 Delta
## [1] 30
## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 7 minutes 55 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.37 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
## Country AGB bio01 bio02 bio03 bio04 bio05 bio06 bio07 bio08 bio09 bio10 bio11
## 1 Vietnam 127 27 6.6 79 64 31 23 8.0 27 27 28 26
## 2 Vietnam 103 27 5.1 64 90 31 23 8.0 27 26 28 26
## 3 Vietnam 101 27 5.0 64 83 31 24 7.9 28 27 29 26
## 4 Vietnam 50 27 5.0 64 83 31 24 7.9 28 27 29 26
## 5 Vietnam 236 27 5.2 64 96 31 23 8.2 27 26 28 26
## 6 Vietnam 119 27 6.8 79 63 31 23 8.1 27 27 28 26
## bio12 bio13 bio14 bio15 bio16 bio17 bio18 bio19 CanopyHt_1 cwd1km DEM_1km
## 1 2497 357 30 67 1044 156 565 591 3.3 61 3.4
## 2 1460 238 1 85 663 8 449 31 4.3 62 2.2
## 3 2290 345 7 70 1003 54 635 122 0.0 36 2.0
## 4 2290 345 7 70 1003 54 635 122 0.0 36 2.0
## 5 1421 237 1 84 645 10 434 31 8.5 60 4.0
## 6 2517 358 31 68 1045 159 563 567 0.0 59 3.9
## Slope1km soil1 soil2 soil4 SoilMois_1 Class
## 1 0.00048 1 1 1 132 Delta
## 2 0.00035 1 1 1 127 Delta
## 3 0.00086 1 1 1 90 Delta
## 4 0.00113 1 1 1 90 Delta
## 5 0.00023 1 1 1 132 Delta
## 6 0.00039 1 1 1 143 Delta
## Class 'H2OFrame' <environment: 0x000000003daedb00>
## - attr(*, "op")= chr "Parse"
## - attr(*, "id")= chr "d.hex"
## - attr(*, "eval")= logi FALSE
## - attr(*, "nrow")= int 120
## - attr(*, "ncol")= int 30
## - attr(*, "types")=List of 30
## ..$ : chr "enum"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "real"
## ..$ : chr "enum"
## - attr(*, "data")='data.frame': 10 obs. of 30 variables:
## ..$ Country : Factor w/ 5 levels "Burma","Indonesia",..: 5 5 5 5 5 5 5 5 5 5
## ..$ AGB : num 127.3 103.1 101 50.1 236.1 ...
## ..$ bio01 : num 27.2 27 27.5 27.5 27.1 ...
## ..$ bio02 : num 6.65 5.11 5.03 5.03 5.24 ...
## ..$ bio03 : num 79.2 63.9 63.7 63.7 63.9 ...
## ..$ bio04 : num 64 89.8 83.1 83.1 95.9 ...
## ..$ bio05 : num 31.3 31 31.4 31.4 31.2 ...
## ..$ bio06 : num 23 23 23.5 23.5 23 ...
## ..$ bio07 : num 7.98 8 7.9 7.9 8.2 ...
## ..$ bio08 : num 27.1 27.2 27.6 27.6 27.2 ...
## ..$ bio09 : num 26.8 26.3 26.8 26.8 26.3 ...
## ..$ bio10 : num 28.1 28.1 28.5 28.5 28.3 ...
## ..$ bio11 : num 26.4 25.8 26.4 26.4 25.8 ...
## ..$ bio12 : num 2497 1460 2290 2290 1421 ...
## ..$ bio13 : num 357 238 345 345 237 ...
## ..$ bio14 : num 30.4 1 7 7 1 ...
## ..$ bio15 : num 67.1 84.8 69.7 69.7 83.9 ...
## ..$ bio16 : num 1044 663 1003 1003 645 ...
## ..$ bio17 : num 156 8 54 54 10 ...
## ..$ bio18 : num 565 449 635 635 434 ...
## ..$ bio19 : num 591 31 122 122 31 ...
## ..$ CanopyHt_1: num 3.32 4.34 0 0 8.45 ...
## ..$ cwd1km : num 61.2 62.4 36 36 60 ...
## ..$ DEM_1km : num 3.4 2.2 2 2 4 ...
## ..$ Slope1km : num 0.000478 0.000351 0.000864 0.001125 0.000231 ...
## ..$ soil1 : num 1 1 1 1 1 1 1 1 1 1
## ..$ soil2 : num 1 1 1 1 1 1 1 1 1 1
## ..$ soil4 : num 1 1 1 1 1 1 1 1 1 1
## ..$ SoilMois_1: num 132.4 127.2 90.2 90.2 132 ...
## ..$ Class : Factor w/ 4 levels "","Delta","Estuary",..: 2 2 2 2 2 2 2 2 2 2
##
|
| | 0%
|
|======================================================================| 100%
## Model Details:
## ==============
##
## H2ODimReductionModel: pca
## Model ID: PCA_model_R_1590343748665_1605
## Importance of components:
## pc1 pc2 pc3 pc4 pc5
## Standard deviation 4269.490516 609.799088 237.352230 86.149300 62.943873
## Proportion of Variance 0.976294 0.019916 0.003017 0.000397 0.000212
## Cumulative Proportion 0.976294 0.996210 0.999227 0.999625 0.999837
## pc6 pc7 pc8 pc9 pc10
## Standard deviation 42.976617 24.090042 18.304677 9.715752 8.551729
## Proportion of Variance 0.000099 0.000031 0.000018 0.000005 0.000004
## Cumulative Proportion 0.999936 0.999967 0.999985 0.999990 0.999994
##
##
## H2ODimReductionMetrics: pca
##
## No model metrics available for PCA
##
|
| | 0%
|
|======================================================================| 100%
## Model Details:
## ==============
##
## H2ODimReductionModel: pca
## Model ID: PCA_model_R_1590343748665_1606
## Importance of components:
## pc1 pc2 pc3 pc4 pc5 pc6
## Standard deviation 1.175571 0.494469 0.410985 0.276184 0.253576 0.218807
## Proportion of Variance 0.649576 0.114924 0.079393 0.035853 0.030224 0.022504
## Cumulative Proportion 0.649576 0.764500 0.843893 0.879746 0.909970 0.932474
## pc7 pc8 pc9 pc10
## Standard deviation 0.184299 0.162108 0.140943 0.136902
## Proportion of Variance 0.015965 0.012352 0.009337 0.008809
## Cumulative Proportion 0.948439 0.960791 0.970128 0.978938
##
##
## H2ODimReductionMetrics: pca
##
## No model metrics available for PCA
######Generalized Low Rank Decomposition
model=h2o.glrm(training_frame = d.hex, k = 5, loss = "Quadratic", regularization_x = "L1",
gamma_x = 0.5, gamma_y = 0, max_iterations = 1000)##
|
| | 0%
|
|= | 1%
|
|======================================================================| 100%
## Model Details:
## ==============
##
## H2ODimReductionModel: glrm
## Model ID: GLRM_model_R_1590343748665_1607
## Model Summary:
## number_of_iterations final_step_size final_objective_value
## 1 8 0.00009 318441551.15294
##
##
## H2ODimReductionMetrics: glrm
## ** Reported on training data. **
##
## Sum of Squared Error (Numeric): 318440336
## Misclassification Error (Categorical): 118
## Number of Numeric Entries: 3360
## Number of Categorical Entries: 240
# Decompose training frame into XY
X <- h2o.getFrame(model@model$representation_name)
Y <- model@model$archetypes
library(plotly)
# Visualize first two archetypes of Y
archetypes_y <- as.data.frame(t(Y))
archetypes_y$attribute <- rownames(archetypes_y)
m <- archetypes_y[archetypes_y$attribute %in% c("bio1", "bio2", "soil1", "soil4", "price", "Class", "bio15"), ]
a <- list(
x = m$Arch1,
y = m$Arch2,
text = m$attribute,
xref = "x",
yref = "y"
)
p<-plot_ly(data = archetypes_y, x = ~Arch1, y = ~Arch2, mode = "markers", text = ~attribute, type = "scatter") %>% layout(annotations = a)
p### Variables close to each other are similar
# Visualize first two archetypes of X
archetypes_x <- as.data.frame(X)
archetypes_x$id <- as.character(as.matrix(df$Country))
set.seed(1234)
sample_indices <- sample(c(1:nrow(archetypes_x)), 100)
archetypes_x <- archetypes_x[sample_indices, ]
# Plot
p<-plot_ly(data = archetypes_x, x = ~Arch1, y = ~Arch2, mode = "markers",
text = ~paste0("Country: ", id),type = "scatter")
pSupervised Classification with H2O
Generalized Linear Models with H2O
## REPAY LOAN MORTDUE VALUE REASON JOB YOJ DEROG DELINQ CLAGE NINQ CLNO
## 1 BAD 1100 25860 39025 HomeImp Other 10.5 0.00 0.00 94 1.0 9
## 2 BAD 1300 70053 68400 HomeImp Other 7.0 0.00 2.00 122 0.0 14
## 3 BAD 1500 13500 16700 HomeImp Other 4.0 0.00 0.00 149 1.0 10
## 4 BAD 1500 73761 101776 DebtCon Other 8.9 0.25 0.45 180 1.2 21
## 5 GOOD 1700 97800 112000 HomeImp Office 3.0 0.00 0.00 93 0.0 14
## 6 BAD 1700 30548 40320 HomeImp Other 9.0 0.00 0.00 101 1.0 8
## DEBTINC
## 1 34
## 2 34
## 3 34
## 4 34
## 5 34
## 6 37
## REPAY LOAN MORTDUE VALUE REASON
## BAD :1189 Min. : 1100 Min. : 2063 Min. : 8000 DebtCon:4111
## GOOD:4771 1st Qu.:11100 1st Qu.: 48139 1st Qu.: 66490 HomeImp:1849
## Median :16300 Median : 69529 Median : 90000
## Mean :18608 Mean : 73761 Mean :101776
## 3rd Qu.:23300 3rd Qu.: 88200 3rd Qu.:119005
## Max. :89900 Max. :399550 Max. :855909
## JOB YOJ DEROG DELINQ CLAGE
## Mgr : 808 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0
## Office : 987 1st Qu.: 3 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 117
## Other :2504 Median : 8 Median : 0.0 Median : 0.0 Median : 178
## ProfExe:1343 Mean : 9 Mean : 0.3 Mean : 0.4 Mean : 180
## Sales : 115 3rd Qu.:12 3rd Qu.: 0.0 3rd Qu.: 0.4 3rd Qu.: 227
## Self : 203 Max. :41 Max. :10.0 Max. :15.0 Max. :1168
## NINQ CLNO DEBTINC
## Min. : 0.0 Min. : 0 Min. : 1
## 1st Qu.: 0.0 1st Qu.:15 1st Qu.: 31
## Median : 1.0 Median :21 Median : 34
## Mean : 1.2 Mean :21 Mean : 34
## 3rd Qu.: 2.0 3rd Qu.:26 3rd Qu.: 38
## Max. :17.0 Max. :71 Max. :203
library(caret)
trainIndex <- createDataPartition(df$REPAY, p = .75,
list = FALSE,
times = 1)
dfTrain <- df[ trainIndex,] #75% data training
dfTest <- df[-trainIndex,] #25% testing
Yte <- df[-trainIndex,1] #test Y
library(h2o)
h2o.init(nthreads = 20, max_mem_size = "16g")## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 8 minutes 738 milliseconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.38 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
##
|
| | 0%
|
|======================================================================| 100%
y <- "REPAY" #name of the response variable column
X <- setdiff(names(train), y) # names of the predictors
# Train the GLM model
train.glm <- h2o.glm(x = X, # Vector of predictor variable names
y = y, # Name of response/dependent variable
training_frame = train, # Training data
seed = 1234567, # Seed for random numbers
family = "binomial", # Outcome variable
lambda_search = TRUE, # Optimum regularisation lambda
alpha = 0.5, # Elastic net regularisation
nfolds = 5 # N-fold cross validation
)##
|
| | 0%
|
|==================================== | 51%
|
|======================================================================| 100%
## [1] 0.79
## [1] 0.79
# Predict on test data
library(tidyverse)
pred_class = h2o.predict(train.glm, test) %>% as.data.frame() %>% pull(predict)##
|
| | 0%
|
|======================================================================| 100%
## Confusion Matrix and Statistics
##
## Reference
## Prediction BAD GOOD
## BAD 89 24
## GOOD 208 1168
##
## Accuracy : 0.844
## 95% CI : (0.825, 0.862)
## No Information Rate : 0.801
## P-Value [Acc > NIR] : 0.00000842
##
## Kappa : 0.364
##
## Mcnemar's Test P-Value : < 0.0000000000000002
##
## Sensitivity : 0.2997
## Specificity : 0.9799
## Pos Pred Value : 0.7876
## Neg Pred Value : 0.8488
## Prevalence : 0.1995
## Detection Rate : 0.0598
## Detection Prevalence : 0.0759
## Balanced Accuracy : 0.6398
##
## 'Positive' Class : BAD
##
Implement Random Forest For Binary Classification Problem with H2O
## REPAY LOAN MORTDUE VALUE REASON JOB YOJ DEROG DELINQ CLAGE NINQ CLNO
## 1 BAD 1100 25860 39025 HomeImp Other 10.5 0.00 0.00 94 1.0 9
## 2 BAD 1300 70053 68400 HomeImp Other 7.0 0.00 2.00 122 0.0 14
## 3 BAD 1500 13500 16700 HomeImp Other 4.0 0.00 0.00 149 1.0 10
## 4 BAD 1500 73761 101776 DebtCon Other 8.9 0.25 0.45 180 1.2 21
## 5 GOOD 1700 97800 112000 HomeImp Office 3.0 0.00 0.00 93 0.0 14
## 6 BAD 1700 30548 40320 HomeImp Other 9.0 0.00 0.00 101 1.0 8
## DEBTINC
## 1 34
## 2 34
## 3 34
## 4 34
## 5 34
## 6 37
## REPAY LOAN MORTDUE VALUE REASON
## BAD :1189 Min. : 1100 Min. : 2063 Min. : 8000 DebtCon:4111
## GOOD:4771 1st Qu.:11100 1st Qu.: 48139 1st Qu.: 66490 HomeImp:1849
## Median :16300 Median : 69529 Median : 90000
## Mean :18608 Mean : 73761 Mean :101776
## 3rd Qu.:23300 3rd Qu.: 88200 3rd Qu.:119005
## Max. :89900 Max. :399550 Max. :855909
## JOB YOJ DEROG DELINQ CLAGE
## Mgr : 808 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0
## Office : 987 1st Qu.: 3 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 117
## Other :2504 Median : 8 Median : 0.0 Median : 0.0 Median : 178
## ProfExe:1343 Mean : 9 Mean : 0.3 Mean : 0.4 Mean : 180
## Sales : 115 3rd Qu.:12 3rd Qu.: 0.0 3rd Qu.: 0.4 3rd Qu.: 227
## Self : 203 Max. :41 Max. :10.0 Max. :15.0 Max. :1168
## NINQ CLNO DEBTINC
## Min. : 0.0 Min. : 0 Min. : 1
## 1st Qu.: 0.0 1st Qu.:15 1st Qu.: 31
## Median : 1.0 Median :21 Median : 34
## Mean : 1.2 Mean :21 Mean : 34
## 3rd Qu.: 2.0 3rd Qu.:26 3rd Qu.: 38
## Max. :17.0 Max. :71 Max. :203
library(caret)
trainIndex <- createDataPartition(df$REPAY, p = .75,
list = FALSE,
times = 1)
fitControl <- trainControl(## 10-fold CV
method = "repeatedcv",
number = 10,
## repeated ten times
repeats = 10)
dfTrain <- df[ trainIndex,] #75% data training
dfTest <- df[-trainIndex,] #25% testing
Yte <- df[-trainIndex,1] #test Y
library(h2o)
h2o.init(nthreads = 20, max_mem_size = "16g")## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 8 minutes 5 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.38 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
##
|
| | 0%
|
|======================================================================| 100%
y <- "REPAY"
x <- setdiff(names(train), y) #predictors
# Train default Random Forest:
default_rf <- h2o.randomForest(x = x, y = y,
training_frame = train,
stopping_rounds = 5,
stopping_tolerance = 0.001,
stopping_metric = "AUC",
seed = 29,
balance_classes = FALSE,
nfolds = 10)##
|
| | 0%
|
|= | 1%
|
|================== | 26%
|
|============================================= | 64%
|
|================================================== | 71%
|
|============================================================= | 87%
|
|================================================================== | 94%
|
|======================================================================| 100%
# Model performance based on test data:
library(tidyverse)
pred_class <- h2o.predict(default_rf, test) %>% as.data.frame() %>% pull(predict)##
|
| | 0%
|
|======================================================================| 100%
## Confusion Matrix and Statistics
##
## Reference
## Prediction BAD GOOD
## BAD 217 30
## GOOD 80 1162
##
## Accuracy : 0.926
## 95% CI : (0.912, 0.939)
## No Information Rate : 0.801
## P-Value [Acc > NIR] : < 0.0000000000000002
##
## Kappa : 0.753
##
## Mcnemar's Test P-Value : 0.00000298
##
## Sensitivity : 0.731
## Specificity : 0.975
## Pos Pred Value : 0.879
## Neg Pred Value : 0.936
## Prevalence : 0.199
## Detection Rate : 0.146
## Detection Prevalence : 0.166
## Balanced Accuracy : 0.853
##
## 'Positive' Class : BAD
##
## [1] 0.96
## [1] 0.96
Implement Random Forest For Multiple Classification Problem with H2o
## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 8 minutes 18 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.36 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|================================================================== | 94%
|
|======================================================================| 100%
## Elevation Aspect Slope Horizontal_Distance_To_Hydrology
## 1 2596 51 3 258
## 2 2590 56 2 212
## 3 2804 139 9 268
## 4 2785 155 18 242
## 5 2595 45 2 153
## 6 2579 132 6 300
## Vertical_Distance_To_Hydrology Horizontal_Distance_To_Roadways Hillshade_9am
## 1 0 510 221
## 2 -6 390 220
## 3 65 3180 234
## 4 118 3090 238
## 5 -1 391 220
## 6 -15 67 230
## Hillshade_Noon Hillshade_3pm Horizontal_Distance_To_Fire_Points
## 1 232 148 6279
## 2 235 151 6225
## 3 238 135 6121
## 4 238 122 6211
## 5 234 150 6172
## 6 237 140 6031
## Wilderness_Area1 Wilderness_Area2 Wilderness_Area3 Wilderness_Area4
## 1 1 0 0 0
## 2 1 0 0 0
## 3 1 0 0 0
## 4 1 0 0 0
## 5 1 0 0 0
## 6 1 0 0 0
## Soil_Type1 Soil_Type2 Soil_Type3 Soil_Type4 Soil_Type5 Soil_Type6 Soil_Type7
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0
## Soil_Type8 Soil_Type9 Soil_Type10 Soil_Type11 Soil_Type12 Soil_Type13
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 1 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type14 Soil_Type15 Soil_Type16 Soil_Type17 Soil_Type18 Soil_Type19
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type20 Soil_Type21 Soil_Type22 Soil_Type23 Soil_Type24 Soil_Type25
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type26 Soil_Type27 Soil_Type28 Soil_Type29 Soil_Type30 Soil_Type31
## 1 0 0 0 1 0 0
## 2 0 0 0 1 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 1 0
## 5 0 0 0 1 0 0
## 6 0 0 0 1 0 0
## Soil_Type32 Soil_Type33 Soil_Type34 Soil_Type35 Soil_Type36 Soil_Type37
## 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0
## 3 0 0 0 0 0 0
## 4 0 0 0 0 0 0
## 5 0 0 0 0 0 0
## 6 0 0 0 0 0 0
## Soil_Type38 Soil_Type39 Soil_Type40 Cover_Type
## 1 0 0 0 5
## 2 0 0 0 5
## 3 0 0 0 2
## 4 0 0 0 2
## 5 0 0 0 5
## 6 0 0 0 2
## Elevation Aspect Slope Horizontal_Distance_To_Hydrology
## Min. :1859 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.:2809 1st Qu.: 58.0 1st Qu.: 9.0 1st Qu.: 107.6
## Median :2995 Median :127.0 Median :13.0 Median : 216.7
## Mean :2959 Mean :155.7 Mean :14.1 Mean : 269.4
## 3rd Qu.:3163 3rd Qu.:260.0 3rd Qu.:18.0 3rd Qu.: 383.1
## Max. :3858 Max. :360.0 Max. :66.0 Max. :1397.0
## Vertical_Distance_To_Hydrology Horizontal_Distance_To_Roadways Hillshade_9am
## Min. :-173.00 Min. : 0 Min. : 0.0
## 1st Qu.: 7.00 1st Qu.:1103 1st Qu.:198.0
## Median : 30.00 Median :1993 Median :218.0
## Mean : 46.42 Mean :2350 Mean :212.1
## 3rd Qu.: 69.00 3rd Qu.:3324 3rd Qu.:231.0
## Max. : 601.00 Max. :7117 Max. :254.0
## Hillshade_Noon Hillshade_3pm Horizontal_Distance_To_Fire_Points
## Min. : 0.0 Min. : 0.0 Min. : 0
## 1st Qu.:213.0 1st Qu.:119.0 1st Qu.:1019
## Median :226.0 Median :143.0 Median :1707
## Mean :223.3 Mean :142.5 Mean :1980
## 3rd Qu.:237.0 3rd Qu.:168.0 3rd Qu.:2547
## Max. :254.0 Max. :254.0 Max. :7173
## Wilderness_Area1 Wilderness_Area2 Wilderness_Area3 Wilderness_Area4
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.4489 Mean :0.05143 Mean :0.4361 Mean :0.06363
## 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## Soil_Type1 Soil_Type2 Soil_Type3 Soil_Type4
## Min. :0.000000 Min. :0.00000 Min. :0.000000 Min. :0.00000
## 1st Qu.:0.000000 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.00000
## Median :0.000000 Median :0.00000 Median :0.000000 Median :0.00000
## Mean :0.005217 Mean :0.01295 Mean :0.008301 Mean :0.02134
## 3rd Qu.:0.000000 3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.:0.00000
## Max. :1.000000 Max. :1.00000 Max. :1.000000 Max. :1.00000
## Soil_Type5 Soil_Type6 Soil_Type7 Soil_Type8
## Min. :0.000000 Min. :0.00000 Min. :0.0000000 Min. :0.0000000
## 1st Qu.:0.000000 1st Qu.:0.00000 1st Qu.:0.0000000 1st Qu.:0.0000000
## Median :0.000000 Median :0.00000 Median :0.0000000 Median :0.0000000
## Mean :0.002749 Mean :0.01132 Mean :0.0001807 Mean :0.0003081
## 3rd Qu.:0.000000 3rd Qu.:0.00000 3rd Qu.:0.0000000 3rd Qu.:0.0000000
## Max. :1.000000 Max. :1.00000 Max. :1.0000000 Max. :1.0000000
## Soil_Type9 Soil_Type10 Soil_Type11 Soil_Type12
## Min. :0.000000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.000000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.000000 Median :0.00000 Median :0.00000 Median :0.00000
## Mean :0.001974 Mean :0.05617 Mean :0.02136 Mean :0.05158
## 3rd Qu.:0.000000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.000000 Max. :1.00000 Max. :1.00000 Max. :1.00000
## Soil_Type13 Soil_Type14 Soil_Type15 Soil_Type16
## Min. :0.00 Min. :0.000000 Min. :0.000000000 Min. :0.000000
## 1st Qu.:0.00 1st Qu.:0.000000 1st Qu.:0.000000000 1st Qu.:0.000000
## Median :0.00 Median :0.000000 Median :0.000000000 Median :0.000000
## Mean :0.03 Mean :0.001031 Mean :0.000005163 Mean :0.004897
## 3rd Qu.:0.00 3rd Qu.:0.000000 3rd Qu.:0.000000000 3rd Qu.:0.000000
## Max. :1.00 Max. :1.000000 Max. :1.000000000 Max. :1.000000
## Soil_Type17 Soil_Type18 Soil_Type19 Soil_Type20
## Min. :0.00000 Min. :0.000000 Min. :0.000000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.00000
## Median :0.00000 Median :0.000000 Median :0.000000 Median :0.00000
## Mean :0.00589 Mean :0.003268 Mean :0.006921 Mean :0.01594
## 3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.000000 Max. :1.000000 Max. :1.00000
## Soil_Type21 Soil_Type22 Soil_Type23 Soil_Type24
## Min. :0.000000 Min. :0.00000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.000000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.000000 Median :0.00000 Median :0.0000 Median :0.00000
## Mean :0.001442 Mean :0.05744 Mean :0.0994 Mean :0.03662
## 3rd Qu.:0.000000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.000000 Max. :1.00000 Max. :1.0000 Max. :1.00000
## Soil_Type25 Soil_Type26 Soil_Type27 Soil_Type28
## Min. :0.0000000 Min. :0.000000 Min. :0.000000 Min. :0.000000
## 1st Qu.:0.0000000 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.000000
## Median :0.0000000 Median :0.000000 Median :0.000000 Median :0.000000
## Mean :0.0008158 Mean :0.004456 Mean :0.001869 Mean :0.001628
## 3rd Qu.:0.0000000 3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.000000
## Max. :1.0000000 Max. :1.000000 Max. :1.000000 Max. :1.000000
## Soil_Type29 Soil_Type30 Soil_Type31 Soil_Type32
## Min. :0.0000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000 Median :0.00000 Median :0.00000
## Mean :0.1984 Mean :0.05193 Mean :0.04417 Mean :0.09039
## 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000 Max. :1.00000 Max. :1.00000
## Soil_Type33 Soil_Type34 Soil_Type35 Soil_Type36
## Min. :0.00000 Min. :0.000000 Min. :0.000000 Min. :0.0000000
## 1st Qu.:0.00000 1st Qu.:0.000000 1st Qu.:0.000000 1st Qu.:0.0000000
## Median :0.00000 Median :0.000000 Median :0.000000 Median :0.0000000
## Mean :0.07772 Mean :0.002773 Mean :0.003255 Mean :0.0002048
## 3rd Qu.:0.00000 3rd Qu.:0.000000 3rd Qu.:0.000000 3rd Qu.:0.0000000
## Max. :1.00000 Max. :1.000000 Max. :1.000000 Max. :1.0000000
## Soil_Type37 Soil_Type38 Soil_Type39 Soil_Type40
## Min. :0.0000000 Min. :0.0000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.0000000 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.0000000 Median :0.0000 Median :0.00000 Median :0.00000
## Mean :0.0005129 Mean :0.0268 Mean :0.02376 Mean :0.01506
## 3rd Qu.:0.0000000 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.0000000 Max. :1.0000 Max. :1.00000 Max. :1.00000
## Cover_Type
## 2:283301
## 1:211840
## 3: 35754
## 7: 20510
## 6: 17367
## 5: 9493
### split data for training, validation and testing
splits <- h2o.splitFrame(df,c(0.7,0.1),seed=1234)
train <- h2o.assign(splits[[1]], "train.hex") #70%
## assign the first result the R variable train
## and the H2O name train.hex
valid <- h2o.assign(splits[[2]], "valid.hex") ## R valid, H2O valid.hex
test <- h2o.assign(splits[[3]], "test.hex") ## R test, H2O test.hex
rf1=h2o.randomForest(training_frame = train, ## the H2O frame for training
validation_frame = valid, ## the H2O frame for validation (not required)
x=1:12, ## the predictor columns, by column index
y=13, ## the target index (what we are predicting)
