Note: Data for covid-19 last updated 5/23/2020.
Data Set-up
# Data in use: BCG_covid19_DB_unfiltered_16.csv
df_unfiltered[df_unfiltered == ""] <- NA
# df_unfiltered$BCG_mean_coverage <- ifelse(!is.na(df_unfiltered$BCG_policy) & is.na(df_unfiltered$BCG_mean_coverage), 0, df_unfiltered$BCG_mean_coverage)
#
# df_unfiltered$BCG_median_coverage <- ifelse(!is.na(df_unfiltered$BCG_policy) & is.na(df_unfiltered$BCG_median_coverage), 0, df_unfiltered$BCG_median_coverage)
df_world <- subset(df_unfiltered, ISO3 != "USA_state")
df_filtered <- subset(df_unfiltered,
covid19_cumulative_deaths > 0
& population_million > 1
& ages_65_up > 15
& urban_percentage_2018 > 60
& population_density_2018 < 300
& HDI_2018 > 0.7
& ISO3 != "USA_state")
df_unfiltered <- df_unfiltered[-which(df_unfiltered$ISO3 == "USA"), ]
df_linear_models <- data.frame()
df_anova_models <- data.frame()
df_t_models <- data.frame()
Key for the dfs:
df_unfiltered: USA as states, no as country
df_world: USA as country, no as states
df_filtered: Social variables (population, age, urban, density, HDI) and USA as country, no as states.
df_filtered_2: Social varibales (popualtion, age, density, HDI) and USA as country, no as states.
VARIABLES
dependent_variables <- names(df_unfiltered)[c(23:28,30:33,35:50)]
dependent_variables
## [1] "total_deaths_per_million"
## [2] "days_to_reached_0.1_deaths_per_million"
## [3] "days_to_reached_1_deaths_per_million"
## [4] "mean_daily_deaths_per_million"
## [5] "median_daily_deaths_per_million"
## [6] "max_daily_deaths_per_million"
## [7] "total_deaths_week_3_per_million"
## [8] "median_daily_deaths_per_million_week_3"
## [9] "mean_daily_deaths_per_million_week_3"
## [10] "max_daily_deaths_per_million_week_3"
## [11] "total_deaths_month_1_per_million"
## [12] "median_daily_deaths_per_million_month_1"
## [13] "mean_daily_deaths_per_million_month_1"
## [14] "max_daily_deaths_per_million_month_1"
## [15] "log_total_deaths_per_million"
## [16] "log_mean_daily_deaths_per_million"
## [17] "log_median_daily_deaths_per_million"
## [18] "log_max_daily_deaths_per_million"
## [19] "log_total_deaths_week_3_per_million"
## [20] "log_median_daily_deaths_per_million_week_3"
## [21] "log_mean_daily_deaths_per_million_week_3"
## [22] "log_max_daily_deaths_per_million_week_3"
## [23] "log_total_deaths_month_1_per_million"
## [24] "log_median_daily_deaths_per_million_month_1"
## [25] "log_mean_daily_deaths_per_million_month_1"
## [26] "log_max_daily_deaths_per_million_month_1"
independent_variables_continuous <- names(df_unfiltered)[17:18]
independent_variables_continuous
## [1] "BCG_mean_coverage" "BCG_median_coverage"
independent_variables_categorical <- names(df_unfiltered)[12]
independent_variables_categorical
## [1] "BCG_policy"
confounding_varibales <- names(df_unfiltered)[c(7,51,6,10)]
confounding_varibales
## [1] "population_density_2018" "urban_percentage_2018"
## [3] "HDI_2018" "ages_65_up"
Models with UNFILTERED data
All data, including states of USA
Linear Models Unfiltered
model_results <- data.frame()
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_continuous[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_labels_continuous$V2[i],
df = glance(linear_model)$df-1,
r_squared = summary(linear_model)$r.squared,
p_value = glance(linear_model)$p.value,
AIC = glance(linear_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
BCG % (mean) |
1 |
0.0100575 |
0.2525661 |
1557.91161 |
|
| Days to 0.1 Death/1 M |
BCG % (mean) |
1 |
0.0697068 |
0.0045333 |
813.35760 |
YES |
| Days to 1 Death/1 M |
BCG % (mean) |
1 |
0.1109799 |
0.0009710 |
785.35502 |
YES |
| Deaths/day/1 M (mean) |
BCG % (mean) |
1 |
0.0082428 |
0.3281958 |
361.89951 |
|
| Deaths/day/1 M (median) |
BCG % (mean) |
1 |
0.0023914 |
0.5989774 |
299.80616 |
|
| Deaths/day/1 M (max) |
BCG % (mean) |
1 |
0.0257301 |
0.0827120 |
761.76574 |
|
| Deaths/1 M/week 3 (Total) |
BCG % (mean) |
1 |
0.0214707 |
0.1197871 |
646.39704 |
|
| Deaths/1 M/week 3 (median) |
BCG % (mean) |
1 |
0.0248978 |
0.0936020 |
177.07824 |
|
| Deaths/1 M/week 3 (mean) |
BCG % (mean) |
1 |
0.0214707 |
0.1197871 |
202.72953 |
|
| Deaths/1 M/week 3 (max) |
BCG % (mean) |
1 |
0.0141349 |
0.2077102 |
379.04618 |
|
| Deaths/1 M/month 1 (Total) |
BCG % (mean) |
1 |
0.0032450 |
0.5544449 |
942.61856 |
|
| Deaths/1 M/month 1 (median) |
BCG % (mean) |
1 |
0.0262620 |
0.0907533 |
74.65498 |
|
| Deaths/1 M/month 1 (mean) |
BCG % (mean) |
1 |
0.0032450 |
0.5544449 |
194.35514 |
|
| Deaths/1 M/month 1 (max) |
BCG % (mean) |
1 |
0.0007187 |
0.7810019 |
485.92748 |
|
| Deaths/1 M (Total) |
BCG % (mean) |
1 |
0.0828828 |
0.0015710 |
501.84205 |
YES |
| Deaths/day/1 M log(mean) |
BCG % (mean) |
1 |
0.0569798 |
0.0092376 |
483.82121 |
YES |
| Deaths/day/1 M log(median) |
BCG % (mean) |
1 |
0.0819017 |
0.0294174 |
220.02204 |
YES |
| Deaths/day/1 M loglog(max) |
BCG % (mean) |
1 |
0.0911369 |
0.0008927 |
438.80420 |
YES |
| Deaths/1 M/week 3 log(Total) |
BCG % (mean) |
1 |
0.0968932 |
0.0023889 |
363.58632 |
YES |
| Deaths/1 M/week 3 log(median) |
BCG % (mean) |
1 |
0.1129982 |
0.0121006 |
207.19470 |
YES |
| Deaths/1 M/week 3 log(mean) |
BCG % (mean) |
1 |
0.0968932 |
0.0023889 |
363.58632 |
YES |
| Deaths/1 M/week 3 log(max) |
BCG % (mean) |
1 |
0.0855129 |
0.0044500 |
340.02918 |
YES |
| Deaths/1 M/month 1 log(Total) |
BCG % (mean) |
1 |
0.0779126 |
0.0031469 |
449.15418 |
YES |
| Deaths/1 M/month 1 log(median) |
BCG % (mean) |
1 |
0.1369328 |
0.0069309 |
186.25396 |
YES |
| Deaths/1 M/month 1 log(mean) |
BCG % (mean) |
1 |
0.0779126 |
0.0031469 |
449.15418 |
YES |
| Deaths/1 M/month 1 log(max) |
BCG % (mean) |
1 |
0.0755714 |
0.0036552 |
405.42266 |
YES |
| Deaths/1 M (Total) |
BCG % (median) |
1 |
0.0078893 |
0.3111653 |
1558.20041 |
|
| Days to 0.1 Death/1 M |
BCG % (median) |
1 |
0.0770725 |
0.0027851 |
812.45141 |
YES |
| Days to 1 Death/1 M |
BCG % (median) |
1 |
0.1100417 |
0.0010236 |
785.45522 |
YES |
| Deaths/day/1 M (mean) |
BCG % (median) |
1 |
0.0066096 |
0.3814714 |
362.09367 |
|
| Deaths/day/1 M (median) |
BCG % (median) |
1 |
0.0013963 |
0.6878797 |
299.92380 |
|
| Deaths/day/1 M (max) |
BCG % (median) |
1 |
0.0242313 |
0.0923322 |
761.94713 |
|
| Deaths/1 M/week 3 (Total) |
BCG % (median) |
1 |
0.0185268 |
0.1487372 |
646.73949 |
|
| Deaths/1 M/week 3 (median) |
BCG % (median) |
1 |
0.0216729 |
0.1180391 |
177.45465 |
|
| Deaths/1 M/week 3 (mean) |
BCG % (median) |
1 |
0.0185268 |
0.1487372 |
203.07198 |
|
| Deaths/1 M/week 3 (max) |
BCG % (median) |
1 |
0.0117105 |
0.2517715 |
379.32618 |
|
| Deaths/1 M/month 1 (Total) |
BCG % (median) |
1 |
0.0023746 |
0.6131759 |
942.71458 |
|
| Deaths/1 M/month 1 (median) |
BCG % (median) |
1 |
0.0226290 |
0.1167336 |
75.06463 |
|
| Deaths/1 M/month 1 (mean) |
BCG % (median) |
1 |
0.0023746 |
0.6131759 |
194.45116 |
|
| Deaths/1 M/month 1 (max) |
BCG % (median) |
1 |
0.0005611 |
0.8059700 |
485.94483 |
|
| Deaths/1 M (Total) |
BCG % (median) |
1 |
0.0774543 |
0.0022768 |
502.53844 |
YES |
| Deaths/day/1 M log(mean) |
BCG % (median) |
1 |
0.0538859 |
0.0114251 |
484.20772 |
YES |
| Deaths/day/1 M log(median) |
BCG % (median) |
1 |
0.0778406 |
0.0339341 |
220.27803 |
YES |
| Deaths/day/1 M loglog(max) |
BCG % (median) |
1 |
0.0931657 |
0.0007768 |
438.54049 |
YES |
| Deaths/1 M/week 3 log(Total) |
BCG % (median) |
1 |
0.0900686 |
0.0034696 |
364.28645 |
YES |
| Deaths/1 M/week 3 log(median) |
BCG % (median) |
1 |
0.1116117 |
0.0126740 |
207.28061 |
YES |
| Deaths/1 M/week 3 log(mean) |
BCG % (median) |
1 |
0.0900686 |
0.0034696 |
364.28645 |
YES |
| Deaths/1 M/week 3 log(max) |
BCG % (median) |
1 |
0.0807154 |
0.0057825 |
340.51580 |
YES |
| Deaths/1 M/month 1 log(Total) |
BCG % (median) |
1 |
0.0756980 |
0.0036257 |
449.41805 |
YES |
| Deaths/1 M/month 1 log(median) |
BCG % (median) |
1 |
0.1290490 |
0.0089112 |
186.72681 |
YES |
| Deaths/1 M/month 1 log(mean) |
BCG % (median) |
1 |
0.0756980 |
0.0036257 |
449.41805 |
YES |
| Deaths/1 M/month 1 log(max) |
BCG % (median) |
1 |
0.0771482 |
0.0033046 |
405.23487 |
YES |
Anova Models Unfiltered
model_results <- data.frame()
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_categorical[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_labels_categorical$V2[i],