model_id = "rf_covType_v1", ## name the model in H2O
## not required, but helps use Flow
ntrees = 150, ## use a maximum of 200 trees to create the
## random forest model. The default is 50.
## I have increased it because I will let
## the early stopping criteria decide when
## the random forest is sufficiently accurate
stopping_rounds = 2, ## Stop fitting new trees when the 2-tree
## average is within 0.001 (default) of
## the prior two 2-tree averages.
## Can be thought of as a convergence setting
score_each_iteration = T, ## Predict against training and validation for
## each tree. Default will skip several.
seed = 1000000) ## Set the random seed so that this can be##
|
| | 0%
|
| | 1%
|
|== | 3%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|======= | 9%
|
|======= | 11%
|
|======== | 12%
|
|========= | 13%
|
|======================================================================| 100%
## Model Details:
## ==============
##
## H2ORegressionModel: drf
## Model Key: rf_covType_v1
## Model Summary:
## number_of_trees number_of_internal_trees model_size_in_bytes min_depth
## 1 20 20 306131 20
## max_depth mean_depth min_leaves max_leaves mean_leaves
## 1 20 20.00000 992 1555 1212.85000
##
## H2ORegressionMetrics: drf
## ** Reported on training data. **
## ** Metrics reported on Out-Of-Bag training samples **
##
## MSE: 0.0018
## RMSE: 0.043
## MAE: 0.0051
## RMSLE: 0.031
## Mean Residual Deviance : 0.0018
##
##
## H2ORegressionMetrics: drf
## ** Reported on validation data. **
##
## MSE: 0.0014
## RMSE: 0.037
## MAE: 0.005
## RMSLE: 0.027
## Mean Residual Deviance : 0.0014
##
##
##
##
## Scoring History:
## timestamp duration number_of_trees training_rmse training_mae
## 1 2020-05-24 23:47:33 0.001 sec 0 NA NA
## 2 2020-05-24 23:47:34 0.348 sec 1 0.06631 0.00475
## 3 2020-05-24 23:47:34 0.662 sec 2 0.06426 0.00490
## 4 2020-05-24 23:47:34 0.964 sec 3 0.06143 0.00486
## 5 2020-05-24 23:47:35 1.269 sec 4 0.05858 0.00474
## training_deviance validation_rmse validation_mae validation_deviance
## 1 NA NA NA NA
## 2 0.00440 0.06592 0.00476 0.00435
## 3 0.00413 0.05138 0.00461 0.00264
## 4 0.00377 0.04616 0.00451 0.00213
## 5 0.00343 0.04422 0.00459 0.00196
##
## ---
## timestamp duration number_of_trees training_rmse training_mae
## 16 2020-05-24 23:47:40 6.487 sec 15 0.04471 0.00503
## 17 2020-05-24 23:47:40 6.908 sec 16 0.04421 0.00505
## 18 2020-05-24 23:47:41 7.324 sec 17 0.04393 0.00507
## 19 2020-05-24 23:47:41 7.952 sec 18 0.04351 0.00508
## 20 2020-05-24 23:47:42 8.563 sec 19 0.04336 0.00515
## 21 2020-05-24 23:47:42 9.118 sec 20 0.04291 0.00514
## training_deviance validation_rmse validation_mae validation_deviance
## 16 0.00200 0.03764 0.00483 0.00142
## 17 0.00195 0.03758 0.00486 0.00141
## 18 0.00193 0.03754 0.00487 0.00141
## 19 0.00189 0.03721 0.00487 0.00138
## 20 0.00188 0.03755 0.00497 0.00141
## 21 0.00184 0.03723 0.00495 0.00139
##
## Variable Importances: (Extract with `h2o.varimp`)
## =================================================
##
## Variable Importances:
## variable relative_importance scaled_importance
## 1 Wilderness_Area1 863430.062500 1.000000
## 2 Elevation 179718.796875 0.208145
## 3 Wilderness_Area2 151199.687500 0.175115
## 4 Horizontal_Distance_To_Roadways 127215.937500 0.147338
## 5 Horizontal_Distance_To_Fire_Points 81181.640625 0.094022
## 6 Slope 8564.956055 0.009920
## 7 Aspect 8198.708984 0.009496
## 8 Hillshade_Noon 7518.732910 0.008708
## 9 Vertical_Distance_To_Hydrology 6939.757324 0.008037
## 10 Horizontal_Distance_To_Hydrology 6224.021973 0.007208
## 11 Hillshade_9am 3533.488281 0.004092
## 12 Hillshade_3pm 2926.276611 0.003389
## percentage
## 1 0.596847
## 2 0.124231
## 3 0.104517
## 4 0.087938
## 5 0.056117
## 6 0.005921
## 7 0.005667
## 8 0.005197
## 9 0.004797
## 10 0.004302
## 11 0.002443
## 12 0.002023
## Variable Importances:
## variable relative_importance scaled_importance
## 1 Wilderness_Area1 863430.062500 1.000000
## 2 Elevation 179718.796875 0.208145
## 3 Wilderness_Area2 151199.687500 0.175115
## 4 Horizontal_Distance_To_Roadways 127215.937500 0.147338
## 5 Horizontal_Distance_To_Fire_Points 81181.640625 0.094022
## 6 Slope 8564.956055 0.009920
## 7 Aspect 8198.708984 0.009496
## 8 Hillshade_Noon 7518.732910 0.008708
## 9 Vertical_Distance_To_Hydrology 6939.757324 0.008037
## 10 Horizontal_Distance_To_Hydrology 6224.021973 0.007208
## 11 Hillshade_9am 3533.488281 0.004092
## 12 Hillshade_3pm 2926.276611 0.003389
## percentage
## 1 0.596847
## 2 0.124231
## 3 0.104517
## 4 0.087938
## 5 0.056117
## 6 0.005921
## 7 0.005667
## 8 0.005197
## 9 0.004797
## 10 0.004302
## 11 0.002443
## 12 0.002023
## H2ORegressionMetrics: drf
## ** Reported on validation data. **
##
## MSE: 0.0014
## RMSE: 0.037
## MAE: 0.005
## RMSLE: 0.027
## Mean Residual Deviance : 0.0014
## Variable Importances:
## variable relative_importance scaled_importance
## 1 Wilderness_Area1 863430.062500 1.000000
## 2 Elevation 179718.796875 0.208145
## 3 Wilderness_Area2 151199.687500 0.175115
## 4 Horizontal_Distance_To_Roadways 127215.937500 0.147338
## 5 Horizontal_Distance_To_Fire_Points 81181.640625 0.094022
## 6 Slope 8564.956055 0.009920
## 7 Aspect 8198.708984 0.009496
## 8 Hillshade_Noon 7518.732910 0.008708
## 9 Vertical_Distance_To_Hydrology 6939.757324 0.008037
## 10 Horizontal_Distance_To_Hydrology 6224.021973 0.007208
## 11 Hillshade_9am 3533.488281 0.004092
## 12 Hillshade_3pm 2926.276611 0.003389
## percentage
## 1 0.596847
## 2 0.124231
## 3 0.104517
## 4 0.087938
## 5 0.056117
## 6 0.005921
## 7 0.005667
## 8 0.005197
## 9 0.004797
## 10 0.004302
## 11 0.002443
## 12 0.002023
## [1] "Variable importance from Random Forest without normalization"
## [,1] [,2] [,3]
## variable "Wilderness_Area1" "Elevation" "Wilderness_Area2"
## relative_importance "863430" "179719" "151200"
## [,4]
## variable "Horizontal_Distance_To_Roadways"
## relative_importance "127216"
## [,5] [,6] [,7]
## variable "Horizontal_Distance_To_Fire_Points" "Slope" "Aspect"
## relative_importance " 81182" " 8565" " 8199"
## [,8] [,9]
## variable "Hillshade_Noon" "Vertical_Distance_To_Hydrology"
## relative_importance " 7519" " 6940"
## [,10] [,11]
## variable "Horizontal_Distance_To_Hydrology" "Hillshade_9am"
## relative_importance " 6224" " 3533"
## [,12]
## variable "Hillshade_3pm"
## relative_importance " 2926"
# RF variable importance With normalization, i.e scale =T (divide mean decrease accuracy by standard deviation)
norm_rf.VI <- rf.VI$relative_importance/max(rf.VI$relative_importance)
print("Variable importance from Random Forest with normalization")## [1] "Variable importance from Random Forest with normalization"
## [,1] [,2] [,3]
## variable "Wilderness_Area1" "Elevation" "Wilderness_Area2"
## scaled_importance "1.0000" "0.2081" "0.1751"
## [,4]
## variable "Horizontal_Distance_To_Roadways"
## scaled_importance "0.1473"
## [,5] [,6] [,7]
## variable "Horizontal_Distance_To_Fire_Points" "Slope" "Aspect"
## scaled_importance "0.0940" "0.0099" "0.0095"
## [,8] [,9]
## variable "Hillshade_Noon" "Vertical_Distance_To_Hydrology"
## scaled_importance "0.0087" "0.0080"
## [,10] [,11]
## variable "Horizontal_Distance_To_Hydrology" "Hillshade_9am"
## scaled_importance "0.0072" "0.0041"
## [,12]
## variable "Hillshade_3pm"
## scaled_importance "0.0034"
# Plot variable importance from Random Forest
barplot(rf.VI$scaled_importance,beside=T,names.arg=rf.VI$variable,las=2,main="VI from RF")Gradient Boosting Machines (GBM) for Binary Classification using H2o
## REPAY LOAN MORTDUE VALUE REASON JOB YOJ DEROG DELINQ CLAGE NINQ CLNO
## 1 BAD 1100 25860 39025 HomeImp Other 10.5 0.00 0.00 94 1.0 9
## 2 BAD 1300 70053 68400 HomeImp Other 7.0 0.00 2.00 122 0.0 14
## 3 BAD 1500 13500 16700 HomeImp Other 4.0 0.00 0.00 149 1.0 10
## 4 BAD 1500 73761 101776 DebtCon Other 8.9 0.25 0.45 180 1.2 21
## 5 GOOD 1700 97800 112000 HomeImp Office 3.0 0.00 0.00 93 0.0 14
## 6 BAD 1700 30548 40320 HomeImp Other 9.0 0.00 0.00 101 1.0 8
## DEBTINC
## 1 34
## 2 34
## 3 34
## 4 34
## 5 34
## 6 37
## REPAY LOAN MORTDUE VALUE REASON
## BAD :1189 Min. : 1100 Min. : 2063 Min. : 8000 DebtCon:4111
## GOOD:4771 1st Qu.:11100 1st Qu.: 48139 1st Qu.: 66490 HomeImp:1849
## Median :16300 Median : 69529 Median : 90000
## Mean :18608 Mean : 73761 Mean :101776
## 3rd Qu.:23300 3rd Qu.: 88200 3rd Qu.:119005
## Max. :89900 Max. :399550 Max. :855909
## JOB YOJ DEROG DELINQ CLAGE
## Mgr : 808 Min. : 0 Min. : 0.0 Min. : 0.0 Min. : 0
## Office : 987 1st Qu.: 3 1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 117
## Other :2504 Median : 8 Median : 0.0 Median : 0.0 Median : 178
## ProfExe:1343 Mean : 9 Mean : 0.3 Mean : 0.4 Mean : 180
## Sales : 115 3rd Qu.:12 3rd Qu.: 0.0 3rd Qu.: 0.4 3rd Qu.: 227
## Self : 203 Max. :41 Max. :10.0 Max. :15.0 Max. :1168
## NINQ CLNO DEBTINC
## Min. : 0.0 Min. : 0 Min. : 1
## 1st Qu.: 0.0 1st Qu.:15 1st Qu.: 31
## Median : 1.0 Median :21 Median : 34
## Mean : 1.2 Mean :21 Mean : 34
## 3rd Qu.: 2.0 3rd Qu.:26 3rd Qu.: 38
## Max. :17.0 Max. :71 Max. :203
library(caret)
trainIndex <- createDataPartition(df$REPAY, p = .75,
list = FALSE,
times = 1)
fitControl <- trainControl(## 10-fold CV
method = "repeatedcv",
number = 10,
## repeated ten times
repeats = 10)
dfTrain <- df[ trainIndex,] #75% data training
dfTest <- df[-trainIndex,] #25% testing
Yte <- df[-trainIndex,1] #test Y
library(h2o)
h2o.init(nthreads = 20, max_mem_size = "16g")## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 8 minutes 34 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.69 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
##
|
| | 0%
|
|======================================================================| 100%
y <- "REPAY"
x <- setdiff(names(train), y) #predictors
# Train default Random Forest:
default_gbm <- h2o.gbm(x = x, y = y,
training_frame = train,
stopping_rounds = 5,
stopping_tolerance = 0.001,
stopping_metric = "AUC",
seed = 29,
balance_classes = FALSE,
nfolds = 10)##
|
| | 0%
|
|==================== | 28%
|
|=================================================== | 72%
|
|============================================================= | 87%
|
|=================================================================== | 96%
|
|======================================================================| 100%
# Model performance based on test data:
library(tidyverse)
pred_class <- h2o.predict(default_gbm, test) %>% as.data.frame() %>% pull(predict)##
|
| | 0%
|
|======================================================================| 100%
## Confusion Matrix and Statistics
##
## Reference
## Prediction BAD GOOD
## BAD 196 51
## GOOD 101 1141
##
## Accuracy : 0.898
## 95% CI : (0.881, 0.913)
## No Information Rate : 0.801
## P-Value [Acc > NIR] : < 0.0000000000000002
##
## Kappa : 0.659
##
## Mcnemar's Test P-Value : 0.0000705
##
## Sensitivity : 0.660
## Specificity : 0.957
## Pos Pred Value : 0.794
## Neg Pred Value : 0.919
## Prevalence : 0.199
## Detection Rate : 0.132
## Detection Prevalence : 0.166
## Balanced Accuracy : 0.809
##
## 'Positive' Class : BAD
##
## [1] 0.97
## [1] 0.93
## H2OBinomialMetrics: gbm
## ** Reported on training data. **
##
## MSE: 0.055
## RMSE: 0.24
## LogLoss: 0.2
## Mean Per-Class Error: 0.14
## AUC: 0.97
## AUCPR: 0.99
## Gini: 0.93
## R^2: 0.65
##
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
## BAD GOOD Error Rate
## BAD 671 221 0.247758 =221/892
## GOOD 111 3468 0.031014 =111/3579
## Totals 782 3689 0.074256 =332/4471
##
## Maximum Metrics: Maximum metrics at their respective thresholds
## metric threshold value idx
## 1 max f1 0.533824 0.954320 218
## 2 max f2 0.351409 0.976892 281
## 3 max f0point5 0.824648 0.961664 128
## 4 max accuracy 0.537417 0.925744 217
## 5 max precision 0.980550 1.000000 0
## 6 max recall 0.188421 1.000000 328
## 7 max specificity 0.980550 1.000000 0
## 8 max absolute_mcc 0.734786 0.771097 162
## 9 max min_per_class_accuracy 0.820411 0.908072 130
## 10 max mean_per_class_accuracy 0.824648 0.909619 128
## 11 max tns 0.980550 892.000000 0
## 12 max fns 0.980550 3574.000000 0
## 13 max fps 0.009547 892.000000 399
## 14 max tps 0.188421 3579.000000 328
## 15 max tnr 0.980550 1.000000 0
## 16 max fnr 0.980550 0.998603 0
## 17 max fpr 0.009547 1.000000 399
## 18 max tpr 0.188421 1.000000 328
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## [1] 0.97
# retrieve the AUC for both the training and validation data:
h2o.auc(default_gbm, train=TRUE, valid=FALSE, xval=FALSE)## [1] 0.97
Artificial Neural Networks (ANN) and Deep Neural Networks with H2o
Implement an ANN with H2o For Multi-Class Supervised Classification using H2o
############################################################
library(nnet)
library(caret)
set.seed(1234)
# loading data
f.data = read.csv("dataset.csv")
head(f.data)## label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 pixel10
## 1 2 0 0 0 0 0 0 0 0 0 0
## 2 9 0 0 0 0 0 0 0 0 0 0
## 3 6 0 0 0 0 0 0 0 5 0 0
## 4 0 0 0 0 1 2 0 0 0 0 0
## 5 3 0 0 0 0 0 0 0 0 0 0
## 6 4 0 0 0 5 4 5 5 3 5 6
## pixel11 pixel12 pixel13 pixel14 pixel15 pixel16 pixel17 pixel18 pixel19
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 105 92 101 107 100 132 0 0
## 4 114 183 112 55 23 72 102 165 160
## 5 0 0 46 0 21 68 0 0 0
## 6 2 0 0 0 0 0 0 0 2
## pixel20 pixel21 pixel22 pixel23 pixel24 pixel25 pixel26 pixel27 pixel28
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 2 4 0 1 0 0 0 0 0
## 4 28 0 0 0 1 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 3 7 4 4 5 5 0 0 0
## pixel29 pixel30 pixel31 pixel32 pixel33 pixel34 pixel35 pixel36 pixel37
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 1 0 0 24 188
## 5 0 0 0 0 0 0 0 0 25
## 6 0 0 0 4 5 4 5 11 2
## pixel38 pixel39 pixel40 pixel41 pixel42 pixel43 pixel44 pixel45 pixel46
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 150 227 211 171 191 236 228 172
## 4 163 93 136 153 168 252 174 136 166
## 5 187 189 0 119 173 239 112 0 189
## 6 0 0 21 231 156 134 177 194 1
## pixel47 pixel48 pixel49 pixel50 pixel51 pixel52 pixel53 pixel54 pixel55
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 1 0 0 0 0
## 4 130 123 131 66 0 0 1 0 0
## 5 125 0 0 0 0 0 0 0 0
## 6 0 0 0 10 5 5 4 0 0
## pixel56 pixel57 pixel58 pixel59 pixel60 pixel61 pixel62 pixel63 pixel64
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 48
## 4 0 0 0 0 2 0 10 157 216
## 5 0 0 0 0 0 0 0 0 14
## 6 0 0 0 0 4 5 3 7 0
## pixel65 pixel66 pixel67 pixel68 pixel69 pixel70 pixel71 pixel72 pixel73
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 153 209 210 187 199 142 157 209 179
## 4 226 208 142 66 115 149 230 190 196
## 5 219 224 211 92 52 227 224 127 92
## 6 0 26 112 168 162 212 226 199 146
## pixel74 pixel75 pixel76 pixel77 pixel78 pixel79 pixel80 pixel81 pixel82
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 199 233 138 44 0 0 0 0 0
## 4 198 172 222 107 165 211 0 0 0
## 5 196 237 136 0 0 0 0 0 0
## 6 168 124 25 0 0 0 4 5 0
## pixel83 pixel84 pixel85 pixel86 pixel87 pixel88 pixel89 pixel90 pixel91
## 1 0 0 0 0 0 0 4 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 120
## 4 0 0 0 0 0 0 0 118 214
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 4 5 8 0
## pixel92 pixel93 pixel94 pixel95 pixel96 pixel97 pixel98 pixel99 pixel100
## 1 0 0 0 62 61 21 29 23 51
## 2 0 0 0 0 0 0 0 0 0
## 3 218 215 207 198 198 223 219 214 225
## 4 174 168 109 200 124 150 143 58 63
## 5 106 238 202 205 224 225 217 218 222
## 6 15 95 142 170 144 123 156 172 140
## pixel101 pixel102 pixel103 pixel104 pixel105 pixel106 pixel107 pixel108
## 1 136 61 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 190 177 195 209 204 139 0 1
## 4 89 137 97 168 138 142 195 156
## 5 227 202 206 218 0 0 0 0
## 6 131 135 160 137 141 53 0 0
## pixel109 pixel110 pixel111 pixel112 pixel113 pixel114 pixel115 pixel116
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 3 0 0 0 0 0 0 5
## pixel117 pixel118 pixel119 pixel120 pixel121 pixel122 pixel123 pixel124
## 1 0 0 0 88 201 228 225 255
## 2 0 0 0 0 0 0 0 0
## 3 0 0 208 200 197 202 193 203
## 4 25 140 70 80 43 71 96 93
## 5 0 0 0 166 239 216 214 192
## 6 6 0 0 165 130 120 130 56
## pixel125 pixel126 pixel127 pixel128 pixel129 pixel130 pixel131 pixel132
## 1 115 62 137 255 235 222 255 135
## 2 0 0 0 0 0 0 0 0
## 3 207 228 245 196 197 202 193 190
## 4 151 121 197 143 107 82 101 111
## 5 181 205 204 180 187 205 208 230
## 6 124 122 68 143 111 98 132 125
## pixel133 pixel134 pixel135 pixel136 pixel137 pixel138 pixel139 pixel140
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 167 203 27 0 0 0 0 0