F_statistic = glance(aov_model)$statistic,
df = glance(aov_model)$df-1,
df.residual = glance(aov_model)$df.residual,
r_squared = glance(aov_model)$r.squared,
p_value = glance(aov_model)$p.value,
AIC = glance(aov_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
BCG Policy |
35.291558 |
2 |
226 |
0.2379876 |
0.0000000 |
3051.1237 |
YES |
| Days to 0.1 Death/1 M |
BCG Policy |
9.550244 |
2 |
204 |
0.0856138 |
0.0001084 |
1413.5208 |
YES |
| Days to 1 Death/1 M |
BCG Policy |
19.561125 |
2 |
182 |
0.1769259 |
0.0000000 |
1467.6526 |
YES |
| Deaths/day/1 M (mean) |
BCG Policy |
34.701376 |
2 |
207 |
0.2510928 |
0.0000000 |
1018.0879 |
YES |
| Deaths/day/1 M (median) |
BCG Policy |
30.848064 |
2 |
207 |
0.2296130 |
0.0000000 |
958.9569 |
YES |
| Deaths/day/1 M (max) |
BCG Policy |
17.825712 |
2 |
207 |
0.1469244 |
0.0000001 |
1737.8075 |
YES |
| Deaths/1 M/week 3 (Total) |
BCG Policy |
9.845409 |
2 |
203 |
0.0884222 |
0.0000830 |
1996.9980 |
YES |
| Deaths/1 M/week 3 (median) |
BCG Policy |
20.342097 |
2 |
203 |
0.1669546 |
0.0000000 |
875.3993 |
YES |
| Deaths/1 M/week 3 (mean) |
BCG Policy |
9.851171 |
2 |
203 |
0.0884694 |
0.0000826 |
1195.2663 |
YES |
| Deaths/1 M/week 3 (max) |
BCG Policy |
5.148833 |
2 |
203 |
0.0482784 |
0.0065881 |
1656.8274 |
YES |
| Deaths/1 M/month 1 (Total) |
BCG Policy |
17.468156 |
2 |
198 |
0.1499823 |
0.0000001 |
2333.7491 |
YES |
| Deaths/1 M/month 1 (median) |
BCG Policy |
16.791176 |
2 |
198 |
0.1450126 |
0.0000002 |
747.9925 |
YES |
| Deaths/1 M/month 1 (mean) |
BCG Policy |
17.482112 |
2 |
198 |
0.1500841 |
0.0000001 |
966.4304 |
YES |
| Deaths/1 M/month 1 (max) |
BCG Policy |
11.112235 |
2 |
198 |
0.1009174 |
0.0000267 |
1650.6150 |
YES |
| Deaths/1 M (Total) |
BCG Policy |
86.428983 |
2 |
207 |
0.4550595 |
0.0000000 |
820.0366 |
YES |
| Deaths/day/1 M log(mean) |
BCG Policy |
89.084514 |
2 |
207 |
0.4625736 |
0.0000000 |
791.7902 |
YES |
| Deaths/day/1 M log(median) |
BCG Policy |
50.525435 |
2 |
122 |
0.4530396 |
0.0000000 |
418.9885 |
YES |
| Deaths/day/1 M loglog(max) |
BCG Policy |
82.171872 |
2 |
207 |
0.4425650 |
0.0000000 |
737.1333 |
YES |
| Deaths/1 M/week 3 log(Total) |
BCG Policy |
61.776623 |
2 |
175 |
0.4138399 |
0.0000000 |
666.8013 |
YES |
| Deaths/1 M/week 3 log(median) |
BCG Policy |
46.164918 |
2 |
118 |
0.4389764 |
0.0000000 |
407.6714 |
YES |
| Deaths/1 M/week 3 log(mean) |
BCG Policy |
63.528813 |
2 |
175 |
0.4206404 |
0.0000000 |
663.8216 |
YES |
| Deaths/1 M/week 3 log(max) |
BCG Policy |
55.035018 |
2 |
175 |
0.3861158 |
0.0000000 |
635.8427 |
YES |
| Deaths/1 M/month 1 log(Total) |
BCG Policy |
80.226849 |
2 |
198 |
0.4476274 |
0.0000000 |
765.7283 |
YES |
| Deaths/1 M/month 1 log(median) |
BCG Policy |
47.170933 |
2 |
113 |
0.4550064 |
0.0000000 |
376.4635 |
YES |
| Deaths/1 M/month 1 log(mean) |
BCG Policy |
82.051059 |
2 |
198 |
0.4531929 |
0.0000000 |
763.0775 |
YES |
| Deaths/1 M/month 1 log(max) |
BCG Policy |
79.479889 |
2 |
198 |
0.4453157 |
0.0000000 |
713.2738 |
YES |
T-test Models Unfiltered
df_unfiltered$BCG_TF <- 1
df_unfiltered[which(df_unfiltered$BCG_policy == "never"),]$BCG_TF <- 0
df_unfiltered[which(df_unfiltered$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_unfiltered$BCG_TF_2 <- 1
df_unfiltered[which(df_unfiltered$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_unfiltered[which(df_unfiltered$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_unfiltered)[c(ncol(df_unfiltered)-1, ncol(df_unfiltered))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
independent_variables_t_test_labels <- c("BCG Yes/No", "BCG Yes/No 2")
model_results <- data.frame()
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_t_test_labels[i],
t_statistic = glance(t_test_model)$statistic,
df = glance(t_test_model)$parameter,
p_value = glance(t_test_model)$p.value)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| t |
Deaths/1 M (Total) |
BCG Yes/No |
8.578383 |
236 |
0.0000000 |
YES |
| t1 |
Days to 0.1 Death/1 M |
BCG Yes/No |
-4.089459 |
210 |
0.9999692 |
|
| t2 |
Days to 1 Death/1 M |
BCG Yes/No |