## 4 80 137 193 208 6 0 0 0
## 5 45 0 0 0 0 0 0 0
## 6 111 164 60 0 6 0 0 0
## pixel141 pixel142 pixel143 pixel144 pixel145 pixel146 pixel147 pixel148
## 1 0 0 0 0 0 47 252 234
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 89 217 200
## 4 0 0 0 0 74 194 107 146
## 5 0 0 0 0 0 0 0 220
## 6 0 0 0 3 7 0 99 165
## pixel149 pixel150 pixel151 pixel152 pixel153 pixel154 pixel155 pixel156
## 1 238 224 215 215 229 108 180 207
## 2 0 0 0 0 1 1 0 0
## 3 211 175 189 205 199 218 216 181
## 4 178 185 182 77 185 218 210 175
## 5 235 233 213 205 201 185 184 200
## 6 135 154 98 66 130 141 114 143
## pixel157 pixel158 pixel159 pixel160 pixel161 pixel162 pixel163 pixel164
## 1 214 224 231 249 254 45 0 0
## 2 0 0 81 21 0 1 0 1
## 3 179 185 192 198 184 198 121 0
## 4 174 235 217 217 129 180 210 208
## 5 199 223 224 232 101 0 0 0
## 6 113 71 107 147 117 176 172 0
## pixel165 pixel166 pixel167 pixel168 pixel169 pixel170 pixel171 pixel172
## 1 0 0 0 0 0 0 1 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 89 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 5 0 0 0 0 0 0 4
## pixel173 pixel174 pixel175 pixel176 pixel177 pixel178 pixel179 pixel180
## 1 0 214 222 210 213 224 225 217
## 2 0 0 0 0 0 0 0 1
## 3 0 140 220 204 223 187 182 200
## 4 179 213 203 177 228 192 193 162
## 5 0 0 0 252 238 226 226 221
## 6 0 0 197 188 169 148 146 132
## pixel181 pixel182 pixel183 pixel184 pixel185 pixel186 pixel187 pixel188
## 1 220 254 233 219 221 217 223 221
## 2 0 0 0 0 0 14 200 49
## 3 207 217 213 210 207 180 161 192
## 4 143 172 196 205 181 180 140 134
## 5 224 195 198 223 229 205 202 235
## 6 110 133 107 139 131 133 141 156
## pixel189 pixel190 pixel191 pixel192 pixel193 pixel194 pixel195 pixel196
## 1 240 254 0 0 1 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 184 199 162 0 0 0 0 0
## 4 176 194 171 170 65 0 0 0
## 5 158 0 0 0 0 0 0 0
## 6 143 170 186 0 0 0 0 0
## pixel197 pixel198 pixel199 pixel200 pixel201 pixel202 pixel203 pixel204
## 1 1 0 0 0 128 237 207 224
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 166 218 203
## 4 0 0 0 0 184 194 229 209
## 5 0 0 0 0 0 0 9 228
## 6 0 0 0 6 0 0 225 130
## pixel205 pixel206 pixel207 pixel208 pixel209 pixel210 pixel211 pixel212
## 1 224 207 216 214 210 208 211 221
## 2 2 1 1 1 0 1 0 0
## 3 195 185 196 189 167 181 206 177
## 4 176 198 129 227 225 140 196 130
## 5 241 125 238 228 225 212 215 222
## 6 140 169 148 110 45 117 137 118
## pixel213 pixel214 pixel215 pixel216 pixel217 pixel218 pixel219 pixel220
## 1 208 219 213 226 211 237 150 0
## 2 0 162 184 165 20 0 1 1
## 3 176 181 165 187 179 189 183 0
## 4 179 145 109 79 182 223 164 195
## 5 250 168 141 243 197 0 0 0
## 6 53 97 147 147 154 133 202 18
## pixel221 pixel222 pixel223 pixel224 pixel225 pixel226 pixel227 pixel228
## 1 0 0 0 0 0 2 0 0
## 2 3 4 1 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 233 0 0 0 0 0 0 38
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 7
## pixel229 pixel230 pixel231 pixel232 pixel233 pixel234 pixel235 pixel236
## 1 237 222 215 207 210 212 213 206
## 2 0 0 0 0 0 0 0 1
## 3 0 196 215 211 206 201 196 180
## 4 180 177 213 202 159 129 98 179
## 5 0 0 51 232 247 34 225 237
## 6 0 48 211 135 124 140 83 158
## pixel237 pixel238 pixel239 pixel240 pixel241 pixel242 pixel243 pixel244
## 1 214 213 214 213 210 215 214 206
## 2 2 0 2 0 120 183 154 206
## 3 188 210 206 190 173 180 187 192
## 4 149 90 187 211 61 134 91 57
## 5 219 222 223 216 248 182 124 246
## 6 145 160 126 151 136 156 113 110
## pixel245 pixel246 pixel247 pixel248 pixel249 pixel250 pixel251 pixel252
## 1 199 218 255 13 0 2 0 0
## 2 32 0 5 5 0 0 0 0
## 3 184 192 199 0 0 0 0 0
## 4 118 212 220 218 207 0 0 0
## 5 200 0 0 0 0 0 0 0
## 6 167 168 217 93 0 0 0 0
## pixel253 pixel254 pixel255 pixel256 pixel257 pixel258 pixel259 pixel260
## 1 0 4 0 85 228 210 218 200
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 212 217 224
## 4 0 0 0 114 154 142 182 219
## 5 0 0 0 0 0 0 69 236
## 6 0 0 0 6 0 104 219 208
## pixel261 pixel262 pixel263 pixel264 pixel265 pixel266 pixel267 pixel268
## 1 211 208 203 215 210 209 209 210
## 2 0 0 0 2 0 3 0 76
## 3 211 216 201 189 184 202 210 194
## 4 130 88 81 52 54 106 93 110
## 5 255 0 218 240 219 221 222 214
## 6 166 157 130 170 137 144 155 160
## pixel269 pixel270 pixel271 pixel272 pixel273 pixel274 pixel275 pixel276
## 1 213 211 210 217 206 213 231 175
## 2 227 151 139 158 0 0 0 0
## 3 182 173 173 176 192 195 208 0
## 4 159 222 227 83 117 253 218 210
## 5 252 153 71 248 215 0 0 0
## 6 150 160 158 120 194 220 213 128
## pixel277 pixel278 pixel279 pixel280 pixel281 pixel282 pixel283 pixel284
## 1 0 0 0 0 0 0 0 217
## 2 0 66 23 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 206 48 0 0 0 0 0 18
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 6
## pixel285 pixel286 pixel287 pixel288 pixel289 pixel290 pixel291 pixel292
## 1 224 215 206 205 204 217 230 222
## 2 0 0 0 0 1 0 1 0
## 3 0 222 215 228 203 212 199 198
## 4 127 208 228 185 172 240 91 126
## 5 0 0 82 248 247 0 231 236
## 6 0 133 213 235 206 169 194 139
## pixel293 pixel294 pixel295 pixel296 pixel297 pixel298 pixel299 pixel300
## 1 215 224 233 228 232 228 224 207
## 2 0 0 55 224 162 143 121 204
## 3 191 186 228 195 191 161 178 177
## 4 208 165 154 213 214 229 215 175
## 5 219 221 221 212 253 109 0 247
## 6 76 119 178 139 99 120 199 167
## pixel301 pixel302 pixel303 pixel304 pixel305 pixel306 pixel307 pixel308
## 1 212 215 213 229 31 0 4 0
## 2 236 144 21 74 90 190 8 0
## 3 198 194 210 29 0 0 0 0
## 4 222 204 153 130 125 39 0 0
## 5 224 19 0 0 0 0 0 0
## 6 190 226 210 152 0 0 0 0
## pixel309 pixel310 pixel311 pixel312 pixel313 pixel314 pixel315 pixel316
## 1 1 0 21 225 212 212 203 211
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 244 215 235
## 4 0 0 0 0 0 0 28 0
## 5 0 0 0 0 0 0 106 252
## 6 0 0 0 4 0 165 209 233
## pixel317 pixel318 pixel319 pixel320 pixel321 pixel322 pixel323 pixel324
## 1 225 193 139 136 195 147 156 139
## 2 0 1 0 0 0 42 228 160
## 3 206 214 202 171 201 178 203 190
## 4 212 228 170 221 205 225 228 210
## 5 198 0 250 230 220 219 219 212
## 6 237 131 158 151 124 147 157 149
## pixel325 pixel326 pixel327 pixel328 pixel329 pixel330 pixel331 pixel332
## 1 128 162 197 223 207 220 213 232
## 2 148 125 165 223 208 221 246 211
## 3 180 187 196 183 206 195 206 44
## 4 178 214 89 117 213 0 0 0
## 5 252 129 0 255 232 59 0 0
## 6 108 137 187 97 147 233 204 184
## pixel333 pixel334 pixel335 pixel336 pixel337 pixel338 pixel339 pixel340
## 1 177 0 0 0 0 0 123 226
## 2 174 151 0 0 0 0 0 1
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel341 pixel342 pixel343 pixel344 pixel345 pixel346 pixel347 pixel348
## 1 207 211 209 205 228 158 90 103
## 2 3 0 1 0 3 0 9 0
## 3 0 233 221 237 182 206 207 195
## 4 0 0 0 0 196 141 56 176
## 5 0 0 134 252 150 0 254 215
## 6 0 199 202 233 245 165 76 138
## pixel349 pixel350 pixel351 pixel352 pixel353 pixel354 pixel355 pixel356
## 1 186 138 100 121 147 158 183 226
## 2 23 230 168 147 119 163 227 206
## 3 200 192 224 191 182 177 180 186
## 4 210 164 162 91 135 196 158 69
## 5 219 219 219 216 233 222 0 253
## 6 174 160 148 159 155 163 125 90
## pixel357 pixel358 pixel359 pixel360 pixel361 pixel362 pixel363 pixel364
## 1 208 214 209 216 255 13 0 1
## 2 200 190 206 186 139 171 41 0
## 3 178 196 207 60 0 0 0 0
## 4 181 0 0 3 2 3 0 0
## 5 237 89 0 0 0 0 0 0
## 6 230 228 203 210 0 0 0 0
## pixel365 pixel366 pixel367 pixel368 pixel369 pixel370 pixel371 pixel372
## 1 0 0 226 219 202 208 206 205
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 16 249 224 229
## 4 0 0 0 0 0 1 0 0
## 5 0 0 0 0 0 0 163 253
## 6 0 0 0 0 0 218 196 238
## pixel373 pixel374 pixel375 pixel376 pixel377 pixel378 pixel379 pixel380
## 1 216 184 156 150 193 170 164 168
## 2 3 4 0 16 209 185 139 118
## 3 192 215 207 198 198 192 226 193
## 4 150 190 88 50 145 194 159 120
## 5 126 115 253 211 222 220 219 219
## 6 249 204 101 143 184 171 149 163
## pixel381 pixel382 pixel383 pixel384 pixel385 pixel386 pixel387 pixel388
## 1 188 186 200 219 216 213 213 211
## 2 181 227 209 204 210 199 225 157
## 3 192 180 176 185 196 200 217 87
## 4 136 207 230 144 171 4 0 1
## 5 213 253 54 206 243 144 0 0
## 6 173 158 103 132 255 217 205 222
## pixel389 pixel390 pixel391 pixel392 pixel393 pixel394 pixel395 pixel396
## 1 233 148 0 0 0 45 227 204
## 2 127 190 111 0 1 3 2 1
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel397 pixel398 pixel399 pixel400 pixel401 pixel402 pixel403 pixel404
## 1 214 211 218 222 221 230 229 221
## 2 3 2 3 0 0 0 67 214
## 3 53 222 223 235 205 220 200 151
## 4 0 0 0 0 187 220 182 72
## 5 0 0 205 255 149 209 234 219
## 6 0 234 193 237 255 169 139 199
## pixel405 pixel406 pixel407 pixel408 pixel409 pixel410 pixel411 pixel412
## 1 213 224 233 226 220 219 221 224
## 2 187 139 111 191 229 203 208 208
## 3 206 198 214 199 171 161 197 186
## 4 139 199 192 232 255 244 198 170
## 5 221 220 219 219 213 244 164 224
## 6 182 181 154 171 186 181 154 148
## pixel413 pixel414 pixel415 pixel416 pixel417 pixel418 pixel419 pixel420
## 1 223 217 210 218 213 254 0 0
## 2 196 223 188 100 128 155 112 0
## 3 218 198 216 88 0 0 0 0
## 4 189 2 0 3 0 0 0 0
## 5 240 195 0 0 0 0 0 0
## 6 242 216 208 220 0 0 0 0
## pixel421 pixel422 pixel423 pixel424 pixel425 pixel426 pixel427 pixel428
## 1 0 157 226 203 207 211 209 215
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 75 223 223 237
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 9 0
## 6 0 0 0 0 7 239 190 243
## pixel429 pixel430 pixel431 pixel432 pixel433 pixel434 pixel435 pixel436
## 1 205 198 207 208 201 201 197 203
## 2 48 161 218 171 147 116 185 235
## 3 199 219 203 193 204 201 220 201
## 4 186 175 181 93 164 230 134 153
## 5 20 253 219 221 219 219 219 219
## 6 231 103 164 144 88 188 157 177
## pixel437 pixel438 pixel439 pixel440 pixel441 pixel442 pixel443 pixel444
## 1 205 210 207 213 214 214 214 213
## 2 201 209 203 204 220 208 126 133
## 3 193 176 189 167 218 202 198 109
## 4 142 137 79 143 183 0 0 2
## 5 221 224 230 0 0 0 0 0
## 6 154 118 181 105 226 223 210 219
## pixel445 pixel446 pixel447 pixel448 pixel449 pixel450 pixel451 pixel452
## 1 208 234 107 0 0 235 213 204
## 2 162 164 187 0 0 12 16 9
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel453 pixel454 pixel455 pixel456 pixel457 pixel458 pixel459 pixel460
## 1 211 210 209 213 202 197 204 215
## 2 4 19 73 170 211 188 145 149
## 3 79 250 226 243 196 222 201 206
## 4 0 0 0 0 93 72 144 138
## 5 0 0 0 0 49 254 217 221
## 6 30 242 187 246 196 93 162 115
## pixel461 pixel462 pixel463 pixel464 pixel465 pixel466 pixel467 pixel468
## 1 217 213 212 210 206 212 203 211
## 2 148 136 222 218 207 208 215 224
## 3 205 207 222 185 194 186 187 144
## 4 164 113 124 98 80 57 97 138
## 5 219 219 219 220 221 216 253 7
## 6 91 187 151 182 114 65 158 116
## pixel469 pixel470 pixel471 pixel472 pixel473 pixel474 pixel475 pixel476
## 1 218 215 214 208 209 222 230 0
## 2 193 140 146 162 156 118 203 37
## 3 207 208 226 111 0 0 0 0
## 4 124 4 0 3 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 176 220 216 223 0 0 0 0
## pixel477 pixel478 pixel479 pixel480 pixel481 pixel482 pixel483 pixel484
## 1 52 255 207 200 208 213 210 210
## 2 47 255 188 187 182 203 206 182
## 3 0 0 0 0 87 249 222 240
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 6 0
## 6 0 0 0 0 46 206 187 237
## pixel485 pixel486 pixel487 pixel488 pixel489 pixel490 pixel491 pixel492
## 1 208 207 202 201 209 216 216 216
## 2 147 140 148 148 148 134 180 218
## 3 226 193 187 205 206 198 212 190
## 4 149 171 98 70 180 152 227 173
## 5 94 229 216 220 218 218 219 220
## 6 156 106 186 180 178 173 160 176
## pixel493 pixel494 pixel495 pixel496 pixel497 pixel498 pixel499 pixel500
## 1 216 214 212 205 215 201 228 208
## 2 221 225 204 156 134 139 144 140
## 3 189 185 185 191 211 212 210 113
## 4 143 180 183 127 206 38 0 5
## 5 219 218 226 52 0 5 0 0
## 6 180 161 188 136 133 226 219 219
## pixel501 pixel502 pixel503 pixel504 pixel505 pixel506 pixel507 pixel508
## 1 214 212 218 25 118 217 201 206
## 2 123 97 206 30 88 203 164 167
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 20 0 0 0 0 0 0 0
## pixel509 pixel510 pixel511 pixel512 pixel513 pixel514 pixel515 pixel516
## 1 208 213 208 205 206 210 211 202
## 2 170 161 147 147 156 159 153 152
## 3 95 249 227 236 219 213 186 203
## 4 1 0 0 0 195 210 226 113
## 5 0 0 4 0 119 231 214 220
## 6 76 208 185 249 152 149 171 110
## pixel517 pixel518 pixel519 pixel520 pixel521 pixel522 pixel523 pixel524
## 1 199 207 208 209 210 207 210 210
## 2 155 150 134 136 153 145 136 151
## 3 219 198 206 218 194 177 181 195
## 4 187 224 210 191 181 224 212 198
## 5 217 218 219 220 221 217 224 34
## 6 163 174 160 167 190 138 149 154
## pixel525 pixel526 pixel527 pixel528 pixel529 pixel530 pixel531 pixel532
## 1 245 139 119 255 202 203 236 114
## 2 164 168 170 166 153 130 200 10
## 3 148 229 206 122 0 0 0 0
## 4 172 36 0 6 0 0 0 0
## 5 0 3 0 0 0 0 0 0
## 6 147 225 216 206 45 0 0 0
## pixel533 pixel534 pixel535 pixel536 pixel537 pixel538 pixel539 pixel540
## 1 171 238 212 203 220 216 217 209
## 2 131 195 150 133 132 142 160 166
## 3 0 0 0 0 106 248 228 224
## 4 0 0 0 0 1 0 0 0
## 5 0 0 0 0 0 0 3 0
## 6 0 0 0 0 89 202 186 226
## pixel541 pixel542 pixel543 pixel544 pixel545 pixel546 pixel547 pixel548
## 1 207 205 210 211 206 204 206 209
## 2 162 153 152 153 151 154 163 147
## 3 206 202 200 206 191 190 194 203
## 4 153 197 171 175 161 171 199 224
## 5 113 231 213 222 217 218 219 220
## 6 152 167 122 74 151 187 149 166
## pixel549 pixel550 pixel551 pixel552 pixel553 pixel554 pixel555 pixel556
## 1 211 215 210 206 221 242 0 224
## 2 152 163 205 208 174 175 178 181
## 3 196 180 180 185 148 228 214 117
## 4 187 206 192 176 179 48 0 6
## 5 219 219 219 10 0 2 0 0
## 6 182 113 71 133 168 208 218 179
## pixel557 pixel558 pixel559 pixel560 pixel561 pixel562 pixel563 pixel564
## 1 234 230 181 26 39 145 201 255
## 2 168 150 196 1 155 228 197 172
## 3 0 0 0 0 0 0 0 0
## 4 1 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 25 0 0 0 0 0 0 0
## pixel565 pixel566 pixel567 pixel568 pixel569 pixel570 pixel571 pixel572
## 1 157 115 250 200 207 206 207 213
## 2 138 123 121 122 126 129 135 139
## 3 110 242 225 239 218 204 201 202
## 4 0 0 0 0 180 195 136 230
## 5 0 0 3 0 51 227 215 221
## 6 108 193 180 197 152 155 160 115
## pixel573 pixel574 pixel575 pixel576 pixel577 pixel578 pixel579 pixel580
## 1 216 206 205 206 207 206 215 207
## 2 144 158 177 192 239 244 178 176
## 3 211 193 197 217 203 183 184 175
## 4 240 148 204 140 173 199 193 156
## 5 217 217 219 220 218 219 213 0
## 6 168 192 154 161 193 141 122 159
## pixel581 pixel582 pixel583 pixel584 pixel585 pixel586 pixel587 pixel588
## 1 221 238 0 0 188 85 0 0
## 2 183 179 185 177 147 148 192 0
## 3 212 219 206 122 0 0 0 0
## 4 213 37 0 5 0 0 0 0
## 5 0 1 0 0 0 0 0 0
## 6 156 193 213 170 29 0 0 0
## pixel589 pixel590 pixel591 pixel592 pixel593 pixel594 pixel595 pixel596
## 1 0 0 0 31 0 129 253 190
## 2 0 80 196 199 212 209 190 176
## 3 0 0 0 0 122 249 234 241
## 4 0 0 0 0 0 1 0 0
## 5 0 0 0 0 0 0 2 0
## 6 0 0 0 0 141 193 170 169
## pixel597 pixel598 pixel599 pixel600 pixel601 pixel602 pixel603 pixel604
## 1 207 208 208 208 209 211 211 209
## 2 170 178 183 192 204 204 202 144
## 3 216 215 196 200 222 208 195 225
## 4 150 101 72 167 158 95 177 234
## 5 0 216 217 219 218 218 219 219
## 6 151 161 163 153 168 198 155 153
## pixel605 pixel606 pixel607 pixel608 pixel609 pixel610 pixel611 pixel612
## 1 209 209 212 201 226 165 0 0
## 2 59 3 0 67 217 184 188 178
## 3 212 181 186 183 227 214 211 121
## 4 113 142 112 59 152 22 0 3
## 5 218 220 246 0 0 2 0 0
## 6 188 164 161 170 148 195 210 188
## pixel613 pixel614 pixel615 pixel616 pixel617 pixel618 pixel619 pixel620
## 1 0 0 0 0 2 0 0 0
## 2 166 160 188 13 0 0 0 3
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 60 0 0 0 0 0 0 0