-5.786119 |
188 |
1.0000000 |
|
| t3 |
Deaths/day/1 M (mean) |
BCG Yes/No |
8.314781 |
214 |
0.0000000 |
YES |
| t4 |
Deaths/day/1 M (median) |
BCG Yes/No |
7.987650 |
214 |
0.0000000 |
YES |
| t5 |
Deaths/day/1 M (max) |
BCG Yes/No |
5.673321 |
214 |
0.0000000 |
YES |
| t6 |
Deaths/1 M/week 3 (Total) |
BCG Yes/No |
4.444807 |
210 |
0.0000071 |
YES |
| t7 |
Deaths/1 M/week 3 (median) |
BCG Yes/No |
6.562097 |
210 |
0.0000000 |
YES |
| t8 |
Deaths/1 M/week 3 (mean) |
BCG Yes/No |
4.445990 |
210 |
0.0000071 |
YES |
| t9 |
Deaths/1 M/week 3 (max) |
BCG Yes/No |
3.141745 |
210 |
0.0009609 |
YES |
| t10 |
Deaths/1 M/month 1 (Total) |
BCG Yes/No |
5.986539 |
205 |
0.0000000 |
YES |
| t11 |
Deaths/1 M/month 1 (median) |
BCG Yes/No |
5.967557 |
205 |
0.0000000 |
YES |
| t12 |
Deaths/1 M/month 1 (mean) |
BCG Yes/No |
5.988822 |
205 |
0.0000000 |
YES |
| t13 |
Deaths/1 M/month 1 (max) |
BCG Yes/No |
4.434142 |
205 |
0.0000075 |
YES |
| t14 |
Deaths/1 M (Total) |
BCG Yes/No |
13.084633 |
214 |
0.0000000 |
YES |
| t15 |
Deaths/day/1 M log(mean) |
BCG Yes/No |
13.173120 |
214 |
0.0000000 |
YES |
| t16 |
Deaths/day/1 M log(median) |
BCG Yes/No |
9.960480 |
123 |
0.0000000 |
YES |
| t17 |
Deaths/day/1 M loglog(max) |
BCG Yes/No |
12.144409 |
214 |
0.0000000 |
YES |
| t18 |
Deaths/1 M/week 3 log(Total) |
BCG Yes/No |
10.887818 |
180 |
0.0000000 |
YES |
| t19 |
Deaths/1 M/week 3 log(median) |
BCG Yes/No |
9.621785 |
119 |
0.0000000 |
YES |
| t20 |
Deaths/1 M/week 3 log(mean) |
BCG Yes/No |
11.031037 |
180 |
0.0000000 |
YES |
| t21 |
Deaths/1 M/week 3 log(max) |
BCG Yes/No |
10.007811 |
180 |
0.0000000 |
YES |
| t22 |
Deaths/1 M/month 1 log(Total) |
BCG Yes/No |
12.250776 |
205 |
0.0000000 |
YES |
| t23 |
Deaths/1 M/month 1 log(median) |
BCG Yes/No |
9.755319 |
114 |
0.0000000 |
YES |
| t24 |
Deaths/1 M/month 1 log(mean) |
BCG Yes/No |
12.379323 |
205 |
0.0000000 |
YES |
| t25 |
Deaths/1 M/month 1 log(max) |
BCG Yes/No |
11.716173 |
205 |
0.0000000 |
YES |
| t26 |
Deaths/1 M (Total) |
BCG Yes/No 2 |
8.426339 |
216 |
0.0000000 |
YES |
| t27 |
Days to 0.1 Death/1 M |
BCG Yes/No 2 |
-4.087826 |
190 |
0.9999679 |
|
| t28 |
Days to 1 Death/1 M |
BCG Yes/No 2 |
-5.690978 |
168 |
1.0000000 |
|
| t29 |
Deaths/day/1 M (mean) |
BCG Yes/No 2 |
8.377878 |
194 |
0.0000000 |
YES |
| t30 |
Deaths/day/1 M (median) |
BCG Yes/No 2 |
8.032317 |
194 |
0.0000000 |
YES |
| t31 |
Deaths/day/1 M (max) |
BCG Yes/No 2 |
5.773224 |
194 |
0.0000000 |
YES |
| t32 |
Deaths/1 M/week 3 (Total) |
BCG Yes/No 2 |
4.351605 |
190 |
0.0000110 |
YES |
| t33 |
Deaths/1 M/week 3 (median) |
BCG Yes/No 2 |
6.410442 |
190 |
0.0000000 |
YES |
| t34 |
Deaths/1 M/week 3 (mean) |
BCG Yes/No 2 |
4.353014 |
190 |
0.0000110 |
YES |
| t35 |
Deaths/1 M/week 3 (max) |
BCG Yes/No 2 |
3.138014 |
190 |
0.0009861 |
YES |
| t36 |
Deaths/1 M/month 1 (Total) |
BCG Yes/No 2 |
5.957096 |
185 |
0.0000000 |
YES |
| t37 |
Deaths/1 M/month 1 (median) |
BCG Yes/No 2 |
6.208372 |
185 |
0.0000000 |
YES |
| t38 |
Deaths/1 M/month 1 (mean) |
BCG Yes/No 2 |
5.960000 |
185 |
0.0000000 |
YES |
| t39 |
Deaths/1 M/month 1 (max) |
BCG Yes/No 2 |
4.500736 |
185 |
0.0000060 |
YES |
| t40 |
Deaths/1 M (Total) |
BCG Yes/No 2 |
12.167201 |
194 |
0.0000000 |
YES |
| t41 |
Deaths/day/1 M log(mean) |
BCG Yes/No 2 |
12.412878 |
194 |
0.0000000 |
YES |
| t42 |
Deaths/day/1 M log(median) |
BCG Yes/No 2 |
9.797458 |
105 |
0.0000000 |
YES |
| t43 |
Deaths/day/1 M loglog(max) |
BCG Yes/No 2 |
11.635406 |
194 |
0.0000000 |
YES |
| t44 |
Deaths/1 M/week 3 log(Total) |
BCG Yes/No 2 |
10.535509 |
160 |
0.0000000 |
YES |
| t45 |
Deaths/1 M/week 3 log(median) |
BCG Yes/No 2 |
9.374008 |
102 |
0.0000000 |
YES |
| t46 |
Deaths/1 M/week 3 log(mean) |
BCG Yes/No 2 |
10.707597 |
160 |
0.0000000 |
YES |
| t47 |
Deaths/1 M/week 3 log(max) |
BCG Yes/No 2 |
9.865003 |
160 |
0.0000000 |
YES |
| t48 |
Deaths/1 M/month 1 log(Total) |
BCG Yes/No 2 |
11.524027 |
185 |
0.0000000 |
YES |
| t49 |
Deaths/1 M/month 1 log(median) |
BCG Yes/No 2 |
8.913883 |
98 |
0.0000000 |
YES |
| t50 |
Deaths/1 M/month 1 log(mean) |
BCG Yes/No 2 |
11.669882 |
185 |