## pixel621 pixel622 pixel623 pixel624 pixel625 pixel626 pixel627 pixel628
## 1 0 89 254 199 199 192 196 198
## 2 51 105 179 217 235 227 208 201
## 3 148 230 237 228 214 213 201 207
## 4 0 0 0 0 197 178 82 47
## 5 0 0 2 0 0 217 216 216
## 6 178 184 188 163 148 160 163 164
## pixel629 pixel630 pixel631 pixel632 pixel633 pixel634 pixel635 pixel636
## 1 199 201 202 203 204 203 203 200
## 2 133 58 0 0 0 0 0 16
## 3 214 201 204 235 191 161 185 180
## 4 64 106 112 121 110 189 225 121
## 5 219 218 219 219 217 222 235 0
## 6 162 202 155 156 187 168 152 172
## pixel637 pixel638 pixel639 pixel640 pixel641 pixel642 pixel643 pixel644
## 1 222 155 0 3 3 3 2 0
## 2 187 194 184 185 175 181 131 0
## 3 216 201 212 119 0 0 0 0
## 4 98 58 0 4 0 0 0 0
## 5 0 2 0 0 0 0 0 0
## 6 148 173 207 224 100 0 0 0
## pixel645 pixel646 pixel647 pixel648 pixel649 pixel650 pixel651 pixel652
## 1 0 0 1 5 0 0 255 218
## 2 0 3 0 0 0 0 0 0
## 3 0 0 0 0 151 230 235 229
## 4 0 0 0 0 0 2 0 0
## 5 0 0 0 0 0 0 2 0
## 6 0 0 0 0 188 181 204 194
## pixel653 pixel654 pixel655 pixel656 pixel657 pixel658 pixel659 pixel660
## 1 226 232 228 224 222 220 219 219
## 2 0 0 0 0 0 0 0 5
## 3 218 209 198 193 226 182 189 240
## 4 202 219 161 135 205 200 156 195
## 5 0 212 216 217 219 218 219 219
## 6 146 158 161 169 177 185 154 148
## pixel661 pixel662 pixel663 pixel664 pixel665 pixel666 pixel667 pixel668
## 1 217 221 220 212 236 95 0 2
## 2 5 5 0 0 0 0 0 0
## 3 200 186 188 188 218 216 209 110
## 4 231 234 218 182 223 99 0 6
## 5 216 224 204 0 0 2 0 0
## 6 168 169 157 161 155 188 209 190
## pixel669 pixel670 pixel671 pixel672 pixel673 pixel674 pixel675 pixel676
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 62 0 0 0 0 0 0 0
## pixel677 pixel678 pixel679 pixel680 pixel681 pixel682 pixel683 pixel684
## 1 0 0 155 194 168 170 171 173
## 2 0 0 0 0 0 0 0 0
## 3 96 237 233 237 207 200 203 191
## 4 0 4 0 0 188 152 118 222
## 5 0 0 4 0 3 217 216 217
## 6 117 198 189 80 216 201 205 205
## pixel685 pixel686 pixel687 pixel688 pixel689 pixel690 pixel691 pixel692
## 1 173 179 177 175 172 171 167 161
## 2 0 0 0 0 0 0 0 0
## 3 213 170 186 239 209 186 173 186
## 4 214 203 233 226 193 200 173 53
## 5 219 218 220 220 218 222 209 0
## 6 209 233 189 197 211 202 200 201
## pixel693 pixel694 pixel695 pixel696 pixel697 pixel698 pixel699 pixel700
## 1 180 0 0 1 0 1 0 0
## 2 0 0 0 0 0 0 0 0
## 3 156 199 217 84 0 0 0 0
## 4 166 97 0 6 0 0 0 0
## 5 0 2 0 0 0 0 0 0
## 6 210 150 220 197 72 0 0 0
## pixel701 pixel702 pixel703 pixel704 pixel705 pixel706 pixel707 pixel708
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 89 237 207 121
## 4 0 0 0 0 0 3 0 2
## 5 0 0 0 0 0 0 3 0
## 6 0 0 0 0 151 214 181 6
## pixel709 pixel710 pixel711 pixel712 pixel713 pixel714 pixel715 pixel716
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 255 193 183 193 209 224 208 224
## 4 182 152 51 89 174 183 168 112
## 5 4 214 211 213 213 215 213 211
## 6 153 82 56 30 3 0 73 74
## pixel717 pixel718 pixel719 pixel720 pixel721 pixel722 pixel723 pixel724
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 203 160 184 223 0 186 216 102
## 4 109 181 170 136 108 60 0 4
## 5 214 220 200 0 0 1 0 0
## 6 41 28 30 46 78 13 201 146
## pixel725 pixel726 pixel727 pixel728 pixel729 pixel730 pixel731 pixel732
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 39 0 0 0 0 0 0 0
## pixel733 pixel734 pixel735 pixel736 pixel737 pixel738 pixel739 pixel740
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 108 242 253 0 112 255 217 211
## 4 0 2 0 5 194 193 204 104
## 5 0 0 3 0 0 214 232 229
## 6 7 34 58 0 0 0 0 0
## pixel741 pixel742 pixel743 pixel744 pixel745 pixel746 pixel747 pixel748
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 227 245 195 194 211 220 214 74
## 4 116 241 217 196 171 249 207 197
## 5 249 245 248 252 230 237 229 0
## 6 0 0 0 0 0 0 0 0
## pixel749 pixel750 pixel751 pixel752 pixel753 pixel754 pixel755 pixel756
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 255 222 128 0 0 0 0
## 4 202 45 0 3 0 0 0 0
## 5 0 1 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel757 pixel758 pixel759 pixel760 pixel761 pixel762 pixel763 pixel764
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 44 12 0
## 4 0 0 0 0 0 0 1 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 4 0 0 0 2
## pixel765 pixel766 pixel767 pixel768 pixel769 pixel770 pixel771 pixel772
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 40 134 162 191 214 163 146
## 4 0 0 22 21 25 69 52 45
## 5 0 68 116 112 136 147 144 121
## 6 4 9 7 8 7 5 4 8
## pixel773 pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 pixel780
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 165 79 0 0 0 30 43 0
## 4 74 39 3 0 0 0 0 1
## 5 102 63 0 0 0 0 0 0
## 6 12 5 7 8 7 4 3 7
## pixel781 pixel782 pixel783 pixel784
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 5 0 0 0
## [1] "factor"
## 0 1 2 3 4 5 6 7 8 9
## 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
## 'data.frame': 60000 obs. of 785 variables:
## $ label : Factor w/ 10 levels "0","1","2","3",..: 3 10 7 1 4 5 5 6 5 9 ...
## $ pixel1 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel2 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel3 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel4 : int 0 0 0 1 0 5 0 0 0 0 ...
## $ pixel5 : int 0 0 0 2 0 4 0 0 0 0 ...
## $ pixel6 : int 0 0 0 0 0 5 0 0 0 0 ...
## $ pixel7 : int 0 0 0 0 0 5 0 0 3 0 ...
## $ pixel8 : int 0 0 5 0 0 3 0 0 2 0 ...
## $ pixel9 : int 0 0 0 0 0 5 0 0 0 0 ...
## $ pixel10 : int 0 0 0 0 0 6 0 0 0 0 ...
## $ pixel11 : int 0 0 0 114 0 2 0 0 60 0 ...
## $ pixel12 : int 0 0 105 183 0 0 0 0 234 1 ...
## $ pixel13 : int 0 0 92 112 46 0 159 0 215 0 ...
## $ pixel14 : int 0 0 101 55 0 0 161 0 229 0 ...
## $ pixel15 : int 0 0 107 23 21 0 143 0 223 141 ...
## $ pixel16 : int 0 0 100 72 68 0 180 0 231 45 ...
## $ pixel17 : int 0 0 132 102 0 0 142 0 107 0 ...
## $ pixel18 : int 0 0 0 165 0 0 21 0 0 1 ...
## $ pixel19 : int 0 0 0 160 0 2 0 0 0 0 ...
## $ pixel20 : int 0 0 2 28 0 3 0 0 0 0 ...
## $ pixel21 : int 0 0 4 0 0 7 0 0 0 0 ...
## $ pixel22 : int 0 0 0 0 0 4 0 0 4 0 ...
## $ pixel23 : int 0 0 1 0 0 4 0 0 0 0 ...
## $ pixel24 : int 0 0 0 1 0 5 0 0 0 0 ...
## $ pixel25 : int 0 0 0 0 0 5 0 0 0 0 ...
## $ pixel26 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel27 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel28 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel29 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel30 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel31 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel32 : int 0 0 0 0 0 4 0 0 0 0 ...
## $ pixel33 : int 0 0 0 1 0 5 0 0 0 0 ...
## $ pixel34 : int 0 0 0 0 0 4 0 0 2 0 ...
## $ pixel35 : int 0 0 0 0 0 5 0 0 0 0 ...
## $ pixel36 : int 0 0 0 24 0 11 0 0 0 0 ...
## $ pixel37 : int 0 0 0 188 25 2 2 0 0 0 ...
## $ pixel38 : int 0 0 0 163 187 0 0 0 0 0 ...
## $ pixel39 : int 0 0 150 93 189 0 0 0 224 0 ...
## $ pixel40 : int 0 0 227 136 0 21 251 0 219 6 ...
## $ pixel41 : int 0 0 211 153 119 231 249 0 128 0 ...
## $ pixel42 : int 0 0 171 168 173 156 239 0 175 86 ...
## $ pixel43 : int 0 0 191 252 239 134 254 0 136 103 ...
## $ pixel44 : int 0 0 236 174 112 177 249 0 151 65 ...
## $ pixel45 : int 0 0 228 136 0 194 238 0 254 42 ...
## $ pixel46 : int 0 0 172 166 189 1 255 0 53 0 ...
## $ pixel47 : int 0 0 0 130 125 0 33 0 0 3 ...
## $ pixel48 : int 0 0 0 123 0 0 0 0 0 0 ...
## $ pixel49 : int 0 0 0 131 0 0 3 0 0 0 ...
## $ pixel50 : int 0 0 0 66 0 10 0 0 0 0 ...
## $ pixel51 : int 0 0 1 0 0 5 0 0 0 0 ...
## $ pixel52 : int 0 0 0 0 0 5 0 0 0 0 ...
## $ pixel53 : int 0 0 0 1 0 4 0 0 0 0 ...
## $ pixel54 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel55 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel56 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel57 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel58 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel59 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel60 : int 0 0 0 2 0 4 0 0 0 0 ...
## $ pixel61 : int 0 0 0 0 0 5 0 0 0 0 ...
## $ pixel62 : int 0 0 0 10 0 3 0 0 0 0 ...
## $ pixel63 : int 0 0 0 157 0 7 0 0 8 0 ...
## $ pixel64 : int 0 0 48 216 14 0 0 0 95 0 ...
## $ pixel65 : int 0 0 153 226 219 0 0 0 161 0 ...
## $ pixel66 : int 0 0 209 208 224 26 0 0 244 0 ...
## $ pixel67 : int 0 0 210 142 211 112 128 0 211 0 ...
## $ pixel68 : int 0 0 187 66 92 168 251 0 210 1 ...
## $ pixel69 : int 0 0 199 115 52 162 213 0 143 0 ...
## $ pixel70 : int 0 0 142 149 227 212 204 0 140 162 ...
## $ pixel71 : int 0 0 157 230 224 226 189 0 148 0 ...
## $ pixel72 : int 0 0 209 190 127 199 209 0 127 88 ...
## $ pixel73 : int 0 0 179 196 92 146 204 0 220 150 ...
## $ pixel74 : int 0 0 199 198 196 168 241 0 228 0 ...
## $ pixel75 : int 0 0 233 172 237 124 190 0 215 7 ...
## $ pixel76 : int 0 0 138 222 136 25 0 0 183 0 ...
## $ pixel77 : int 0 0 44 107 0 0 0 0 150 0 ...
## $ pixel78 : int 0 0 0 165 0 0 0 0 23 0 ...
## $ pixel79 : int 0 0 0 211 0 0 0 0 0 0 ...
## $ pixel80 : int 0 0 0 0 0 4 0 0 1 0 ...
## $ pixel81 : int 0 0 0 0 0 5 0 0 0 0 ...
## $ pixel82 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel83 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel84 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel85 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel86 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel87 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pixel88 : int 0 0 0 0 0 4 0 0 0 0 ...
## $ pixel89 : int 4 0 0 0 0 5 0 0 0 0 ...
## $ pixel90 : int 0 0 0 118 0 8 0 0 106 0 ...
## $ pixel91 : int 0 0 120 214 0 0 0 0 216 0 ...
## $ pixel92 : int 0 0 218 174 106 15 0 0 225 0 ...
## $ pixel93 : int 0 0 215 168 238 95 63 0 222 0 ...
## $ pixel94 : int 0 0 207 109 202 142 194 0 218 0 ...
## $ pixel95 : int 62 0 198 200 205 170 220 0 213 3 ...
## $ pixel96 : int 61 0 198 124 224 144 250 0 184 0 ...
## $ pixel97 : int 21 0 223 150 225 123 239 0 255 45 ...
## $ pixel98 : int 29 0 219 143 217 156 241 0 214 138 ...
## [list output truncated]
## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 9 minutes 3 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.70 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
## label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 pixel10
## 1 2 0 0 0 0 0 0 0 0 0 0
## 2 9 0 0 0 0 0 0 0 0 0 0
## 3 6 0 0 0 0 0 0 0 5 0 0
## 4 0 0 0 0 1 2 0 0 0 0 0
## 5 3 0 0 0 0 0 0 0 0 0 0
## 6 4 0 0 0 5 4 5 5 3 5 6
## pixel11 pixel12 pixel13 pixel14 pixel15 pixel16 pixel17 pixel18 pixel19
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 105 92 101 107 100 132 0 0
## 4 114 183 112 55 23 72 102 165 160
## 5 0 0 46 0 21 68 0 0 0
## 6 2 0 0 0 0 0 0 0 2
## pixel20 pixel21 pixel22 pixel23 pixel24 pixel25 pixel26 pixel27 pixel28
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 2 4 0 1 0 0 0 0 0
## 4 28 0 0 0 1 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 3 7 4 4 5 5 0 0 0
## pixel29 pixel30 pixel31 pixel32 pixel33 pixel34 pixel35 pixel36 pixel37
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 1 0 0 24 188
## 5 0 0 0 0 0 0 0 0 25
## 6 0 0 0 4 5 4 5 11 2
## pixel38 pixel39 pixel40 pixel41 pixel42 pixel43 pixel44 pixel45 pixel46
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 150 227 211 171 191 236 228 172
## 4 163 93 136 153 168 252 174 136 166
## 5 187 189 0 119 173 239 112 0 189
## 6 0 0 21 231 156 134 177 194 1
## pixel47 pixel48 pixel49 pixel50 pixel51 pixel52 pixel53 pixel54 pixel55
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 1 0 0 0 0
## 4 130 123 131 66 0 0 1 0 0
## 5 125 0 0 0 0 0 0 0 0
## 6 0 0 0 10 5 5 4 0 0
## pixel56 pixel57 pixel58 pixel59 pixel60 pixel61 pixel62 pixel63 pixel64
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 48
## 4 0 0 0 0 2 0 10 157 216
## 5 0 0 0 0 0 0 0 0 14
## 6 0 0 0 0 4 5 3 7 0
## pixel65 pixel66 pixel67 pixel68 pixel69 pixel70 pixel71 pixel72 pixel73
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 153 209 210 187 199 142 157 209 179
## 4 226 208 142 66 115 149 230 190 196
## 5 219 224 211 92 52 227 224 127 92
## 6 0 26 112 168 162 212 226 199 146
## pixel74 pixel75 pixel76 pixel77 pixel78 pixel79 pixel80 pixel81 pixel82
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 199 233 138 44 0 0 0 0 0
## 4 198 172 222 107 165 211 0 0 0
## 5 196 237 136 0 0 0 0 0 0
## 6 168 124 25 0 0 0 4 5 0
## pixel83 pixel84 pixel85 pixel86 pixel87 pixel88 pixel89 pixel90 pixel91
## 1 0 0 0 0 0 0 4 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 120
## 4 0 0 0 0 0 0 0 118 214
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 4 5 8 0
## pixel92 pixel93 pixel94 pixel95 pixel96 pixel97 pixel98 pixel99 pixel100
## 1 0 0 0 62 61 21 29 23 51
## 2 0 0 0 0 0 0 0 0 0
## 3 218 215 207 198 198 223 219 214 225
## 4 174 168 109 200 124 150 143 58 63
## 5 106 238 202 205 224 225 217 218 222
## 6 15 95 142 170 144 123 156 172 140
## pixel101 pixel102 pixel103 pixel104 pixel105 pixel106 pixel107 pixel108
## 1 136 61 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 190 177 195 209 204 139 0 1
## 4 89 137 97 168 138 142 195 156
## 5 227 202 206 218 0 0 0 0
## 6 131 135 160 137 141 53 0 0
## pixel109 pixel110 pixel111 pixel112 pixel113 pixel114 pixel115 pixel116
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 3 0 0 0 0 0 0 5
## pixel117 pixel118 pixel119 pixel120 pixel121 pixel122 pixel123 pixel124
## 1 0 0 0 88 201 228 225 255
## 2 0 0 0 0 0 0 0 0
## 3 0 0 208 200 197 202 193 203
## 4 25 140 70 80 43 71 96 93
## 5 0 0 0 166 239 216 214 192
## 6 6 0 0 165 130 120 130 56
## pixel125 pixel126 pixel127 pixel128 pixel129 pixel130 pixel131 pixel132
## 1 115 62 137 255 235 222 255 135
## 2 0 0 0 0 0 0 0 0
## 3 207 228 245 196 197 202 193 190
## 4 151 121 197 143 107 82 101 111
## 5 181 205 204 180 187 205 208 230
## 6 124 122 68 143 111 98 132 125
## pixel133 pixel134 pixel135 pixel136 pixel137 pixel138 pixel139 pixel140
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 167 203 27 0 0 0 0 0
## 4 80 137 193 208 6 0 0 0
## 5 45 0 0 0 0 0 0 0
## 6 111 164 60 0 6 0 0 0
## pixel141 pixel142 pixel143 pixel144 pixel145 pixel146 pixel147 pixel148
## 1 0 0 0 0 0 47 252 234
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 89 217 200
## 4 0 0 0 0 74 194 107 146
## 5 0 0 0 0 0 0 0 220
## 6 0 0 0 3 7 0 99 165
## pixel149 pixel150 pixel151 pixel152 pixel153 pixel154 pixel155 pixel156
## 1 238 224 215 215 229 108 180 207
## 2 0 0 0 0 1 1 0 0
## 3 211 175 189 205 199 218 216 181
## 4 178 185 182 77 185 218 210 175
## 5 235 233 213 205 201 185 184 200
## 6 135 154 98 66 130 141 114 143
## pixel157 pixel158 pixel159 pixel160 pixel161 pixel162 pixel163 pixel164
## 1 214 224 231 249 254 45 0 0
## 2 0 0 81 21 0 1 0 1
## 3 179 185 192 198 184 198 121 0
## 4 174 235 217 217 129 180 210 208
## 5 199 223 224 232 101 0 0 0
## 6 113 71 107 147 117 176 172 0
## pixel165 pixel166 pixel167 pixel168 pixel169 pixel170 pixel171 pixel172
## 1 0 0 0 0 0 0 1 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 89 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 5 0 0 0 0 0 0 4
## pixel173 pixel174 pixel175 pixel176 pixel177 pixel178 pixel179 pixel180
## 1 0 214 222 210 213 224 225 217
## 2 0 0 0 0 0 0 0 1
## 3 0 140 220 204 223 187 182 200
## 4 179 213 203 177 228 192 193 162
## 5 0 0 0 252 238 226 226 221
## 6 0 0 197 188 169 148 146 132
## pixel181 pixel182 pixel183 pixel184 pixel185 pixel186 pixel187 pixel188
## 1 220 254 233 219 221 217 223 221
## 2 0 0 0 0 0 14 200 49
## 3 207 217 213 210 207 180 161 192
## 4 143 172 196 205 181 180 140 134
## 5 224 195 198 223 229 205 202 235
## 6 110 133 107 139 131 133 141 156
## pixel189 pixel190 pixel191 pixel192 pixel193 pixel194 pixel195 pixel196
## 1 240 254 0 0 1 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 184 199 162 0 0 0 0 0
## 4 176 194 171 170 65 0 0 0
## 5 158 0 0 0 0 0 0 0
## 6 143 170 186 0 0 0 0 0
## pixel197 pixel198 pixel199
## 1 1 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
g.split = h2o.splitFrame(data = d.hex,ratios = 0.75)
train = g.split[[1]]#75% training data
test = g.split[[2]]
### 1 hidden layer with 10 neurons
##ann
fmnist_nn = h2o.deeplearning(x = 2:785,
y = "label",
training_frame = train,
distribution = "multinomial",
model_id = "fmnist_nn",
l2 = 0.4,
ignore_const_cols = FALSE,
hidden = 15,
export_weights_and_biases = TRUE)##
|
| | 0%
|
|=== | 5%
|
|========== | 14%
|
|================ | 23%
|
|======================= | 32%
|
|============================= | 41%
|
|=================================== | 51%
|
|========================================== | 60%
|
|=================================================== | 74%
|
|======================================================= | 78%
|
|============================================================= | 87%
|
|==================================================================== | 97%
|
|======================================================================| 100%
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
## 0 1 2 3 4 5 6 7 8 9 Error Rate
## 0 1191 3 12 164 12 26 40 0 18 1 0.1881 = 276 / 1,467
## 1 7 1443 24 83 5 0 7 0 2 0 0.0815 = 128 / 1,571
## 2 30 3 848 15 402 36 118 0 16 0 0.4223 = 620 / 1,468
## 3 53 9 4 1372 27 15 32 0 1 1 0.0938 = 142 / 1,514
## 4 5 8 98 126 1134 24 54 0 12 0 0.2238 = 327 / 1,461
## 5 0 0 0 1 0 1345 0 99 3 64 0.1104 = 167 / 1,512
## 6 343 3 174 95 501 57 260 2 34 1 0.8231 = 1,210 / 1,470
## 7 0 0 0 0 0 217 0 1206 2 79 0.1981 = 298 / 1,504
## 8 11 0 19 34 9 65 7 29 1330 4 0.1180 = 178 / 1,508
## 9 0 1 0 1 0 63 0 117 0 1393 0.1156 = 182 / 1,575
## Totals 1640 1470 1179 1891 2090 1848 518 1453 1418 1543 0.2344 = 3,528 / 15,050
Implement a DNN with H2o ForMulti-Class Supervised Classification using H20
set.seed(1234)
# loading data
f.data = read.csv("dataset.csv")
##1)T-shirt/top (2) Trouser (3) Pullover (4)Dress (5)Coat
## 6)Sandal (7)Shirt (8) Sneaker (9) Bag (10) Ankle boot
head(f.data)## label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 pixel10
## 1 2 0 0 0 0 0 0 0 0 0 0
## 2 9 0 0 0 0 0 0 0 0 0 0
## 3 6 0 0 0 0 0 0 0 5 0 0
## 4 0 0 0 0 1 2 0 0 0 0 0
## 5 3 0 0 0 0 0 0 0 0 0 0
## 6 4 0 0 0 5 4 5 5 3 5 6
## pixel11 pixel12 pixel13 pixel14 pixel15 pixel16 pixel17 pixel18 pixel19
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 105 92 101 107 100 132 0 0
## 4 114 183 112 55 23 72 102 165 160
## 5 0 0 46 0 21 68 0 0 0
## 6 2 0 0 0 0 0 0 0 2
## pixel20 pixel21 pixel22 pixel23 pixel24 pixel25 pixel26 pixel27 pixel28
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 2 4 0 1 0 0 0 0 0
## 4 28 0 0 0 1 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 3 7 4 4 5 5 0 0 0
## pixel29 pixel30 pixel31 pixel32 pixel33 pixel34 pixel35 pixel36 pixel37
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 1 0 0 24 188
## 5 0 0 0 0 0 0 0 0 25
## 6 0 0 0 4 5 4 5 11 2
## pixel38 pixel39 pixel40 pixel41 pixel42 pixel43 pixel44 pixel45 pixel46
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 150 227 211 171 191 236 228 172
## 4 163 93 136 153 168 252 174 136 166
## 5 187 189 0 119 173 239 112 0 189
## 6 0 0 21 231 156 134 177 194 1
## pixel47 pixel48 pixel49 pixel50 pixel51 pixel52 pixel53 pixel54 pixel55
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 1 0 0 0 0
## 4 130 123 131 66 0 0 1 0 0
## 5 125 0 0 0 0 0 0 0 0
## 6 0 0 0 10 5 5 4 0 0
## pixel56 pixel57 pixel58 pixel59 pixel60 pixel61 pixel62 pixel63 pixel64
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 48
## 4 0 0 0 0 2 0 10 157 216
## 5 0 0 0 0 0 0 0 0 14
## 6 0 0 0 0 4 5 3 7 0
## pixel65 pixel66 pixel67 pixel68 pixel69 pixel70 pixel71 pixel72 pixel73
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 153 209 210 187 199 142 157 209 179
## 4 226 208 142 66 115 149 230 190 196
## 5 219 224 211 92 52 227 224 127 92
## 6 0 26 112 168 162 212 226 199 146
## pixel74 pixel75 pixel76 pixel77 pixel78 pixel79 pixel80 pixel81 pixel82
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 199 233 138 44 0 0 0 0 0
## 4 198 172 222 107 165 211 0 0 0
## 5 196 237 136 0 0 0 0 0 0
## 6 168 124 25 0 0 0 4 5 0
## pixel83 pixel84 pixel85 pixel86 pixel87 pixel88 pixel89 pixel90 pixel91
## 1 0 0 0 0 0 0 4 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 120
## 4 0 0 0 0 0 0 0 118 214
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 4 5 8 0
## pixel92 pixel93 pixel94 pixel95 pixel96 pixel97 pixel98 pixel99 pixel100
## 1 0 0 0 62 61 21 29 23 51
## 2 0 0 0 0 0 0 0 0 0
## 3 218 215 207 198 198 223 219 214 225
## 4 174 168 109 200 124 150 143 58 63
## 5 106 238 202 205 224 225 217 218 222
## 6 15 95 142 170 144 123 156 172 140
## pixel101 pixel102 pixel103 pixel104 pixel105 pixel106 pixel107 pixel108
## 1 136 61 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 190 177 195 209 204 139 0 1
## 4 89 137 97 168 138 142 195 156
## 5 227 202 206 218 0 0 0 0
## 6 131 135 160 137 141 53 0 0
## pixel109 pixel110 pixel111 pixel112 pixel113 pixel114 pixel115 pixel116
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 3 0 0 0 0 0 0 5
## pixel117 pixel118 pixel119 pixel120 pixel121 pixel122 pixel123 pixel124
## 1 0 0 0 88 201 228 225 255
## 2 0 0 0 0 0 0 0 0
## 3 0 0 208 200 197 202 193 203
## 4 25 140 70 80 43 71 96 93
## 5 0 0 0 166 239 216 214 192
## 6 6 0 0 165 130 120 130 56
## pixel125 pixel126 pixel127 pixel128 pixel129 pixel130 pixel131 pixel132
## 1 115 62 137 255 235 222 255 135
## 2 0 0 0 0 0 0 0 0
## 3 207 228 245 196 197 202 193 190
## 4 151 121 197 143 107 82 101 111
## 5 181 205 204 180 187 205 208 230
## 6 124 122 68 143 111 98 132 125
## pixel133 pixel134 pixel135 pixel136 pixel137 pixel138 pixel139 pixel140
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 167 203 27 0 0 0 0 0
## 4 80 137 193 208 6 0 0 0
## 5 45 0 0 0 0 0 0 0
## 6 111 164 60 0 6 0 0 0
## pixel141 pixel142 pixel143 pixel144 pixel145 pixel146 pixel147 pixel148
## 1 0 0 0 0 0 47 252 234
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 89 217 200
## 4 0 0 0 0 74 194 107 146
## 5 0 0 0 0 0 0 0 220
## 6 0 0 0 3 7 0 99 165
## pixel149 pixel150 pixel151 pixel152 pixel153 pixel154 pixel155 pixel156
## 1 238 224 215 215 229 108 180 207
## 2 0 0 0 0 1 1 0 0
## 3 211 175 189 205 199 218 216 181
## 4 178 185 182 77 185 218 210 175
## 5 235 233 213 205 201 185 184 200
## 6 135 154 98 66 130 141 114 143
## pixel157 pixel158 pixel159 pixel160 pixel161 pixel162 pixel163 pixel164
## 1 214 224 231 249 254 45 0 0
## 2 0 0 81 21 0 1 0 1
## 3 179 185 192 198 184 198 121 0
## 4 174 235 217 217 129 180 210 208
## 5 199 223 224 232 101 0 0 0
## 6 113 71 107 147 117 176 172 0
## pixel165 pixel166 pixel167 pixel168 pixel169 pixel170 pixel171 pixel172
## 1 0 0 0 0 0 0 1 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 89 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 5 0 0 0 0 0 0 4
## pixel173 pixel174 pixel175 pixel176 pixel177 pixel178 pixel179 pixel180
## 1 0 214 222 210 213 224 225 217
## 2 0 0 0 0 0 0 0 1
## 3 0 140 220 204 223 187 182 200
## 4 179 213 203 177 228 192 193 162
## 5 0 0 0 252 238 226 226 221
## 6 0 0 197 188 169 148 146 132
## pixel181 pixel182 pixel183 pixel184 pixel185 pixel186 pixel187 pixel188
## 1 220 254 233 219 221 217 223 221
## 2 0 0 0 0 0 14 200 49
## 3 207 217 213 210 207 180 161 192
## 4 143 172 196 205 181 180 140 134
## 5 224 195 198 223 229 205 202 235
## 6 110 133 107 139 131 133 141 156
## pixel189 pixel190 pixel191 pixel192 pixel193 pixel194 pixel195 pixel196
## 1 240 254 0 0 1 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 184 199 162 0 0 0 0 0
## 4 176 194 171 170 65 0 0 0
## 5 158 0 0 0 0 0 0 0
## 6 143 170 186 0 0 0 0 0
## pixel197 pixel198 pixel199 pixel200 pixel201 pixel202 pixel203 pixel204
## 1 1 0 0 0 128 237 207 224
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 166 218 203
## 4 0 0 0 0 184 194 229 209
## 5 0 0 0 0 0 0 9 228
## 6 0 0 0 6 0 0 225 130
## pixel205 pixel206 pixel207 pixel208 pixel209 pixel210 pixel211 pixel212
## 1 224 207 216 214 210 208 211 221
## 2 2 1 1 1 0 1 0 0
## 3 195 185 196 189 167 181 206 177
## 4 176 198 129 227 225 140 196 130
## 5 241 125 238 228 225 212 215 222
## 6 140 169 148 110 45 117 137 118
## pixel213 pixel214 pixel215 pixel216 pixel217 pixel218 pixel219 pixel220
## 1 208 219 213 226 211 237 150 0
## 2 0 162 184 165 20 0 1 1
## 3 176 181 165 187 179 189 183 0
## 4 179 145 109 79 182 223 164 195
## 5 250 168 141 243 197 0 0 0
## 6 53 97 147 147 154 133 202 18
## pixel221 pixel222 pixel223 pixel224 pixel225 pixel226 pixel227 pixel228
## 1 0 0 0 0 0 2 0 0
## 2 3 4 1 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 233 0 0 0 0 0 0 38
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 7
## pixel229 pixel230 pixel231 pixel232 pixel233 pixel234 pixel235 pixel236
## 1 237 222 215 207 210 212 213 206
## 2 0 0 0 0 0 0 0 1
## 3 0 196 215 211 206 201 196 180
## 4 180 177 213 202 159 129 98 179
## 5 0 0 51 232 247 34 225 237
## 6 0 48 211 135 124 140 83 158
## pixel237 pixel238 pixel239 pixel240 pixel241 pixel242 pixel243 pixel244
## 1 214 213 214 213 210 215 214 206
## 2 2 0 2 0 120 183 154 206
## 3 188 210 206 190 173 180 187 192
## 4 149 90 187 211 61 134 91 57
## 5 219 222 223 216 248 182 124 246
## 6 145 160 126 151 136 156 113 110
## pixel245 pixel246 pixel247 pixel248 pixel249 pixel250 pixel251 pixel252
## 1 199 218 255 13 0 2 0 0
## 2 32 0 5 5 0 0 0 0
## 3 184 192 199 0 0 0 0 0
## 4 118 212 220 218 207 0 0 0
## 5 200 0 0 0 0 0 0 0
## 6 167 168 217 93 0 0 0 0
## pixel253 pixel254 pixel255 pixel256 pixel257 pixel258 pixel259 pixel260
## 1 0 4 0 85 228 210 218 200
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 212 217 224
## 4 0 0 0 114 154 142 182 219
## 5 0 0 0 0 0 0 69 236
## 6 0 0 0 6 0 104 219 208
## pixel261 pixel262 pixel263 pixel264 pixel265 pixel266 pixel267 pixel268
## 1 211 208 203 215 210 209 209 210
## 2 0 0 0 2 0 3 0 76
## 3 211 216 201 189 184 202 210 194
## 4 130 88 81 52 54 106 93 110
## 5 255 0 218 240 219 221 222 214
## 6 166 157 130 170 137 144 155 160
## pixel269 pixel270 pixel271 pixel272 pixel273 pixel274 pixel275 pixel276
## 1 213 211 210 217 206 213 231 175
## 2 227 151 139 158 0 0 0 0
## 3 182 173 173 176 192 195 208 0
## 4 159 222 227 83 117 253 218 210
## 5 252 153 71 248 215 0 0 0
## 6 150 160 158 120 194 220 213 128
## pixel277 pixel278 pixel279 pixel280 pixel281 pixel282 pixel283 pixel284
## 1 0 0 0 0 0 0 0 217
## 2 0 66 23 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 206 48 0 0 0 0 0 18
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 6
## pixel285 pixel286 pixel287 pixel288 pixel289 pixel290 pixel291 pixel292
## 1 224 215 206 205 204 217 230 222
## 2 0 0 0 0 1 0 1 0
## 3 0 222 215 228 203 212 199 198
## 4 127 208 228 185 172 240 91 126
## 5 0 0 82 248 247 0 231 236
## 6 0 133 213 235 206 169 194 139
## pixel293 pixel294 pixel295 pixel296 pixel297 pixel298 pixel299 pixel300
## 1 215 224 233 228 232 228 224 207
## 2 0 0 55 224 162 143 121 204
## 3 191 186 228 195 191 161 178 177
## 4 208 165 154 213 214 229 215 175
## 5 219 221 221 212 253 109 0 247
## 6 76 119 178 139 99 120 199 167
## pixel301 pixel302 pixel303 pixel304 pixel305 pixel306 pixel307 pixel308
## 1 212 215 213 229 31 0 4 0
## 2 236 144 21 74 90 190 8 0
## 3 198 194 210 29 0 0 0 0
## 4 222 204 153 130 125 39 0 0
## 5 224 19 0 0 0 0 0 0
## 6 190 226 210 152 0 0 0 0
## pixel309 pixel310 pixel311 pixel312 pixel313 pixel314 pixel315 pixel316
## 1 1 0 21 225 212 212 203 211
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 244 215 235
## 4 0 0 0 0 0 0 28 0
## 5 0 0 0 0 0 0 106 252
## 6 0 0 0 4 0 165 209 233
## pixel317 pixel318 pixel319 pixel320 pixel321 pixel322 pixel323 pixel324
## 1 225 193 139 136 195 147 156 139
## 2 0 1 0 0 0 42 228 160
## 3 206 214 202 171 201 178 203 190
## 4 212 228 170 221 205 225 228 210
## 5 198 0 250 230 220 219 219 212
## 6 237 131 158 151 124 147 157 149
## pixel325 pixel326 pixel327 pixel328 pixel329 pixel330 pixel331 pixel332
## 1 128 162 197 223 207 220 213 232
## 2 148 125 165 223 208 221 246 211
## 3 180 187 196 183 206 195 206 44
## 4 178 214 89 117 213 0 0 0
## 5 252 129 0 255 232 59 0 0
## 6 108 137 187 97 147 233 204 184
## pixel333 pixel334 pixel335 pixel336 pixel337 pixel338 pixel339 pixel340
## 1 177 0 0 0 0 0 123 226
## 2 174 151 0 0 0 0 0 1
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel341 pixel342 pixel343 pixel344 pixel345 pixel346 pixel347 pixel348
## 1 207 211 209 205 228 158 90 103
## 2 3 0 1 0 3 0 9 0
## 3 0 233 221 237 182 206 207 195
## 4 0 0 0 0 196 141 56 176
## 5 0 0 134 252 150 0 254 215
## 6 0 199 202 233 245 165 76 138
## pixel349 pixel350 pixel351 pixel352 pixel353 pixel354 pixel355 pixel356
## 1 186 138 100 121 147 158 183 226
## 2 23 230 168 147 119 163 227 206
## 3 200 192 224 191 182 177 180 186
## 4 210 164 162 91 135 196 158 69
## 5 219 219 219 216 233 222 0 253
## 6 174 160 148 159 155 163 125 90
## pixel357 pixel358 pixel359 pixel360 pixel361 pixel362 pixel363 pixel364
## 1 208 214 209 216 255 13 0 1
## 2 200 190 206 186 139 171 41 0
## 3 178 196 207 60 0 0 0 0
## 4 181 0 0 3 2 3 0 0
## 5 237 89 0 0 0 0 0 0
## 6 230 228 203 210 0 0 0 0
## pixel365 pixel366 pixel367 pixel368 pixel369 pixel370 pixel371 pixel372
## 1 0 0 226 219 202 208 206 205
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 16 249 224 229
## 4 0 0 0 0 0 1 0 0
## 5 0 0 0 0 0 0 163 253
## 6 0 0 0 0 0 218 196 238
## pixel373 pixel374 pixel375 pixel376 pixel377 pixel378 pixel379 pixel380
## 1 216 184 156 150 193 170 164 168
## 2 3 4 0 16 209 185 139 118
## 3 192 215 207 198 198 192 226 193
## 4 150 190 88 50 145 194 159 120
## 5 126 115 253 211 222 220 219 219
## 6 249 204 101 143 184 171 149 163
## pixel381 pixel382 pixel383 pixel384 pixel385 pixel386 pixel387 pixel388
## 1 188 186 200 219 216 213 213 211
## 2 181 227 209 204 210 199 225 157
## 3 192 180 176 185 196 200 217 87
## 4 136 207 230 144 171 4 0 1
## 5 213 253 54 206 243 144 0 0
## 6 173 158 103 132 255 217 205 222
## pixel389 pixel390 pixel391 pixel392 pixel393 pixel394 pixel395 pixel396
## 1 233 148 0 0 0 45 227 204
## 2 127 190 111 0 1 3 2 1
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel397 pixel398 pixel399 pixel400 pixel401 pixel402 pixel403 pixel404
## 1 214 211 218 222 221 230 229 221
## 2 3 2 3 0 0 0 67 214
## 3 53 222 223 235 205 220 200 151
## 4 0 0 0 0 187 220 182 72
## 5 0 0 205 255 149 209 234 219
## 6 0 234 193 237 255 169 139 199
## pixel405 pixel406 pixel407 pixel408 pixel409 pixel410 pixel411 pixel412
## 1 213 224 233 226 220 219 221 224
## 2 187 139 111 191 229 203 208 208
## 3 206 198 214 199 171 161 197 186
## 4 139 199 192 232 255 244 198 170
## 5 221 220 219 219 213 244 164 224
## 6 182 181 154 171 186 181 154 148
## pixel413 pixel414 pixel415 pixel416 pixel417 pixel418 pixel419 pixel420
## 1 223 217 210 218 213 254 0 0
## 2 196 223 188 100 128 155 112 0
## 3 218 198 216 88 0 0 0 0
## 4 189 2 0 3 0 0 0 0
## 5 240 195 0 0 0 0 0 0
## 6 242 216 208 220 0 0 0 0
## pixel421 pixel422 pixel423 pixel424 pixel425 pixel426 pixel427 pixel428
## 1 0 157 226 203 207 211 209 215
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 75 223 223 237
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 9 0
## 6 0 0 0 0 7 239 190 243
## pixel429 pixel430 pixel431 pixel432 pixel433 pixel434 pixel435 pixel436
## 1 205 198 207 208 201 201 197 203
## 2 48 161 218 171 147 116 185 235
## 3 199 219 203 193 204 201 220 201
## 4 186 175 181 93 164 230 134 153
## 5 20 253 219 221 219 219 219 219
## 6 231 103 164 144 88 188 157 177
## pixel437 pixel438 pixel439 pixel440 pixel441 pixel442 pixel443 pixel444
## 1 205 210 207 213 214 214 214 213
## 2 201 209 203 204 220 208 126 133
## 3 193 176 189 167 218 202 198 109
## 4 142 137 79 143 183 0 0 2
## 5 221 224 230 0 0 0 0 0
## 6 154 118 181 105 226 223 210 219
## pixel445 pixel446 pixel447 pixel448 pixel449 pixel450 pixel451 pixel452
## 1 208 234 107 0 0 235 213 204
## 2 162 164 187 0 0 12 16 9
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel453 pixel454 pixel455 pixel456 pixel457 pixel458 pixel459 pixel460
## 1 211 210 209 213 202 197 204 215
## 2 4 19 73 170 211 188 145 149
## 3 79 250 226 243 196 222 201 206
## 4 0 0 0 0 93 72 144 138
## 5 0 0 0 0 49 254 217 221
## 6 30 242 187 246 196 93 162 115
## pixel461 pixel462 pixel463 pixel464 pixel465 pixel466 pixel467 pixel468
## 1 217 213 212 210 206 212 203 211
## 2 148 136 222 218 207 208 215 224
## 3 205 207 222 185 194 186 187 144
## 4 164 113 124 98 80 57 97 138
## 5 219 219 219 220 221 216 253 7
## 6 91 187 151 182 114 65 158 116
## pixel469 pixel470 pixel471 pixel472 pixel473 pixel474 pixel475 pixel476
## 1 218 215 214 208 209 222 230 0
## 2 193 140 146 162 156 118 203 37
## 3 207 208 226 111 0 0 0 0
## 4 124 4 0 3 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 176 220 216 223 0 0 0 0
## pixel477 pixel478 pixel479 pixel480 pixel481 pixel482 pixel483 pixel484
## 1 52 255 207 200 208 213 210 210
## 2 47 255 188 187 182 203 206 182
## 3 0 0 0 0 87 249 222 240
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 6 0