0.0000000 |
YES |
| t51 |
Deaths/1 M/month 1 log(max) |
BCG Yes/No 2 |
11.261260 |
185 |
0.0000000 |
YES |
Models without USA states (UNFILTEREDish data)
All data, excluding states of USA
Linear Models without USA states
model_results <- data.frame()
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_world[,dependent_variables[j]]~df_world[,independent_variables_continuous[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_labels_continuous$V2[i],
df = glance(linear_model)$df-1,
r_squared = summary(linear_model)$r.squared,
p_value = glance(linear_model)$p.value,
AIC = glance(linear_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
BCG % (mean) |
1 |
0.0100575 |
0.2525661 |
1557.91161 |
|
| Days to 0.1 Death/1 M |
BCG % (mean) |
1 |
0.0697068 |
0.0045333 |
813.35760 |
YES |
| Days to 1 Death/1 M |
BCG % (mean) |
1 |
0.1109799 |
0.0009710 |
785.35502 |
YES |
| Deaths/day/1 M (mean) |
BCG % (mean) |
1 |
0.0082428 |
0.3281958 |
361.89951 |
|
| Deaths/day/1 M (median) |
BCG % (mean) |
1 |
0.0023914 |
0.5989774 |
299.80616 |
|
| Deaths/day/1 M (max) |
BCG % (mean) |
1 |
0.0257301 |
0.0827120 |
761.76574 |
|
| Deaths/1 M/week 3 (Total) |
BCG % (mean) |
1 |
0.0214707 |
0.1197871 |
646.39704 |
|
| Deaths/1 M/week 3 (median) |
BCG % (mean) |
1 |
0.0248978 |
0.0936020 |
177.07824 |
|
| Deaths/1 M/week 3 (mean) |
BCG % (mean) |
1 |
0.0214707 |
0.1197871 |
202.72953 |
|
| Deaths/1 M/week 3 (max) |
BCG % (mean) |
1 |
0.0141349 |
0.2077102 |
379.04618 |
|
| Deaths/1 M/month 1 (Total) |
BCG % (mean) |
1 |
0.0032450 |
0.5544449 |
942.61856 |
|
| Deaths/1 M/month 1 (median) |
BCG % (mean) |
1 |
0.0262620 |
0.0907533 |
74.65498 |
|
| Deaths/1 M/month 1 (mean) |
BCG % (mean) |
1 |
0.0032450 |
0.5544449 |
194.35514 |
|
| Deaths/1 M/month 1 (max) |
BCG % (mean) |
1 |
0.0007187 |
0.7810019 |
485.92748 |
|
| Deaths/1 M (Total) |
BCG % (mean) |
1 |
0.0828828 |
0.0015710 |
501.84205 |
YES |
| Deaths/day/1 M log(mean) |
BCG % (mean) |
1 |
0.0569798 |
0.0092376 |
483.82121 |
YES |
| Deaths/day/1 M log(median) |
BCG % (mean) |
1 |
0.0819017 |
0.0294174 |
220.02204 |
YES |
| Deaths/day/1 M loglog(max) |
BCG % (mean) |
1 |
0.0911369 |
0.0008927 |
438.80420 |
YES |
| Deaths/1 M/week 3 log(Total) |
BCG % (mean) |
1 |
0.0968932 |
0.0023889 |
363.58632 |
YES |
| Deaths/1 M/week 3 log(median) |
BCG % (mean) |
1 |
0.1129982 |
0.0121006 |
207.19470 |
YES |
| Deaths/1 M/week 3 log(mean) |
BCG % (mean) |
1 |
0.0968932 |
0.0023889 |
363.58632 |
YES |
| Deaths/1 M/week 3 log(max) |
BCG % (mean) |
1 |
0.0855129 |
0.0044500 |
340.02918 |
YES |
| Deaths/1 M/month 1 log(Total) |
BCG % (mean) |
1 |
0.0779126 |
0.0031469 |
449.15418 |
YES |
| Deaths/1 M/month 1 log(median) |
BCG % (mean) |
1 |
0.1369328 |
0.0069309 |
186.25396 |
YES |
| Deaths/1 M/month 1 log(mean) |
BCG % (mean) |
1 |
0.0779126 |
0.0031469 |
449.15418 |
YES |
| Deaths/1 M/month 1 log(max) |
BCG % (mean) |
1 |
0.0755714 |
0.0036552 |
405.42266 |
YES |
| Deaths/1 M (Total) |
BCG % (median) |
1 |
0.0078893 |
0.3111653 |
1558.20041 |
|
| Days to 0.1 Death/1 M |
BCG % (median) |
1 |
0.0770725 |
0.0027851 |
812.45141 |
YES |
| Days to 1 Death/1 M |
BCG % (median) |
1 |
0.1100417 |
0.0010236 |
785.45522 |
YES |
| Deaths/day/1 M (mean) |
BCG % (median) |
1 |
0.0066096 |
0.3814714 |
362.09367 |
|
| Deaths/day/1 M (median) |
BCG % (median) |
1 |
0.0013963 |
0.6878797 |
299.92380 |
|
| Deaths/day/1 M (max) |
BCG % (median) |
1 |
0.0242313 |
0.0923322 |
761.94713 |
|
| Deaths/1 M/week 3 (Total) |
BCG % (median) |
1 |
0.0185268 |
0.1487372 |
646.73949 |
|
| Deaths/1 M/week 3 (median) |
BCG % (median) |
1 |
0.0216729 |
0.1180391 |
177.45465 |
|
| Deaths/1 M/week 3 (mean) |
BCG % (median) |
1 |
0.0185268 |
0.1487372 |
203.07198 |
|
| Deaths/1 M/week 3 (max) |
BCG % (median) |
1 |
0.0117105 |
0.2517715 |
379.32618 |
|
| Deaths/1 M/month 1 (Total) |
BCG % (median) |
1 |
0.0023746 |
0.6131759 |
942.71458 |
|
| Deaths/1 M/month 1 (median) |
BCG % (median) |
1 |
0.0226290 |
0.1167336 |
75.06463 |
|
| Deaths/1 M/month 1 (mean) |
BCG % (median) |
1 |
0.0023746 |
0.6131759 |
194.45116 |
|
| Deaths/1 M/month 1 (max) |