## 6 0 0 0 0 46 206 187 237
## pixel485 pixel486 pixel487 pixel488 pixel489 pixel490 pixel491 pixel492
## 1 208 207 202 201 209 216 216 216
## 2 147 140 148 148 148 134 180 218
## 3 226 193 187 205 206 198 212 190
## 4 149 171 98 70 180 152 227 173
## 5 94 229 216 220 218 218 219 220
## 6 156 106 186 180 178 173 160 176
## pixel493 pixel494 pixel495 pixel496 pixel497 pixel498 pixel499 pixel500
## 1 216 214 212 205 215 201 228 208
## 2 221 225 204 156 134 139 144 140
## 3 189 185 185 191 211 212 210 113
## 4 143 180 183 127 206 38 0 5
## 5 219 218 226 52 0 5 0 0
## 6 180 161 188 136 133 226 219 219
## pixel501 pixel502 pixel503 pixel504 pixel505 pixel506 pixel507 pixel508
## 1 214 212 218 25 118 217 201 206
## 2 123 97 206 30 88 203 164 167
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 20 0 0 0 0 0 0 0
## pixel509 pixel510 pixel511 pixel512 pixel513 pixel514 pixel515 pixel516
## 1 208 213 208 205 206 210 211 202
## 2 170 161 147 147 156 159 153 152
## 3 95 249 227 236 219 213 186 203
## 4 1 0 0 0 195 210 226 113
## 5 0 0 4 0 119 231 214 220
## 6 76 208 185 249 152 149 171 110
## pixel517 pixel518 pixel519 pixel520 pixel521 pixel522 pixel523 pixel524
## 1 199 207 208 209 210 207 210 210
## 2 155 150 134 136 153 145 136 151
## 3 219 198 206 218 194 177 181 195
## 4 187 224 210 191 181 224 212 198
## 5 217 218 219 220 221 217 224 34
## 6 163 174 160 167 190 138 149 154
## pixel525 pixel526 pixel527 pixel528 pixel529 pixel530 pixel531 pixel532
## 1 245 139 119 255 202 203 236 114
## 2 164 168 170 166 153 130 200 10
## 3 148 229 206 122 0 0 0 0
## 4 172 36 0 6 0 0 0 0
## 5 0 3 0 0 0 0 0 0
## 6 147 225 216 206 45 0 0 0
## pixel533 pixel534 pixel535 pixel536 pixel537 pixel538 pixel539 pixel540
## 1 171 238 212 203 220 216 217 209
## 2 131 195 150 133 132 142 160 166
## 3 0 0 0 0 106 248 228 224
## 4 0 0 0 0 1 0 0 0
## 5 0 0 0 0 0 0 3 0
## 6 0 0 0 0 89 202 186 226
## pixel541 pixel542 pixel543 pixel544 pixel545 pixel546 pixel547 pixel548
## 1 207 205 210 211 206 204 206 209
## 2 162 153 152 153 151 154 163 147
## 3 206 202 200 206 191 190 194 203
## 4 153 197 171 175 161 171 199 224
## 5 113 231 213 222 217 218 219 220
## 6 152 167 122 74 151 187 149 166
## pixel549 pixel550 pixel551 pixel552 pixel553 pixel554 pixel555 pixel556
## 1 211 215 210 206 221 242 0 224
## 2 152 163 205 208 174 175 178 181
## 3 196 180 180 185 148 228 214 117
## 4 187 206 192 176 179 48 0 6
## 5 219 219 219 10 0 2 0 0
## 6 182 113 71 133 168 208 218 179
## pixel557 pixel558 pixel559 pixel560 pixel561 pixel562 pixel563 pixel564
## 1 234 230 181 26 39 145 201 255
## 2 168 150 196 1 155 228 197 172
## 3 0 0 0 0 0 0 0 0
## 4 1 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 25 0 0 0 0 0 0 0
## pixel565 pixel566 pixel567 pixel568 pixel569 pixel570 pixel571 pixel572
## 1 157 115 250 200 207 206 207 213
## 2 138 123 121 122 126 129 135 139
## 3 110 242 225 239 218 204 201 202
## 4 0 0 0 0 180 195 136 230
## 5 0 0 3 0 51 227 215 221
## 6 108 193 180 197 152 155 160 115
## pixel573 pixel574 pixel575 pixel576 pixel577 pixel578 pixel579 pixel580
## 1 216 206 205 206 207 206 215 207
## 2 144 158 177 192 239 244 178 176
## 3 211 193 197 217 203 183 184 175
## 4 240 148 204 140 173 199 193 156
## 5 217 217 219 220 218 219 213 0
## 6 168 192 154 161 193 141 122 159
## pixel581 pixel582 pixel583 pixel584 pixel585 pixel586 pixel587 pixel588
## 1 221 238 0 0 188 85 0 0
## 2 183 179 185 177 147 148 192 0
## 3 212 219 206 122 0 0 0 0
## 4 213 37 0 5 0 0 0 0
## 5 0 1 0 0 0 0 0 0
## 6 156 193 213 170 29 0 0 0
## pixel589 pixel590 pixel591 pixel592 pixel593 pixel594 pixel595 pixel596
## 1 0 0 0 31 0 129 253 190
## 2 0 80 196 199 212 209 190 176
## 3 0 0 0 0 122 249 234 241
## 4 0 0 0 0 0 1 0 0
## 5 0 0 0 0 0 0 2 0
## 6 0 0 0 0 141 193 170 169
## pixel597 pixel598 pixel599 pixel600 pixel601 pixel602 pixel603 pixel604
## 1 207 208 208 208 209 211 211 209
## 2 170 178 183 192 204 204 202 144
## 3 216 215 196 200 222 208 195 225
## 4 150 101 72 167 158 95 177 234
## 5 0 216 217 219 218 218 219 219
## 6 151 161 163 153 168 198 155 153
## pixel605 pixel606 pixel607 pixel608 pixel609 pixel610 pixel611 pixel612
## 1 209 209 212 201 226 165 0 0
## 2 59 3 0 67 217 184 188 178
## 3 212 181 186 183 227 214 211 121
## 4 113 142 112 59 152 22 0 3
## 5 218 220 246 0 0 2 0 0
## 6 188 164 161 170 148 195 210 188
## pixel613 pixel614 pixel615 pixel616 pixel617 pixel618 pixel619 pixel620
## 1 0 0 0 0 2 0 0 0
## 2 166 160 188 13 0 0 0 3
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 60 0 0 0 0 0 0 0
## pixel621 pixel622 pixel623 pixel624 pixel625 pixel626 pixel627 pixel628
## 1 0 89 254 199 199 192 196 198
## 2 51 105 179 217 235 227 208 201
## 3 148 230 237 228 214 213 201 207
## 4 0 0 0 0 197 178 82 47
## 5 0 0 2 0 0 217 216 216
## 6 178 184 188 163 148 160 163 164
## pixel629 pixel630 pixel631 pixel632 pixel633 pixel634 pixel635 pixel636
## 1 199 201 202 203 204 203 203 200
## 2 133 58 0 0 0 0 0 16
## 3 214 201 204 235 191 161 185 180
## 4 64 106 112 121 110 189 225 121
## 5 219 218 219 219 217 222 235 0
## 6 162 202 155 156 187 168 152 172
## pixel637 pixel638 pixel639 pixel640 pixel641 pixel642 pixel643 pixel644
## 1 222 155 0 3 3 3 2 0
## 2 187 194 184 185 175 181 131 0
## 3 216 201 212 119 0 0 0 0
## 4 98 58 0 4 0 0 0 0
## 5 0 2 0 0 0 0 0 0
## 6 148 173 207 224 100 0 0 0
## pixel645 pixel646 pixel647 pixel648 pixel649 pixel650 pixel651 pixel652
## 1 0 0 1 5 0 0 255 218
## 2 0 3 0 0 0 0 0 0
## 3 0 0 0 0 151 230 235 229
## 4 0 0 0 0 0 2 0 0
## 5 0 0 0 0 0 0 2 0
## 6 0 0 0 0 188 181 204 194
## pixel653 pixel654 pixel655 pixel656 pixel657 pixel658 pixel659 pixel660
## 1 226 232 228 224 222 220 219 219
## 2 0 0 0 0 0 0 0 5
## 3 218 209 198 193 226 182 189 240
## 4 202 219 161 135 205 200 156 195
## 5 0 212 216 217 219 218 219 219
## 6 146 158 161 169 177 185 154 148
## pixel661 pixel662 pixel663 pixel664 pixel665 pixel666 pixel667 pixel668
## 1 217 221 220 212 236 95 0 2
## 2 5 5 0 0 0 0 0 0
## 3 200 186 188 188 218 216 209 110
## 4 231 234 218 182 223 99 0 6
## 5 216 224 204 0 0 2 0 0
## 6 168 169 157 161 155 188 209 190
## pixel669 pixel670 pixel671 pixel672 pixel673 pixel674 pixel675 pixel676
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 62 0 0 0 0 0 0 0
## pixel677 pixel678 pixel679 pixel680 pixel681 pixel682 pixel683 pixel684
## 1 0 0 155 194 168 170 171 173
## 2 0 0 0 0 0 0 0 0
## 3 96 237 233 237 207 200 203 191
## 4 0 4 0 0 188 152 118 222
## 5 0 0 4 0 3 217 216 217
## 6 117 198 189 80 216 201 205 205
## pixel685 pixel686 pixel687 pixel688 pixel689 pixel690 pixel691 pixel692
## 1 173 179 177 175 172 171 167 161
## 2 0 0 0 0 0 0 0 0
## 3 213 170 186 239 209 186 173 186
## 4 214 203 233 226 193 200 173 53
## 5 219 218 220 220 218 222 209 0
## 6 209 233 189 197 211 202 200 201
## pixel693 pixel694 pixel695 pixel696 pixel697 pixel698 pixel699 pixel700
## 1 180 0 0 1 0 1 0 0
## 2 0 0 0 0 0 0 0 0
## 3 156 199 217 84 0 0 0 0
## 4 166 97 0 6 0 0 0 0
## 5 0 2 0 0 0 0 0 0
## 6 210 150 220 197 72 0 0 0
## pixel701 pixel702 pixel703 pixel704 pixel705 pixel706 pixel707 pixel708
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 89 237 207 121
## 4 0 0 0 0 0 3 0 2
## 5 0 0 0 0 0 0 3 0
## 6 0 0 0 0 151 214 181 6
## pixel709 pixel710 pixel711 pixel712 pixel713 pixel714 pixel715 pixel716
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 255 193 183 193 209 224 208 224
## 4 182 152 51 89 174 183 168 112
## 5 4 214 211 213 213 215 213 211
## 6 153 82 56 30 3 0 73 74
## pixel717 pixel718 pixel719 pixel720 pixel721 pixel722 pixel723 pixel724
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 203 160 184 223 0 186 216 102
## 4 109 181 170 136 108 60 0 4
## 5 214 220 200 0 0 1 0 0
## 6 41 28 30 46 78 13 201 146
## pixel725 pixel726 pixel727 pixel728 pixel729 pixel730 pixel731 pixel732
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 39 0 0 0 0 0 0 0
## pixel733 pixel734 pixel735 pixel736 pixel737 pixel738 pixel739 pixel740
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 108 242 253 0 112 255 217 211
## 4 0 2 0 5 194 193 204 104
## 5 0 0 3 0 0 214 232 229
## 6 7 34 58 0 0 0 0 0
## pixel741 pixel742 pixel743 pixel744 pixel745 pixel746 pixel747 pixel748
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 227 245 195 194 211 220 214 74
## 4 116 241 217 196 171 249 207 197
## 5 249 245 248 252 230 237 229 0
## 6 0 0 0 0 0 0 0 0
## pixel749 pixel750 pixel751 pixel752 pixel753 pixel754 pixel755 pixel756
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 255 222 128 0 0 0 0
## 4 202 45 0 3 0 0 0 0
## 5 0 1 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel757 pixel758 pixel759 pixel760 pixel761 pixel762 pixel763 pixel764
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 44 12 0
## 4 0 0 0 0 0 0 1 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 4 0 0 0 2
## pixel765 pixel766 pixel767 pixel768 pixel769 pixel770 pixel771 pixel772
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 40 134 162 191 214 163 146
## 4 0 0 22 21 25 69 52 45
## 5 0 68 116 112 136 147 144 121
## 6 4 9 7 8 7 5 4 8
## pixel773 pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 pixel780
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 165 79 0 0 0 30 43 0
## 4 74 39 3 0 0 0 0 1
## 5 102 63 0 0 0 0 0 0
## 6 12 5 7 8 7 4 3 7
## pixel781 pixel782 pixel783 pixel784
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 5 0 0 0
## [1] "factor"
## 0 1 2 3 4 5 6 7 8 9
## 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000
## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 10 minutes 17 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.32 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
## label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 pixel10
## 1 2 0 0 0 0 0 0 0 0 0 0
## 2 9 0 0 0 0 0 0 0 0 0 0
## 3 6 0 0 0 0 0 0 0 5 0 0
## 4 0 0 0 0 1 2 0 0 0 0 0
## 5 3 0 0 0 0 0 0 0 0 0 0
## 6 4 0 0 0 5 4 5 5 3 5 6
## pixel11 pixel12 pixel13 pixel14 pixel15 pixel16 pixel17 pixel18 pixel19
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 105 92 101 107 100 132 0 0
## 4 114 183 112 55 23 72 102 165 160
## 5 0 0 46 0 21 68 0 0 0
## 6 2 0 0 0 0 0 0 0 2
## pixel20 pixel21 pixel22 pixel23 pixel24 pixel25 pixel26 pixel27 pixel28
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 2 4 0 1 0 0 0 0 0
## 4 28 0 0 0 1 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 3 7 4 4 5 5 0 0 0
## pixel29 pixel30 pixel31 pixel32 pixel33 pixel34 pixel35 pixel36 pixel37
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 1 0 0 24 188
## 5 0 0 0 0 0 0 0 0 25
## 6 0 0 0 4 5 4 5 11 2
## pixel38 pixel39 pixel40 pixel41 pixel42 pixel43 pixel44 pixel45 pixel46
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 150 227 211 171 191 236 228 172
## 4 163 93 136 153 168 252 174 136 166
## 5 187 189 0 119 173 239 112 0 189
## 6 0 0 21 231 156 134 177 194 1
## pixel47 pixel48 pixel49 pixel50 pixel51 pixel52 pixel53 pixel54 pixel55
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 1 0 0 0 0
## 4 130 123 131 66 0 0 1 0 0
## 5 125 0 0 0 0 0 0 0 0
## 6 0 0 0 10 5 5 4 0 0
## pixel56 pixel57 pixel58 pixel59 pixel60 pixel61 pixel62 pixel63 pixel64
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 48
## 4 0 0 0 0 2 0 10 157 216
## 5 0 0 0 0 0 0 0 0 14
## 6 0 0 0 0 4 5 3 7 0
## pixel65 pixel66 pixel67 pixel68 pixel69 pixel70 pixel71 pixel72 pixel73
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 153 209 210 187 199 142 157 209 179
## 4 226 208 142 66 115 149 230 190 196
## 5 219 224 211 92 52 227 224 127 92
## 6 0 26 112 168 162 212 226 199 146
## pixel74 pixel75 pixel76 pixel77 pixel78 pixel79 pixel80 pixel81 pixel82
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 199 233 138 44 0 0 0 0 0
## 4 198 172 222 107 165 211 0 0 0
## 5 196 237 136 0 0 0 0 0 0
## 6 168 124 25 0 0 0 4 5 0
## pixel83 pixel84 pixel85 pixel86 pixel87 pixel88 pixel89 pixel90 pixel91
## 1 0 0 0 0 0 0 4 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 120
## 4 0 0 0 0 0 0 0 118 214
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 4 5 8 0
## pixel92 pixel93 pixel94 pixel95 pixel96 pixel97 pixel98 pixel99 pixel100
## 1 0 0 0 62 61 21 29 23 51
## 2 0 0 0 0 0 0 0 0 0
## 3 218 215 207 198 198 223 219 214 225
## 4 174 168 109 200 124 150 143 58 63
## 5 106 238 202 205 224 225 217 218 222
## 6 15 95 142 170 144 123 156 172 140
## pixel101 pixel102 pixel103 pixel104 pixel105 pixel106 pixel107 pixel108
## 1 136 61 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 190 177 195 209 204 139 0 1
## 4 89 137 97 168 138 142 195 156
## 5 227 202 206 218 0 0 0 0
## 6 131 135 160 137 141 53 0 0
## pixel109 pixel110 pixel111 pixel112 pixel113 pixel114 pixel115 pixel116
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 3 0 0 0 0 0 0 5
## pixel117 pixel118 pixel119 pixel120 pixel121 pixel122 pixel123 pixel124
## 1 0 0 0 88 201 228 225 255
## 2 0 0 0 0 0 0 0 0
## 3 0 0 208 200 197 202 193 203
## 4 25 140 70 80 43 71 96 93
## 5 0 0 0 166 239 216 214 192
## 6 6 0 0 165 130 120 130 56
## pixel125 pixel126 pixel127 pixel128 pixel129 pixel130 pixel131 pixel132
## 1 115 62 137 255 235 222 255 135
## 2 0 0 0 0 0 0 0 0
## 3 207 228 245 196 197 202 193 190
## 4 151 121 197 143 107 82 101 111
## 5 181 205 204 180 187 205 208 230
## 6 124 122 68 143 111 98 132 125
## pixel133 pixel134 pixel135 pixel136 pixel137 pixel138 pixel139 pixel140
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 167 203 27 0 0 0 0 0
## 4 80 137 193 208 6 0 0 0
## 5 45 0 0 0 0 0 0 0
## 6 111 164 60 0 6 0 0 0
## pixel141 pixel142 pixel143 pixel144 pixel145 pixel146 pixel147 pixel148
## 1 0 0 0 0 0 47 252 234
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 89 217 200
## 4 0 0 0 0 74 194 107 146
## 5 0 0 0 0 0 0 0 220
## 6 0 0 0 3 7 0 99 165
## pixel149 pixel150 pixel151 pixel152 pixel153 pixel154 pixel155 pixel156
## 1 238 224 215 215 229 108 180 207
## 2 0 0 0 0 1 1 0 0
## 3 211 175 189 205 199 218 216 181
## 4 178 185 182 77 185 218 210 175
## 5 235 233 213 205 201 185 184 200
## 6 135 154 98 66 130 141 114 143
## pixel157 pixel158 pixel159 pixel160 pixel161 pixel162 pixel163 pixel164
## 1 214 224 231 249 254 45 0 0
## 2 0 0 81 21 0 1 0 1
## 3 179 185 192 198 184 198 121 0
## 4 174 235 217 217 129 180 210 208
## 5 199 223 224 232 101 0 0 0
## 6 113 71 107 147 117 176 172 0
## pixel165 pixel166 pixel167 pixel168 pixel169 pixel170 pixel171 pixel172
## 1 0 0 0 0 0 0 1 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 89 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 5 0 0 0 0 0 0 4
## pixel173 pixel174 pixel175 pixel176 pixel177 pixel178 pixel179 pixel180
## 1 0 214 222 210 213 224 225 217
## 2 0 0 0 0 0 0 0 1
## 3 0 140 220 204 223 187 182 200
## 4 179 213 203 177 228 192 193 162
## 5 0 0 0 252 238 226 226 221
## 6 0 0 197 188 169 148 146 132
## pixel181 pixel182 pixel183 pixel184 pixel185 pixel186 pixel187 pixel188
## 1 220 254 233 219 221 217 223 221
## 2 0 0 0 0 0 14 200 49
## 3 207 217 213 210 207 180 161 192
## 4 143 172 196 205 181 180 140 134
## 5 224 195 198 223 229 205 202 235
## 6 110 133 107 139 131 133 141 156
## pixel189 pixel190 pixel191 pixel192 pixel193 pixel194 pixel195 pixel196
## 1 240 254 0 0 1 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 184 199 162 0 0 0 0 0
## 4 176 194 171 170 65 0 0 0
## 5 158 0 0 0 0 0 0 0
## 6 143 170 186 0 0 0 0 0
## pixel197 pixel198 pixel199
## 1 1 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
g.split = h2o.splitFrame(data = d.hex,ratios = 0.75)
train = g.split[[1]]#75% training data
test = g.split[[2]]
### DNN with 3 hidden layers (1000 neurons each)
### activation function: Rectifier with droput (improve generalization.)
### epochs:The number of iterations to be carried out. More epochs=more accuracy
### Adaptive learning rates self adjust to avoid local minima or slow convergence.
### learning rate annealing gradually reduces learning
### Momentum modifies back-propagation by allowing prior iterations to influence
##the current update.