BCG % (median) |
1 |
0.0005611 |
0.8059700 |
485.94483 |
|
| Deaths/1 M (Total) |
BCG % (median) |
1 |
0.0774543 |
0.0022768 |
502.53844 |
YES |
| Deaths/day/1 M log(mean) |
BCG % (median) |
1 |
0.0538859 |
0.0114251 |
484.20772 |
YES |
| Deaths/day/1 M log(median) |
BCG % (median) |
1 |
0.0778406 |
0.0339341 |
220.27803 |
YES |
| Deaths/day/1 M loglog(max) |
BCG % (median) |
1 |
0.0931657 |
0.0007768 |
438.54049 |
YES |
| Deaths/1 M/week 3 log(Total) |
BCG % (median) |
1 |
0.0900686 |
0.0034696 |
364.28645 |
YES |
| Deaths/1 M/week 3 log(median) |
BCG % (median) |
1 |
0.1116117 |
0.0126740 |
207.28061 |
YES |
| Deaths/1 M/week 3 log(mean) |
BCG % (median) |
1 |
0.0900686 |
0.0034696 |
364.28645 |
YES |
| Deaths/1 M/week 3 log(max) |
BCG % (median) |
1 |
0.0807154 |
0.0057825 |
340.51580 |
YES |
| Deaths/1 M/month 1 log(Total) |
BCG % (median) |
1 |
0.0756980 |
0.0036257 |
449.41805 |
YES |
| Deaths/1 M/month 1 log(median) |
BCG % (median) |
1 |
0.1290490 |
0.0089112 |
186.72681 |
YES |
| Deaths/1 M/month 1 log(mean) |
BCG % (median) |
1 |
0.0756980 |
0.0036257 |
449.41805 |
YES |
| Deaths/1 M/month 1 log(max) |
BCG % (median) |
1 |
0.0771482 |
0.0033046 |
405.23487 |
YES |
Anova Models without USA states
model_results <- data.frame()
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_world[,dependent_variables[j]]~df_world[,independent_variables_categorical[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_labels_categorical$V2[i],
F_statistic = glance(aov_model)$statistic,
df = glance(aov_model)$df-1,
df.residual = glance(aov_model)$df.residual,
r_squared = glance(aov_model)$r.squared,
p_value = glance(aov_model)$p.value,
AIC = glance(aov_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
BCG Policy |
75.310156 |
2 |
171 |
0.4683172 |
0.0000000 |
2144.6544 |
YES |
| Days to 0.1 Death/1 M |
BCG Policy |
1.137734 |
2 |
150 |
0.0149431 |
0.3232947 |
1092.5784 |
|
| Days to 1 Death/1 M |
BCG Policy |
2.995661 |
2 |
128 |
0.0447143 |
0.0535218 |
1081.2977 |
|
| Deaths/day/1 M (mean) |
BCG Policy |
62.121331 |
2 |
153 |
0.4481369 |
0.0000000 |
583.9640 |
YES |
| Deaths/day/1 M (median) |
BCG Policy |
39.570068 |
2 |
153 |
0.3409154 |
0.0000000 |
523.4866 |
YES |
| Deaths/day/1 M (max) |
BCG Policy |
24.543986 |
2 |
153 |
0.2429040 |
0.0000000 |
1278.2667 |
YES |
| Deaths/1 M/week 3 (Total) |
BCG Policy |
20.616725 |
2 |
149 |
0.2167518 |
0.0000000 |
1465.2870 |
YES |
| Deaths/1 M/week 3 (median) |
BCG Policy |
24.846593 |
2 |
149 |
0.2501001 |
0.0000000 |
475.9714 |
YES |
| Deaths/1 M/week 3 (mean) |
BCG Policy |
20.616725 |
2 |
149 |
0.2167518 |
0.0000000 |
873.7303 |
YES |
| Deaths/1 M/week 3 (max) |
BCG Policy |
16.080004 |
2 |
149 |
0.1775227 |
0.0000005 |
1237.8784 |
YES |
| Deaths/1 M/month 1 (Total) |
BCG Policy |
27.112720 |
2 |
144 |
0.2735544 |
0.0000000 |
1662.8180 |
YES |
| Deaths/1 M/month 1 (median) |
BCG Policy |
14.753138 |
2 |
144 |
0.1700588 |
0.0000015 |
446.9163 |
YES |
| Deaths/1 M/month 1 (mean) |
BCG Policy |
27.112720 |
2 |
144 |
0.2735544 |
0.0000000 |
662.8660 |
YES |
| Deaths/1 M/month 1 (max) |
BCG Policy |
21.670543 |
2 |
144 |
0.2313485 |
0.0000000 |
1201.9020 |
YES |
| Deaths/1 M (Total) |
BCG Policy |
31.851392 |
2 |
153 |
0.2939638 |
0.0000000 |
636.9269 |
YES |
| Deaths/day/1 M log(mean) |
BCG Policy |
30.423977 |
2 |
153 |
0.2845384 |
0.0000000 |
615.2620 |
YES |
| Deaths/day/1 M log(median) |
BCG Policy |
22.551962 |
2 |
76 |
0.3724398 |
0.0000000 |
277.4063 |
YES |
| Deaths/day/1 M loglog(max) |
BCG Policy |
25.888359 |
2 |
153 |
0.2528448 |
0.0000000 |
575.6096 |
YES |
| Deaths/1 M/week 3 log(Total) |
BCG Policy |
22.500223 |
2 |
125 |
0.2647078 |
0.0000000 |
500.8128 |
YES |
| Deaths/1 M/week 3 log(median) |
BCG Policy |
15.785794 |
2 |
74 |
0.2990538 |
0.0000020 |
279.2334 |
YES |
| Deaths/1 M/week 3 log(mean) |
BCG Policy |
22.500223 |
2 |
125 |
0.2647078 |
0.0000000 |
500.8128 |
YES |
| Deaths/1 M/week 3 log(max) |
BCG Policy |
17.619132 |
2 |
125 |
0.2199117 |
0.0000002 |
483.2901 |
YES |
| Deaths/1 M/month 1 log(Total) |
BCG Policy |
28.225306 |
2 |
144 |
0.2816186 |
0.0000000 |
588.5559 |
YES |
| Deaths/1 M/month 1 log(median) |
BCG Policy |
19.162672 |
2 |
69 |
0.3570950 |
0.0000002 |
248.4873 |
YES |
| Deaths/1 M/month 1 log(mean) |
BCG Policy |
28.225306 |
2 |
144 |
0.2816186 |
0.0000000 |
588.5559 |
YES |
| Deaths/1 M/month 1 log(max) |
BCG Policy |
26.138935 |
2 |
144 |
0.2663462 |
0.0000000 |
548.0434 |
YES |
T-test Models without USA states
df_world$BCG_TF <- 1
df_world[which(df_world$BCG_policy == "never"),]$BCG_TF <- 0
df_world[which(df_world$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_world$BCG_TF_2 <- 1
df_world[which(df_world$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_world[which(df_world$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_world)[c(ncol(df_world)-1, ncol(df_world))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
model_results <- data.frame()
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_world[,dependent_variables[j]]~df_world[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_t_test_labels[i],
t_statistic = glance(t_test_model)$statistic,
df = glance(t_test_model)$parameter,
p_value = glance(t_test_model)$p.value)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| t |
Deaths/1 M (Total) |
BCG Yes/No |
9.6720593 |
181 |
0.0000000 |
YES |
| t1 |
Days to 0.1 Death/1 M |
BCG Yes/No |
-1.4295380 |
156 |
0.9225754 |
|
| t2 |
Days to 1 Death/1 M |
BCG Yes/No |
-2.2827530 |
134 |
0.9879902 |
|
| t3 |
Deaths/day/1 M (mean) |
BCG Yes/No |
9.0001476 |
160 |
0.0000000 |
YES |
| t4 |
Deaths/day/1 M (median) |
BCG Yes/No |
8.8552878 |
160 |
0.0000000 |
YES |
| t5 |
Deaths/day/1 M (max) |
BCG Yes/No |
4.5495121 |
160 |
0.0000053 |
YES |
| t6 |
Deaths/1 M/week 3 (Total) |
BCG Yes/No |
4.2907672 |
156 |
0.0000156 |
YES |
| t7 |
Deaths/1 M/week 3 (median) |
BCG Yes/No |
7.2638501 |
156 |
0.0000000 |
YES |
| t8 |
Deaths/1 M/week 3 (mean) |
BCG Yes/No |
4.2907672 |
156 |
0.0000156 |
YES |
| t9 |
Deaths/1 M/week 3 (max) |
BCG Yes/No |
3.3112620 |
156 |
0.0005770 |
YES |
| t10 |
Deaths/1 M/month 1 (Total) |
BCG Yes/No |
5.8702666 |
151 |
0.0000000 |
YES |
| t11 |
Deaths/1 M/month 1 (median) |
BCG Yes/No |
5.5661085 |
151 |
0.0000001 |
YES |
| t12 |
Deaths/1 M/month 1 (mean) |
BCG Yes/No |
5.8702666 |
151 |
0.0000000 |
YES |
| t13 |
Deaths/1 M/month 1 (max) |
BCG Yes/No |
4.0017920 |
151 |
0.0000491 |
YES |
| t14 |
Deaths/1 M (Total) |
BCG Yes/No |
7.8192201 |
160 |
0.0000000 |
YES |
| t15 |
Deaths/day/1 M log(mean) |
BCG Yes/No |
7.6091458 |
160 |
0.0000000 |
YES |
| t16 |
Deaths/day/1 M log(median) |
BCG Yes/No |
6.3833960 |
77 |
0.0000000 |
YES |
| t17 |
Deaths/day/1 M loglog(max) |
BCG Yes/No |
6.7057254 |
160 |
0.0000000 |
YES |
| t18 |
Deaths/1 M/week 3 log(Total) |
BCG Yes/No |
6.5008592 |
130 |
0.0000000 |
YES |
| t19 |
Deaths/1 M/week 3 log(median) |
BCG Yes/No |
5.6396734 |
75 |
0.0000001 |
YES |
| t20 |
Deaths/1 M/week 3 log(mean) |
BCG Yes/No |
6.5008592 |
130 |
0.0000000 |
YES |
| t21 |
Deaths/1 M/week 3 log(max) |
BCG Yes/No |
5.5944071 |
130 |
0.0000001 |
YES |
| t22 |
Deaths/1 M/month 1 log(Total) |
BCG Yes/No |
7.1706578 |
151 |
0.0000000 |
YES |
| t23 |
Deaths/1 M/month 1 log(median) |
BCG Yes/No |
6.2131104 |
70 |
0.0000000 |
YES |
| t24 |
Deaths/1 M/month 1 log(mean) |
BCG Yes/No |
7.1706578 |
151 |
0.0000000 |
YES |
| t25 |
Deaths/1 M/month 1 log(max) |
BCG Yes/No |
6.5587285 |
151 |
0.0000000 |
YES |
| t26 |
Deaths/1 M (Total) |
BCG Yes/No 2 |
13.6246209 |
161 |
0.0000000 |
YES |
| t27 |
Days to 0.1 Death/1 M |
BCG Yes/No 2 |
-0.6859582 |
136 |
0.7530464 |
|
| t28 |
Days to 1 Death/1 M |
BCG Yes/No 2 |
-1.0836337 |
114 |
0.8595931 |
|
| t29 |
Deaths/day/1 M (mean) |
BCG Yes/No 2 |
12.5750619 |
140 |
0.0000000 |
YES |
| t30 |
Deaths/day/1 M (median) |
BCG Yes/No 2 |
11.6038010 |
140 |
0.0000000 |
YES |
| t31 |
Deaths/day/1 M (max) |
BCG Yes/No 2 |
6.6983521 |
140 |
0.0000000 |
YES |
| t32 |
Deaths/1 M/week 3 (Total) |
BCG Yes/No 2 |
6.2909928 |
136 |
0.0000000 |
YES |
| t33 |
Deaths/1 M/week 3 (median) |
BCG Yes/No 2 |
7.6553731 |
136 |
0.0000000 |
YES |
| t34 |
Deaths/1 M/week 3 (mean) |
BCG Yes/No 2 |