#This takes lot of time
#fmnist_nn = h2o.deeplearning(x = 2:785,
# y = "label",
# training_frame = train,
# distribution = "multinomial",
# model_id = "fmnist_nn",
# activation = "RectifierWithDropout",
# hidden=c(1000, 1000, 2000),
# epochs = 180,
# adaptive_rate = FALSE,
# rate=0.01,
# rate_annealing = 1.0e-6,
# rate_decay = 1.0,
# momentum_start = 0.4,
# momentum_ramp = 384000,
# momentum_stable = 0.98,
# input_dropout_ratio = 0.22,
# l1 = 1.0e-5,
# max_w2 = 15.0,
# initial_weight_distribution = "Normal",
# initial_weight_scale = 0.01,
# nesterov_accelerated_gradient = TRUE,
# loss = "CrossEntropy",
# fast_mode = TRUE,
# diagnostics = TRUE,
# ignore_const_cols = TRUE,
# force_load_balance = TRUE,
# seed = 3.656455e+18)
#h2o.confusionMatrix(fmnist_nn, test)
## DNN with 2 hidden layers
## default- 2 hidden layers (200 neurons each)
m = h2o.deeplearning(x = 2:785,
y = "label",
training_frame = train,
distribution = "multinomial",
model_id = "m",
activation = "Tanh",
l2 = 0.00001,
hidden = c(50,50),
loss = "CrossEntropy")##
|
| | 0%
|
|= | 2%
|
|=== | 4%
|
|======= | 10%
|
|========= | 12%
|
|=========== | 16%
|
|============== | 20%
|
|================ | 22%
|
|================== | 26%
|
|==================== | 28%
|
|======================= | 32%
|
|======================== | 35%
|
|=========================== | 39%
|
|============================ | 41%
|
|=============================== | 45%
|
|================================== | 49%
|
|===================================== | 53%
|
|======================================== | 57%
|
|=========================================== | 61%
|
|============================================ | 63%
|
|=============================================== | 67%
|
|================================================== | 71%
|
|=================================================== | 73%
|
|====================================================== | 77%
|
|========================================================= | 81%
|
|============================================================ | 85%
|
|============================================================= | 87%
|
|================================================================ | 91%
|
|=================================================================== | 95%
|
|======================================================================| 100%
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
## 0 1 2 3 4 5 6 7 8 9 Error
## 0 1237 4 25 37 5 1 149 0 9 0 0.1568
## 1 7 1527 1 21 5 2 8 0 0 0 0.0280
## 2 18 1 1230 17 109 3 86 0 4 0 0.1621
## 3 49 20 15 1333 64 2 25 0 6 0 0.1196
## 4 4 2 176 45 1147 0 83 0 4 0 0.2149
## 5 0 0 0 0 0 1442 0 26 8 36 0.0463
## 6 174 5 164 35 100 1 977 1 11 2 0.3354
## 7 0 0 0 0 0 48 0 1378 8 70 0.0838
## 8 14 1 11 8 7 5 20 4 1437 1 0.0471
## 9 0 2 0 0 0 24 0 42 0 1507 0.0432
## Totals 1503 1562 1622 1496 1437 1528 1348 1451 1487 1616 0.1219
## Rate
## 0 = 230 / 1,467
## 1 = 44 / 1,571
## 2 = 238 / 1,468
## 3 = 181 / 1,514
## 4 = 314 / 1,461
## 5 = 70 / 1,512
## 6 = 493 / 1,470
## 7 = 126 / 1,504
## 8 = 71 / 1,508
## 9 = 68 / 1,575
## Totals = 1,835 / 15,050
## [1] 0.88
variable importance
library(caret)
#library(mxnet)
# loading data
tumor=read.csv("cancer_tumor.csv") #predict if the tumor is
#malignant (M) or benign (B)
head(tumor)## id diagnosis radius_mean texture_mean perimeter_mean area_mean
## 1 842302 M 18 10 123 1001
## 2 842517 M 21 18 133 1326
## 3 84300903 M 20 21 130 1203
## 4 84348301 M 11 20 78 386
## 5 84358402 M 20 14 135 1297
## 6 843786 M 12 16 83 477
## smoothness_mean compactness_mean concavity_mean concave.points_mean
## 1 0.118 0.278 0.300 0.147
## 2 0.085 0.079 0.087 0.070
## 3 0.110 0.160 0.197 0.128
## 4 0.142 0.284 0.241 0.105
## 5 0.100 0.133 0.198 0.104
## 6 0.128 0.170 0.158 0.081
## symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
## 1 0.24 0.079 1.09 0.91 8.6
## 2 0.18 0.057 0.54 0.73 3.4
## 3 0.21 0.060 0.75 0.79 4.6
## 4 0.26 0.097 0.50 1.16 3.4
## 5 0.18 0.059 0.76 0.78 5.4
## 6 0.21 0.076 0.33 0.89 2.2
## area_se smoothness_se compactness_se concavity_se concave.points_se
## 1 153 0.0064 0.049 0.054 0.016
## 2 74 0.0052 0.013 0.019 0.013
## 3 94 0.0062 0.040 0.038 0.021
## 4 27 0.0091 0.075 0.057 0.019
## 5 94 0.0115 0.025 0.057 0.019
## 6 27 0.0075 0.033 0.037 0.011
## symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst
## 1 0.030 0.0062 25 17 185
## 2 0.014 0.0035 25 23 159
## 3 0.022 0.0046 24 26 152
## 4 0.060 0.0092 15 26 99
## 5 0.018 0.0051 23 17 152
## 6 0.022 0.0051 15 24 103
## area_worst smoothness_worst compactness_worst concavity_worst
## 1 2019 0.16 0.67 0.71
## 2 1956 0.12 0.19 0.24
## 3 1709 0.14 0.42 0.45
## 4 568 0.21 0.87 0.69
## 5 1575 0.14 0.20 0.40
## 6 742 0.18 0.52 0.54
## concave.points_worst symmetry_worst fractal_dimension_worst X
## 1 0.27 0.46 0.119 NA
## 2 0.19 0.28 0.089 NA
## 3 0.24 0.36 0.088 NA
## 4 0.26 0.66 0.173 NA
## 5 0.16 0.24 0.077 NA
## 6 0.17 0.40 0.124 NA
## diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 1 M 18 10 123 1001 0.118
## 2 M 21 18 133 1326 0.085
## 3 M 20 21 130 1203 0.110
## 4 M 11 20 78 386 0.142
## 5 M 20 14 135 1297 0.100
## 6 M 12 16 83 477 0.128
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## 1 0.278 0.300 0.147 0.24
## 2 0.079 0.087 0.070 0.18
## 3 0.160 0.197 0.128 0.21
## 4 0.284 0.241 0.105 0.26
## 5 0.133 0.198 0.104 0.18
## 6 0.170 0.158 0.081 0.21
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 1 0.079 1.09 0.91 8.6 153
## 2 0.057 0.54 0.73 3.4 74
## 3 0.060 0.75 0.79 4.6 94
## 4 0.097 0.50 1.16 3.4 27
## 5 0.059 0.76 0.78 5.4 94
## 6 0.076 0.33 0.89 2.2 27
## smoothness_se compactness_se concavity_se concave.points_se symmetry_se
## 1 0.0064 0.049 0.054 0.016 0.030
## 2 0.0052 0.013 0.019 0.013 0.014
## 3 0.0062 0.040 0.038 0.021 0.022
## 4 0.0091 0.075 0.057 0.019 0.060
## 5 0.0115 0.025 0.057 0.019 0.018
## 6 0.0075 0.033 0.037 0.011 0.022
## fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## 1 0.0062 25 17 185 2019
## 2 0.0035 25 23 159 1956
## 3 0.0046 24 26 152 1709
## 4 0.0092 15 26 99 568
## 5 0.0051 23 17 152 1575
## 6 0.0051 15 24 103 742
## smoothness_worst compactness_worst concavity_worst concave.points_worst
## 1 0.16 0.67 0.71 0.27
## 2 0.12 0.19 0.24 0.19
## 3 0.14 0.42 0.45 0.24
## 4 0.21 0.87 0.69 0.26
## 5 0.14 0.20 0.40 0.16
## 6 0.18 0.52 0.54 0.17
## symmetry_worst fractal_dimension_worst
## 1 0.46 0.119
## 2 0.28 0.089
## 3 0.36 0.088
## 4 0.66 0.173
## 5 0.24 0.077
## 6 0.40 0.124
df=na.omit(df)
library(h2o)
h2o.init(max_mem_size = "2G",
nthreads = 2,
ip = "localhost",
port = 54321)## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 13 minutes 54 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.35 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
## diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 1 M 18 10 123 1001 0.118
## 2 M 21 18 133 1326 0.085
## 3 M 20 21 130 1203 0.110
## 4 M 11 20 78 386 0.142
## 5 M 20 14 135 1297 0.100
## 6 M 12 16 83 477 0.128
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## 1 0.278 0.300 0.147 0.24
## 2 0.079 0.087 0.070 0.18
## 3 0.160 0.197 0.128 0.21
## 4 0.284 0.241 0.105 0.26
## 5 0.133 0.198 0.104 0.18
## 6 0.170 0.158 0.081 0.21
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 1 0.079 1.09 0.91 8.6 153
## 2 0.057 0.54 0.73 3.4 74
## 3 0.060 0.75 0.79 4.6 94
## 4 0.097 0.50 1.16 3.4 27
## 5 0.059 0.76 0.78 5.4 94
## 6 0.076 0.33 0.89 2.2 27
## smoothness_se compactness_se concavity_se concave.points_se symmetry_se
## 1 0.0064 0.049 0.054 0.016 0.030
## 2 0.0052 0.013 0.019 0.013 0.014
## 3 0.0062 0.040 0.038 0.021 0.022
## 4 0.0091 0.075 0.057 0.019 0.060
## 5 0.0115 0.025 0.057 0.019 0.018
## 6 0.0075 0.033 0.037 0.011 0.022
## fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## 1 0.0062 25 17 185 2019
## 2 0.0035 25 23 159 1956
## 3 0.0046 24 26 152 1709
## 4 0.0092 15 26 99 568
## 5 0.0051 23 17 152 1575
## 6 0.0051 15 24 103 742
## smoothness_worst compactness_worst concavity_worst concave.points_worst
## 1 0.16 0.67 0.71 0.27
## 2 0.12 0.19 0.24 0.19
## 3 0.14 0.42 0.45 0.24
## 4 0.21 0.87 0.69 0.26
## 5 0.14 0.20 0.40 0.16
## 6 0.18 0.52 0.54 0.17
## symmetry_worst fractal_dimension_worst
## 1 0.46 0.119
## 2 0.28 0.089
## 3 0.36 0.088
## 4 0.66 0.173
## 5 0.24 0.077
## 6 0.40 0.124
## Class 'H2OFrame' <environment: 0x000000003e2546c0>
## - attr(*, "op")= chr "Parse"
## - attr(*, "id")= chr "d.hex"
## - attr(*, "eval")= logi FALSE
## - attr(*, "nrow")= int 569
## - attr(*, "ncol")= int 31
## - attr(*, "types")=List of 31
## ..$ : chr "enum"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## - attr(*, "data")='data.frame': 10 obs. of 31 variables:
## ..$ diagnosis : Factor w/ 2 levels "B","M": 2 2 2 2 2 2 2 2 2 2
## ..$ radius_mean : num 18 20.6 19.7 11.4 20.3 ...
## ..$ texture_mean : num 10.4 17.8 21.2 20.4 14.3 ...
## ..$ perimeter_mean : num 122.8 132.9 130 77.6 135.1 ...
## ..$ area_mean : num 1001 1326 1203 386 1297 ...
## ..$ smoothness_mean : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## ..$ compactness_mean : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
## ..$ concavity_mean : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## ..$ concave.points_mean : num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## ..$ symmetry_mean : num 0.242 0.181 0.207 0.26 0.181 ...
## ..$ fractal_dimension_mean : num 0.0787 0.0567 0.06 0.0974 0.0588 ...
## ..$ radius_se : num 1.095 0.543 0.746 0.496 0.757 ...
## ..$ texture_se : num 0.905 0.734 0.787 1.156 0.781 ...
## ..$ perimeter_se : num 8.59 3.4 4.58 3.44 5.44 ...
## ..$ area_se : num 153.4 74.1 94 27.2 94.4 ...
## ..$ smoothness_se : num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
## ..$ compactness_se : num 0.049 0.0131 0.0401 0.0746 0.0246 ...
## ..$ concavity_se : num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
## ..$ concave.points_se : num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
## ..$ symmetry_se : num 0.03 0.0139 0.0225 0.0596 0.0176 ...
## ..$ fractal_dimension_se : num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
## ..$ radius_worst : num 25.4 25 23.6 14.9 22.5 ...
## ..$ texture_worst : num 17.3 23.4 25.5 26.5 16.7 ...
## ..$ perimeter_worst : num 184.6 158.8 152.5 98.9 152.2 ...
## ..$ area_worst : num 2019 1956 1709 568 1575 ...
## ..$ smoothness_worst : num 0.162 0.124 0.144 0.21 0.137 ...
## ..$ compactness_worst : num 0.666 0.187 0.424 0.866 0.205 ...
## ..$ concavity_worst : num 0.712 0.242 0.45 0.687 0.4 ...
## ..$ concave.points_worst : num 0.265 0.186 0.243 0.258 0.163 ...
## ..$ symmetry_worst : num 0.46 0.275 0.361 0.664 0.236 ...
## ..$ fractal_dimension_worst: num 0.1189 0.089 0.0876 0.173 0.0768 ...
#set variables
y <- "diagnosis"
x <- setdiff(colnames(d.hex),y)
#train the model - without hidden layer
deepmodel = h2o.deeplearning(x = x
,y = y
,training_frame = d.hex
,standardize = T
,model_id = "deep_model"
,activation = "Rectifier"
,epochs = 100
,seed = 1
,nfolds = 5
,variable_importances = T)##
|
| | 0%
|
|======================================================== | 79%
|
|================================================================== | 94%
|
|==================================================================== | 97%
|
|======================================================================| 100%
## H2OBinomialMetrics: deeplearning
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
##
## MSE: 0.038
## RMSE: 0.2
## LogLoss: 0.27
## Mean Per-Class Error: 0.04
## AUC: 0.99
## AUCPR: 0.99
## Gini: 0.98
##
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
## B M Error Rate
## B 354 3 0.008403 =3/357
## M 15 197 0.070755 =15/212
## Totals 369 200 0.031634 =18/569
##
## Maximum Metrics: Maximum metrics at their respective thresholds
## metric threshold value idx
## 1 max f1 0.974770 0.956311 26
## 2 max f2 0.221098 0.947712 49
## 3 max f0point5 0.997343 0.978916 22
## 4 max accuracy 0.997343 0.968366 22
## 5 max precision 1.000000 1.000000 0
## 6 max recall 0.000000 1.000000 291
## 7 max specificity 1.000000 1.000000 0
## 8 max absolute_mcc 0.997343 0.933026 22
## 9 max min_per_class_accuracy 0.245683 0.943978 47
## 10 max mean_per_class_accuracy 0.974770 0.960421 26
## 11 max tns 1.000000 357.000000 0
## 12 max fns 1.000000 43.000000 0
## 13 max fps 0.000000 357.000000 395
## 14 max tps 0.000000 212.000000 291
## 15 max tnr 1.000000 1.000000 0
## 16 max fnr 1.000000 0.202830 0
## 17 max fpr 0.000000 1.000000 395
## 18 max tpr 0.000000 1.000000 291
##
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
DNN For Regression using H2o
##### regression
library(tidyverse)
library(ggplot2)
library(mlbench)
data(BostonHousing)
head(BostonHousing)## crim zn indus chas nox rm age dis rad tax ptratio b lstat medv
## 1 0.0063 18 2.3 0 0.54 6.6 65 4.1 1 296 15 397 5.0 24
## 2 0.0273 0 7.1 0 0.47 6.4 79 5.0 2 242 18 397 9.1 22
## 3 0.0273 0 7.1 0 0.47 7.2 61 5.0 2 242 18 393 4.0 35
## 4 0.0324 0 2.2 0 0.46 7.0 46 6.1 3 222 19 395 2.9 33
## 5 0.0690 0 2.2 0 0.46 7.1 54 6.1 3 222 19 397 5.3 36
## 6 0.0299 0 2.2 0 0.46 6.4 59 6.1 3 222 19 394 5.2 29
## 'data.frame': 506 obs. of 14 variables:
## $ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
## $ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
## $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
## $ chas : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
## $ rm : num 6.58 6.42 7.18 7 7.15 ...
## $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
## $ dis : num 4.09 4.97 4.97 6.06 6.06 ...
## $ rad : num 1 2 2 3 3 3 5 5 5 5 ...
## $ tax : num 296 242 242 222 222 222 311 311 311 311 ...
## $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
## $ b : num 397 397 393 395 397 ...
## $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
## $ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 15 minutes 34 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.41 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
## crim zn indus chas nox rm age dis rad tax ptratio b lstat medv
## 1 0.0063 18 2.3 0 0.54 6.6 65 4.1 1 296 15 397 5.0 24
## 2 0.0273 0 7.1 0 0.47 6.4 79 5.0 2 242 18 397 9.1 22
## 3 0.0273 0 7.1 0 0.47 7.2 61 5.0 2 242 18 393 4.0 35
## 4 0.0324 0 2.2 0 0.46 7.0 46 6.1 3 222 19 395 2.9 33
## 5 0.0690 0 2.2 0 0.46 7.1 54 6.1 3 222 19 397 5.3 36
## 6 0.0299 0 2.2 0 0.46 6.4 59 6.1 3 222 19 394 5.2 29
## Class 'H2OFrame' <environment: 0x0000000046499ba8>
## - attr(*, "op")= chr "Parse"
## - attr(*, "id")= chr "d.hex"
## - attr(*, "eval")= logi FALSE
## - attr(*, "nrow")= int 506
## - attr(*, "ncol")= int 14
## - attr(*, "types")=List of 14
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "enum"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "int"
## ..$ : chr "int"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## - attr(*, "data")='data.frame': 10 obs. of 14 variables:
## ..$ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
## ..$ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5
## ..$ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87
## ..$ chas : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1
## ..$ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524
## ..$ rm : num 6.58 6.42 7.18 7 7.15 ...
## ..$ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9
## ..$ dis : num 4.09 4.97 4.97 6.06 6.06 ...
## ..$ rad : num 1 2 2 3 3 3 5 5 5 5
## ..$ tax : num 296 242 242 222 222 222 311 311 311 311
## ..$ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2
## ..$ b : num 397 397 393 395 397 ...
## ..$ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
## ..$ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9
## crim zn indus chas nox
## Min. : 0.00632 Min. : 0.00 Min. : 0.460 0:471 Min. :0.3850
## 1st Qu.: 0.00632 1st Qu.: 0.00 1st Qu.: 5.179 1: 35 1st Qu.:0.4487
## Median : 0.18426 Median : 0.00 Median : 9.681 Median :0.5376
## Mean : 3.61352 Mean : 11.36 Mean :11.137 Mean :0.5547
## 3rd Qu.: 3.65409 3rd Qu.: 12.50 3rd Qu.:18.083 3rd Qu.:0.6236
## Max. :88.97620 Max. :100.00 Max. :27.740 Max. :0.8710
## rm age dis rad
## Min. :3.561 Min. : 2.90 Min. : 1.130 Min. : 1.000
## 1st Qu.:5.883 1st Qu.: 44.97 1st Qu.: 2.097 1st Qu.: 4.000
## Median :6.207 Median : 77.47 Median : 3.203 Median : 5.000
## Mean :6.285 Mean : 68.57 Mean : 3.795 Mean : 9.549
## 3rd Qu.:6.622 3rd Qu.: 94.05 3rd Qu.: 5.185 3rd Qu.:24.000
## Max. :8.780 Max. :100.00 Max. :12.127 Max. :24.000
## tax ptratio b lstat
## Min. :187.0 Min. :12.60 Min. : 0.32 Min. : 1.73
## 1st Qu.:279.0 1st Qu.:17.39 1st Qu.:375.19 1st Qu.: 6.93
## Median :330.0 Median :19.04 Median :391.35 Median :11.35
## Mean :408.2 Mean :18.46 Mean :356.67 Mean :12.65
## 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.11 3rd Qu.:16.94
## Max. :711.0 Max. :22.00 Max. :396.90 Max. :37.97
## medv
## Min. : 5.00
## 1st Qu.:16.99
## Median :21.20
## Mean :22.53
## 3rd Qu.:24.98
## Max. :50.00
## [1] 14
g.split = h2o.splitFrame(data = d.hex,ratios = 0.75)
train = g.split[[1]]#75% training data
test = g.split[[2]]
##2 layer dnn
m = h2o.deeplearning(x = 1:13,
y = "medv",
training_frame = train,
#distribution = "multinomial",
model_id = "m",
activation = "Tanh",
l2 = 0.00001,
hidden = c(162,162,100),
)##
|
| | 0%
|
|================================================= | 70%
|
|======================================================================| 100%
##
|
| | 0%
|
|======================================================================| 100%
## [1] 2.6
Deep Learning Based Unsupervised Classification using H2o
Autoencoders for Unsupervised Learning using H2o
library(ggplot2)
set.seed(1234)
# loading data
tumor=read.csv("cancer_tumor.csv") #predict if the tumor is
#malignant (M) or benign (B)
head(tumor)## id diagnosis radius_mean texture_mean perimeter_mean area_mean
## 1 842302 M 18 10 123 1001
## 2 842517 M 21 18 133 1326
## 3 84300903 M 20 21 130 1203
## 4 84348301 M 11 20 78 386
## 5 84358402 M 20 14 135 1297
## 6 843786 M 12 16 83 477
## smoothness_mean compactness_mean concavity_mean concave.points_mean
## 1 0.118 0.278 0.300 0.147
## 2 0.085 0.079 0.087 0.070
## 3 0.110 0.160 0.197 0.128
## 4 0.142 0.284 0.241 0.105
## 5 0.100 0.133 0.198 0.104
## 6 0.128 0.170 0.158 0.081
## symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
## 1 0.24 0.079 1.09 0.91 8.6
## 2 0.18 0.057 0.54 0.73 3.4
## 3 0.21 0.060 0.75 0.79 4.6
## 4 0.26 0.097 0.50 1.16 3.4
## 5 0.18 0.059 0.76 0.78 5.4
## 6 0.21 0.076 0.33 0.89 2.2
## area_se smoothness_se compactness_se concavity_se concave.points_se
## 1 153 0.0064 0.049 0.054 0.016
## 2 74 0.0052 0.013 0.019 0.013
## 3 94 0.0062 0.040 0.038 0.021
## 4 27 0.0091 0.075 0.057 0.019
## 5 94 0.0115 0.025 0.057 0.019
## 6 27 0.0075 0.033 0.037 0.011
## symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst
## 1 0.030 0.0062 25 17 185
## 2 0.014 0.0035 25 23 159
## 3 0.022 0.0046 24 26 152
## 4 0.060 0.0092 15 26 99
## 5 0.018 0.0051 23 17 152
## 6 0.022 0.0051 15 24 103
## area_worst smoothness_worst compactness_worst concavity_worst
## 1 2019 0.16 0.67 0.71
## 2 1956 0.12 0.19 0.24
## 3 1709 0.14 0.42 0.45
## 4 568 0.21 0.87 0.69
## 5 1575 0.14 0.20 0.40
## 6 742 0.18 0.52 0.54
## concave.points_worst symmetry_worst fractal_dimension_worst X
## 1 0.27 0.46 0.119 NA
## 2 0.19 0.28 0.089 NA
## 3 0.24 0.36 0.088 NA
## 4 0.26 0.66 0.173 NA
## 5 0.16 0.24 0.077 NA
## 6 0.17 0.40 0.124 NA
## diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 1 M 18 10 123 1001 0.118
## 2 M 21 18 133 1326 0.085
## 3 M 20 21 130 1203 0.110
## 4 M 11 20 78 386 0.142
## 5 M 20 14 135 1297 0.100
## 6 M 12 16 83 477 0.128
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## 1 0.278 0.300 0.147 0.24
## 2 0.079 0.087 0.070 0.18
## 3 0.160 0.197 0.128 0.21
## 4 0.284 0.241 0.105 0.26
## 5 0.133 0.198 0.104 0.18
## 6 0.170 0.158 0.081 0.21
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 1 0.079 1.09 0.91 8.6 153
## 2 0.057 0.54 0.73 3.4 74
## 3 0.060 0.75 0.79 4.6 94
## 4 0.097 0.50 1.16 3.4 27
## 5 0.059 0.76 0.78 5.4 94
## 6 0.076 0.33 0.89 2.2 27
## smoothness_se compactness_se concavity_se concave.points_se symmetry_se
## 1 0.0064 0.049 0.054 0.016 0.030
## 2 0.0052 0.013 0.019 0.013 0.014
## 3 0.0062 0.040 0.038 0.021 0.022
## 4 0.0091 0.075 0.057 0.019 0.060
## 5 0.0115 0.025 0.057 0.019 0.018
## 6 0.0075 0.033 0.037 0.011 0.022
## fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## 1 0.0062 25 17 185 2019
## 2 0.0035 25 23 159 1956
## 3 0.0046 24 26 152 1709
## 4 0.0092 15 26 99 568
## 5 0.0051 23 17 152 1575
## 6 0.0051 15 24 103 742
## smoothness_worst compactness_worst concavity_worst concave.points_worst
## 1 0.16 0.67 0.71 0.27
## 2 0.12 0.19 0.24 0.19
## 3 0.14 0.42 0.45 0.24
## 4 0.21 0.87 0.69 0.26
## 5 0.14 0.20 0.40 0.16
## 6 0.18 0.52 0.54 0.17
## symmetry_worst fractal_dimension_worst
## 1 0.46 0.119
## 2 0.28 0.089
## 3 0.36 0.088
## 4 0.66 0.173
## 5 0.24 0.077
## 6 0.40 0.124
##
## B M
## 357 212
##
## B M
## 0.63 0.37
## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 15 minutes 38 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.42 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
## diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 1 M 18 10 123 1001 0.118
## 2 M 21 18 133 1326 0.085
## 3 M 20 21 130 1203 0.110
## 4 M 11 20 78 386 0.142
## 5 M 20 14 135 1297 0.100
## 6 M 12 16 83 477 0.128
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## 1 0.278 0.300 0.147 0.24
## 2 0.079 0.087 0.070 0.18
## 3 0.160 0.197 0.128 0.21
## 4 0.284 0.241 0.105 0.26
## 5 0.133 0.198 0.104 0.18
## 6 0.170 0.158 0.081 0.21
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 1 0.079 1.09 0.91 8.6 153
## 2 0.057 0.54 0.73 3.4 74
## 3 0.060 0.75 0.79 4.6 94
## 4 0.097 0.50 1.16 3.4 27
## 5 0.059 0.76 0.78 5.4 94
## 6 0.076 0.33 0.89 2.2 27
## smoothness_se compactness_se concavity_se concave.points_se symmetry_se
## 1 0.0064 0.049 0.054 0.016 0.030
## 2 0.0052 0.013 0.019 0.013 0.014
## 3 0.0062 0.040 0.038 0.021 0.022
## 4 0.0091 0.075 0.057 0.019 0.060
## 5 0.0115 0.025 0.057 0.019 0.018
## 6 0.0075 0.033 0.037 0.011 0.022
## fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## 1 0.0062 25 17 185 2019
## 2 0.0035 25 23 159 1956
## 3 0.0046 24 26 152 1709
## 4 0.0092 15 26 99 568
## 5 0.0051 23 17 152 1575
## 6 0.0051 15 24 103 742
## smoothness_worst compactness_worst concavity_worst concave.points_worst
## 1 0.16 0.67 0.71 0.27
## 2 0.12 0.19 0.24 0.19
## 3 0.14 0.42 0.45 0.24
## 4 0.21 0.87 0.69 0.26
## 5 0.14 0.20 0.40 0.16
## 6 0.18 0.52 0.54 0.17
## symmetry_worst fractal_dimension_worst
## 1 0.46 0.119
## 2 0.28 0.089
## 3 0.36 0.088
## 4 0.66 0.173
## 5 0.24 0.077
## 6 0.40 0.124
## Class 'H2OFrame' <environment: 0x000000003d73a7f8>
## - attr(*, "op")= chr "Parse"
## - attr(*, "id")= chr "d.hex"
## - attr(*, "eval")= logi FALSE
## - attr(*, "nrow")= int 569
## - attr(*, "ncol")= int 31
## - attr(*, "types")=List of 31
## ..$ : chr "enum"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## - attr(*, "data")='data.frame': 10 obs. of 31 variables:
## ..$ diagnosis : Factor w/ 2 levels "B","M": 2 2 2 2 2 2 2 2 2 2
## ..$ radius_mean : num 18 20.6 19.7 11.4 20.3 ...
## ..$ texture_mean : num 10.4 17.8 21.2 20.4 14.3 ...
## ..$ perimeter_mean : num 122.8 132.9 130 77.6 135.1 ...
## ..$ area_mean : num 1001 1326 1203 386 1297 ...
## ..$ smoothness_mean : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## ..$ compactness_mean : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
## ..$ concavity_mean : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## ..$ concave.points_mean : num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## ..$ symmetry_mean : num 0.242 0.181 0.207 0.26 0.181 ...
## ..$ fractal_dimension_mean : num 0.0787 0.0567 0.06 0.0974 0.0588 ...
## ..$ radius_se : num 1.095 0.543 0.746 0.496 0.757 ...
## ..$ texture_se : num 0.905 0.734 0.787 1.156 0.781 ...
## ..$ perimeter_se : num 8.59 3.4 4.58 3.44 5.44 ...
## ..$ area_se : num 153.4 74.1 94 27.2 94.4 ...
## ..$ smoothness_se : num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
## ..$ compactness_se : num 0.049 0.0131 0.0401 0.0746 0.0246 ...
## ..$ concavity_se : num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
## ..$ concave.points_se : num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
## ..$ symmetry_se : num 0.03 0.0139 0.0225 0.0596 0.0176 ...
## ..$ fractal_dimension_se : num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
## ..$ radius_worst : num 25.4 25 23.6 14.9 22.5 ...
## ..$ texture_worst : num 17.3 23.4 25.5 26.5 16.7 ...
## ..$ perimeter_worst : num 184.6 158.8 152.5 98.9 152.2 ...
## ..$ area_worst : num 2019 1956 1709 568 1575 ...
## ..$ smoothness_worst : num 0.162 0.124 0.144 0.21 0.137 ...
## ..$ compactness_worst : num 0.666 0.187 0.424 0.866 0.205 ...
## ..$ concavity_worst : num 0.712 0.242 0.45 0.687 0.4 ...
## ..$ concave.points_worst : num 0.265 0.186 0.243 0.258 0.163 ...
## ..$ symmetry_worst : num 0.46 0.275 0.361 0.664 0.236 ...
## ..$ fractal_dimension_worst: num 0.1189 0.089 0.0876 0.173 0.0768 ...
NN_model = h2o.deeplearning(
x = 2:31,
training_frame = d.hex,
hidden = c(100, 50, 2, 50, 100 ),
epochs = 100,
activation = "Tanh",
autoencoder = TRUE
)##
|
| | 0%
|
|===================== | 30%
|
|=================================== | 50%
|
|======================================================== | 80%
|
|======================================================================| 100%
##
|
| | 0%
|
|======================================================================| 100%
plotdata2 = as.data.frame(train_supervised_features2)
plotdata2$label = as.character(as.vector(d.hex[,1]))
qplot(DF.L3.C1, DF.L3.C2, data = plotdata2, color = label, main = "Neural network: 100 - 50 - 2 - 50 - 100 ")More Autoencoders : Credit Card Fraud Detection using H2o
library(tidyverse)
library(ggplot2)
creditcard = read.csv("creditcard.csv")
head(creditcard) #v1-v28 are numerical perdictors## Time V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
## 1 0 -1.36 -0.073 2.54 1.38 -0.34 0.462 0.240 0.099 0.36 0.091 -0.55
## 2 0 1.19 0.266 0.17 0.45 0.06 -0.082 -0.079 0.085 -0.26 -0.167 1.61
## 3 1 -1.36 -1.340 1.77 0.38 -0.50 1.800 0.791 0.248 -1.51 0.208 0.62
## 4 1 -0.97 -0.185 1.79 -0.86 -0.01 1.247 0.238 0.377 -1.39 -0.055 -0.23
## 5 2 -1.16 0.878 1.55 0.40 -0.41 0.096 0.593 -0.271 0.82 0.753 -0.82
## 6 2 -0.43 0.961 1.14 -0.17 0.42 -0.030 0.476 0.260 -0.57 -0.371 1.34
## V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22
## 1 -0.618 -0.99 -0.31 1.47 -0.47 0.208 0.026 0.404 0.251 -0.0183 0.2778
## 2 1.065 0.49 -0.14 0.64 0.46 -0.115 -0.183 -0.146 -0.069 -0.2258 -0.6387
## 3 0.066 0.72 -0.17 2.35 -2.89 1.110 -0.121 -2.262 0.525 0.2480 0.7717
## 4 0.178 0.51 -0.29 -0.63 -1.06 -0.684 1.966 -1.233 -0.208 -0.1083 0.0053
## 5 0.538 1.35 -1.12 0.18 -0.45 -0.237 -0.038 0.803 0.409 -0.0094 0.7983
## 6 0.360 -0.36 -0.14 0.52 0.40 -0.058 0.069 -0.033 0.085 -0.2083 -0.5598
## V23 V24 V25 V26 V27 V28 Amount Class
## 1 -0.110 0.067 0.13 -0.19 0.134 -0.021 149.6 0
## 2 0.101 -0.340 0.17 0.13 -0.009 0.015 2.7 0
## 3 0.909 -0.689 -0.33 -0.14 -0.055 -0.060 378.7 0
## 4 -0.190 -1.176 0.65 -0.22 0.063 0.061 123.5 0
## 5 -0.137 0.141 -0.21 0.50 0.219 0.215 70.0 0
## 6 -0.026 -0.371 -0.23 0.11 0.254 0.081 3.7 0
## Connection successful!
##
## R is connected to the H2O cluster:
## H2O cluster uptime: 16 minutes 15 seconds
## H2O cluster timezone: Asia/Kolkata
## H2O data parsing timezone: UTC
## H2O cluster version: 3.30.0.1
## H2O cluster version age: 1 month and 21 days
## H2O cluster name: H2O_started_from_R_HP_fjx183
## H2O cluster total nodes: 1
## H2O cluster total memory: 1.46 GB
## H2O cluster total cores: 4
## H2O cluster allowed cores: 4
## H2O cluster healthy: TRUE
## H2O Connection ip: localhost
## H2O Connection port: 54321
## H2O Connection proxy: NA
## H2O Internal Security: FALSE
## H2O API Extensions: Amazon S3, Algos, AutoML, Core V3, TargetEncoder, Core V4
## R Version: R version 3.5.0 (2018-04-23)
##
|
| | 0%
|
|======================================================================| 100%
## Time V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
## 1 0 -1.36 -0.073 2.54 1.38 -0.34 0.462 0.240 0.099 0.36 0.091 -0.55
## 2 0 1.19 0.266 0.17 0.45 0.06 -0.082 -0.079 0.085 -0.26 -0.167 1.61
## 3 1 -1.36 -1.340 1.77 0.38 -0.50 1.800 0.791 0.248 -1.51 0.208 0.62
## 4 1 -0.97 -0.185 1.79 -0.86 -0.01 1.247 0.238 0.377 -1.39 -0.055 -0.23
## 5 2 -1.16 0.878 1.55 0.40 -0.41 0.096 0.593 -0.271 0.82 0.753 -0.82
## 6 2 -0.43 0.961 1.14 -0.17 0.42 -0.030 0.476 0.260 -0.57 -0.371 1.34
## V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22
## 1 -0.618 -0.99 -0.31 1.47 -0.47 0.208 0.026 0.404 0.251 -0.0183 0.2778
## 2 1.065 0.49 -0.14 0.64 0.46 -0.115 -0.183 -0.146 -0.069 -0.2258 -0.6387
## 3 0.066 0.72 -0.17 2.35 -2.89 1.110 -0.121 -2.262 0.525 0.2480 0.7717
## 4 0.178 0.51 -0.29 -0.63 -1.06 -0.684 1.966 -1.233 -0.208 -0.1083 0.0053
## 5 0.538 1.35 -1.12 0.18 -0.45 -0.237 -0.038 0.803 0.409 -0.0094 0.7983
## 6 0.360 -0.36 -0.14 0.52 0.40 -0.058 0.069 -0.033 0.085 -0.2083 -0.5598
## V23 V24 V25 V26 V27 V28 Amount Class
## 1 -0.110 0.067 0.13 -0.19 0.134 -0.021 149.6 0
## 2 0.101 -0.340 0.17 0.13 -0.009 0.015 2.7 0
## 3 0.909 -0.689 -0.33 -0.14 -0.055 -0.060 378.7 0
## 4 -0.190 -1.176 0.65 -0.22 0.063 0.061 123.5 0
## 5 -0.137 0.141 -0.21 0.50 0.219 0.215 70.0 0
## 6 -0.026 -0.371 -0.23 0.11 0.254 0.081 3.7 0
## Class 'H2OFrame' <environment: 0x000000002771f740>
## - attr(*, "op")= chr "Parse"
## - attr(*, "id")= chr "d.hex"
## - attr(*, "eval")= logi FALSE
## - attr(*, "nrow")= int 284807
## - attr(*, "ncol")= int 31
## - attr(*, "types")=List of 31
## ..$ : chr "int"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "real"
## ..$ : chr "int"
## - attr(*, "data")='data.frame': 10 obs. of 31 variables:
## ..$ Time : num 0 0 1 1 2 2 4 7 7 9
## ..$ V1 : num -1.36 1.192 -1.358 -0.966 -1.158 ...
## ..$ V2 : num -0.0728 0.2662 -1.3402 -0.1852 0.8777 ...
## ..$ V3 : num 2.536 0.166 1.773 1.793 1.549 ...
## ..$ V4 : num 1.378 0.448 0.38 -0.863 0.403 ...
## ..$ V5 : num -0.3383 0.06 -0.5032 -0.0103 -0.4072 ...
## ..$ V6 : num 0.4624 -0.0824 1.8005 1.2472 0.0959 ...
## ..$ V7 : num 0.2396 -0.0788 0.7915 0.2376 0.5929 ...
## ..$ V8 : num 0.0987 0.0851 0.2477 0.3774 -0.2705 ...
## ..$ V9 : num 0.364 -0.255 -1.515 -1.387 0.818 ...
## ..$ V10 : num 0.0908 -0.167 0.2076 -0.055 0.7531 ...
## ..$ V11 : num -0.552 1.613 0.625 -0.226 -0.823 ...
## ..$ V12 : num -0.6178 1.0652 0.0661 0.1782 0.5382 ...
## ..$ V13 : num -0.991 0.489 0.717 0.508 1.346 ...
## ..$ V14 : num -0.311 -0.144 -0.166 -0.288 -1.12 ...
## ..$ V15 : num 1.468 0.636 2.346 -0.631 0.175 ...
## ..$ V16 : num -0.47 0.464 -2.89 -1.06 -0.451 ...
## ..$ V17 : num 0.208 -0.115 1.11 -0.684 -0.237 ...
## ..$ V18 : num 0.0258 -0.1834 -0.1214 1.9658 -0.0382 ...
## ..$ V19 : num 0.404 -0.146 -2.262 -1.233 0.803 ...
## ..$ V20 : num 0.2514 -0.0691 0.525 -0.208 0.4085 ...
## ..$ V21 : num -0.01831 -0.22578 0.248 -0.1083 -0.00943 ...
## ..$ V22 : num 0.27784 -0.63867 0.77168 0.00527 0.79828 ...
## ..$ V23 : num -0.11 0.101 0.909 -0.19 -0.137 ...
## ..$ V24 : num 0.0669 -0.3398 -0.6893 -1.1756 0.1413 ...
## ..$ V25 : num 0.129 0.167 -0.328 0.647 -0.206 ...
## ..$ V26 : num -0.189 0.126 -0.139 -0.222 0.502 ...
## ..$ V27 : num 0.13356 -0.00898 -0.05535 0.06272 0.21942 ...
## ..$ V28 : num -0.0211 0.0147 -0.0598 0.0615 0.2152 ...
## ..$ Amount: num 149.62 2.69 378.66 123.5 69.99 ...
## ..$ Class : num 0 0 0 0 0 0 0 0 0 0
## Time V1
## Min. : 0 Min. :-56.40750963130000173
## 1st Qu.: 54084 1st Qu.: -0.95909150689599998
## Median : 84669 Median : -0.01729247293550000
## Mean : 94814 Mean : 0.00000000000000115
## 3rd Qu.:139271 3rd Qu.: 1.27768119876000008
## Max. :172792 Max. : 2.45492999121000022
## V2 V3
## Min. :-72.7157275628999997252 Min. :-48.32558936240000236
## 1st Qu.: -0.6879005823299999545 1st Qu.: -0.94720002252299995
## Median : -0.0244863864562000003 Median : 0.14925478558600000
## Mean : 0.0000000000000003624 Mean : -0.00000000000000189
## 3rd Qu.: 0.7337012659710000495 3rd Qu.: 1.01487700251000001
## Max. : 22.0577289904999993553 Max. : 9.38255843281999979
## V4 V5
## Min. :-5.683171198170000160 Min. :-113.743306711000002451
## 1st Qu.:-0.855648938571999973 1st Qu.: -0.700582571818999966
## Median :-0.020983874996300000 Median : -0.106402681467999999
## Mean : 0.000000000000002082 Mean : 0.000000000000001175
## 3rd Qu.: 0.723447127652000033 3rd Qu.: 0.487777208883000024
## Max. :16.875344033600001126 Max. : 34.801665876699999558
## V6 V7
## Min. :-26.160505935799999833 Min. :-43.5572415712000022836
## 1st Qu.: -0.797662407982000055 1st Qu.: -0.7149436014429999542
## Median : -0.300351750573000009 Median : -0.0583566593771000022
## Mean : 0.000000000000001526 Mean : -0.0000000000000006131
## 3rd Qu.: 0.395883169799000012 3rd Qu.: 0.4340835471719999838
## Max. : 73.301625545999996802 Max. :120.5894939450000009629
## V8 V9
## Min. :-73.2167184552999970037 Min. :-13.434066318199999301
## 1st Qu.: -0.2223837549029999971 1st Qu.: -0.661279511072999981
## Median : -0.0359359012623000004 Median : -0.051669231640099997
## Mean : 0.0000000000000001533 Mean : -0.000000000000002453
## 3rd Qu.: 0.2437358791989999995 3rd Qu.: 0.586970108718000039
## Max. : 20.0072083650999985593 Max. : 15.594994607100000295
## V10 V11
## Min. :-24.588262437200000932 Min. :-4.797473464800000365
## 1st Qu.: -0.566563353970000017 1st Qu.:-0.778357056303999983
## Median : -0.131562766948999987 Median :-0.038436043861400003
## Mean : 0.000000000000002264 Mean : 0.000000000000001622
## 3rd Qu.: 0.448438015746000007 3rd Qu.: 0.735117741874000030
## Max. : 23.745136120699999793 Max. :12.018913181600000328
## V12 V13
## Min. :-18.683714633299999264 Min. :-5.7918812063200002527
## 1st Qu.: -0.429625217559999995 1st Qu.:-0.6502130686849999508
## Median : 0.127549023329000005 Median :-0.0171936246040000004
## Mean : -0.000000000000001194 Mean : 0.0000000000000008399
## 3rd Qu.: 0.605126944090999985 3rd Qu.: 0.6545821119720000025
## Max. : 7.848392075639999632 Max. : 7.1268829585900004275
## V14 V15
## Min. :-19.21432549029999848 Min. :-4.498944676769999873
## 1st Qu.: -0.44769672722999998 1st Qu.:-0.592952284610000047
## Median : 0.02816073744240000 Median : 0.035751970292299998
## Mean : 0.00000000000000126 Mean : 0.000000000000004803
## 3rd Qu.: 0.47427711057299998 3rd Qu.: 0.637702852645000040
## Max. : 10.52676605179999925 Max. : 8.877741597740000046
## V16 V17
## Min. :-14.129854517500000100 Min. :-25.1627993693000000519
## 1st Qu.: -0.482739258251000003 1st Qu.: -0.4862938999299999954
## Median : 0.051825164346399999 Median : -0.0732979924922999987
## Mean : 0.000000000000001404 Mean : -0.0000000000000003992
## 3rd Qu.: 0.492054688838000021 3rd Qu.: 0.3741142405649999780
## Max. : 17.315111517599998336 Max. : 9.2535262504699993258
## V18 V19
## Min. :-9.4987459210500002627 Min. :-7.213527430180000088
## 1st Qu.:-0.5131401852550000475 1st Qu.:-0.465029532267999979
## Median :-0.0042466565293000002 Median :-0.004031573397670000
## Mean : 0.0000000000000009836 Mean : 0.000000000000001028
## 3rd Qu.: 0.4901070570900000201 3rd Qu.: 0.456966385473000003
## Max. : 5.0410691854099995979 Max. : 5.591971427339999856
## V20 V21
## Min. :-54.4977204946000028940 Min. :-34.8303821447999979455
## 1st Qu.: -0.2127553932360000122 1st Qu.: -0.2778778795280000269
## Median : -0.1188367684929999973 Median : -0.0297449943196999994
## Mean : 0.0000000000000006451 Mean : 0.0000000000000001916
## 3rd Qu.: 0.0690004809926000051 3rd Qu.: 0.1563546695870000058
## Max. : 39.4209042482000029395 Max. : 27.2028391573000014603
## V22 V23
## Min. :-10.9331436977000002742 Min. :-44.8077352038000000789
## 1st Qu.: -0.5580065444559999532 1st Qu.: -0.1638698133569999882
## Median : -0.0006644659787960000 Median : -0.0291975195698000005
## Mean : -0.0000000000000002938 Mean : 0.0000000000000002682
## 3rd Qu.: 0.5138051449239999791 3rd Qu.: 0.1054747742169999947
## Max. : 10.5030900899000005921 Max. : 22.5284116897999986406
## V24 V25
## Min. :-2.836626918699999944 Min. :-10.2953970750000003420
## 1st Qu.:-0.357954116132000011 1st Qu.: -0.3190050529160000092
## Median : 0.035368214814400001 Median : 0.0016646906501800000
## Mean : 0.000000000000004468 Mean : 0.0000000000000005109
## 3rd Qu.: 0.436111721816999975 3rd Qu.: 0.3401494199699999776
## Max. : 4.584549136899999766 Max. : 7.5195886787099999182
## V26 V27
## Min. :-2.604550552810000141 Min. :-22.5656793208000010509
## 1st Qu.:-0.327205179638999977 1st Qu.: -0.0818601886112999971
## Median :-0.057841748404500001 Median : -0.0276823111843999999
## Mean : 0.000000000000001685 Mean : -0.0000000000000003674
## 3rd Qu.: 0.236009267487999996 3rd Qu.: 0.0806734436694000051
## Max. : 3.517345611620000145 Max. : 31.6121981060999992508
## V28 Amount Class
## Min. :-15.4300839055000000855 Min. : 0.00 Min. :0.000000
## 1st Qu.: -0.0553816875165000014 1st Qu.: 0.00 1st Qu.:0.000000
## Median : -0.0061037957920700003 Median : 0.00 Median :0.000000
## Mean : -0.0000000000000001221 Mean : 88.35 Mean :0.001727
## 3rd Qu.: 0.0431740959324000001 3rd Qu.: 77.07 3rd Qu.:0.000000
## Max. : 33.8478078189000015641 Max. :25691.16 Max. :1.000000
## [1] 31
g.split = h2o.splitFrame(data = d.hex,ratios = 0.75)
train = g.split[[1]]#75% training data
test = g.split[[2]]
##3 hidden layers
model_unsup = h2o.deeplearning(x = 1:30,
training_frame = train,
model_id = "model_unsup",
autoencoder = TRUE,
reproducible = TRUE, #slow - turn off for real problems
ignore_const_cols = FALSE,
seed = 42,
hidden = c(10, 10, 10),
epochs = 100,
activation = "Tanh")##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======================================================================| 100%