6.2909928 |
136 |
0.0000000 |
YES |
| t35 |
Deaths/1 M/week 3 (max) |
BCG Yes/No 2 |
5.5169846 |
136 |
0.0000001 |
YES |
| t36 |
Deaths/1 M/month 1 (Total) |
BCG Yes/No 2 |
7.8073274 |
131 |
0.0000000 |
YES |
| t37 |
Deaths/1 M/month 1 (median) |
BCG Yes/No 2 |
6.8750676 |
131 |
0.0000000 |
YES |
| t38 |
Deaths/1 M/month 1 (mean) |
BCG Yes/No 2 |
7.8073274 |
131 |
0.0000000 |
YES |
| t39 |
Deaths/1 M/month 1 (max) |
BCG Yes/No 2 |
6.3288930 |
131 |
0.0000000 |
YES |
| t40 |
Deaths/1 M (Total) |
BCG Yes/No 2 |
4.9996548 |
140 |
0.0000008 |
YES |
| t41 |
Deaths/day/1 M log(mean) |
BCG Yes/No 2 |
4.8344108 |
140 |
0.0000017 |
YES |
| t42 |
Deaths/day/1 M log(median) |
BCG Yes/No 2 |
4.6874525 |
59 |
0.0000084 |
YES |
| t43 |
Deaths/day/1 M loglog(max) |
BCG Yes/No 2 |
4.4779637 |
140 |
0.0000078 |
YES |
| t44 |
Deaths/1 M/week 3 log(Total) |
BCG Yes/No 2 |
4.3161314 |
110 |
0.0000174 |
YES |
| t45 |
Deaths/1 M/week 3 log(median) |
BCG Yes/No 2 |
2.7451430 |
58 |
0.0040196 |
YES |
| t46 |
Deaths/1 M/week 3 log(mean) |
BCG Yes/No 2 |
4.3161314 |
110 |
0.0000174 |
YES |
| t47 |
Deaths/1 M/week 3 log(max) |
BCG Yes/No 2 |
3.8771176 |
110 |
0.0000901 |
YES |
| t48 |
Deaths/1 M/month 1 log(Total) |
BCG Yes/No 2 |
4.5251840 |
131 |
0.0000067 |
YES |
| t49 |
Deaths/1 M/month 1 log(median) |
BCG Yes/No 2 |
2.6575081 |
54 |
0.0051662 |
YES |
| t50 |
Deaths/1 M/month 1 log(mean) |
BCG Yes/No 2 |
4.5251840 |
131 |
0.0000067 |
YES |
| t51 |
Deaths/1 M/month 1 log(max) |
BCG Yes/No 2 |
4.5233616 |
131 |
0.0000067 |
YES |
Models with FILTERED data
All data, filtered as follows
df_filtered <- subsoet(df_unfiltered,
covid19_cumulative_deaths > 0
& population_million > 1
& ages_65_up > 15
& urban_percentage_2018 > 60
& population_density_2018 < 300
& HDI_2018 > 0.7
& ISO3 != "USA_state")
Linear Models Filtered
model_results <- data.frame()
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_continuous[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_labels_continuous$V2[i],
df = glance(linear_model)$df-1,
r_squared = summary(linear_model)$r.squared,
p_value = glance(linear_model)$p.value,
AIC = glance(linear_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
BCG % (mean) |
1 |
0.2353432 |
0.0928875 |
173.87119 |
|
| Days to 0.1 Death/1 M |
BCG % (mean) |
1 |
0.0002690 |
0.9575894 |
85.94672 |
|
| Days to 1 Death/1 M |
BCG % (mean) |
1 |
0.0000007 |
0.9977671 |
93.15374 |
|
| Deaths/day/1 M (mean) |
BCG % (mean) |
1 |
0.2820490 |
0.0618269 |
58.59584 |
|
| Deaths/day/1 M (median) |
BCG % (mean) |
1 |
0.2624751 |
0.0734482 |
54.28631 |
|
| Deaths/day/1 M (max) |
BCG % (mean) |
1 |
0.1782610 |
0.1506741 |
91.38915 |
|
| Deaths/1 M/week 3 (Total) |
BCG % (mean) |
1 |
0.0778762 |
0.3558381 |
87.07780 |
|
| Deaths/1 M/week 3 (median) |
BCG % (mean) |
1 |
0.0966083 |
0.3013023 |
38.26445 |
|
| Deaths/1 M/week 3 (mean) |
BCG % (mean) |
1 |
0.0778762 |
0.3558381 |
36.48414 |
|
| Deaths/1 M/week 3 (max) |
BCG % (mean) |
1 |
0.1299020 |
0.2263708 |
46.98715 |
|
| Deaths/1 M/month 1 (Total) |
BCG % (mean) |
1 |
0.2413049 |
0.0882472 |
125.18194 |
|
| Deaths/1 M/month 1 (median) |
BCG % (mean) |
1 |
0.0000108 |
0.9914933 |
29.51069 |
|
| Deaths/1 M/month 1 (mean) |
BCG % (mean) |
1 |
0.2413049 |
0.0882472 |
36.75080 |
|
| Deaths/1 M/month 1 (max) |
BCG % (mean) |
1 |
0.3774596 |
0.0254745 |
70.29746 |
YES |
| Deaths/1 M (Total) |
BCG % (mean) |
1 |
0.0270851 |
0.5910722 |
50.49897 |
|
| Deaths/day/1 M log(mean) |
BCG % (mean) |
1 |
0.0344729 |
0.5436489 |
48.85614 |
|
| Deaths/day/1 M log(median) |
BCG % (mean) |
1 |
0.4355032 |
0.0195320 |
36.57134 |
YES |
| Deaths/day/1 M loglog(max) |
BCG % (mean) |
1 |
0.0707716 |
0.3796605 |
45.25257 |
|
| Deaths/1 M/week 3 log(Total) |
BCG % (mean) |
1 |
0.0585076 |
0.4259286 |
51.79247 |
|
| Deaths/1 M/week 3 log(median) |
BCG % (mean) |
1 |
0.1524995 |
0.2350580 |
45.32722 |
|
| Deaths/1 M/week 3 log(mean) |
BCG % (mean) |
1 |
0.0585076 |
0.4259286 |
51.79247 |
|
| Deaths/1 M/week 3 log(max) |
BCG % (mean) |
1 |
0.0895938 |
0.3204635 |
46.65160 |
|
| Deaths/1 M/month 1 log(Total) |
BCG % (mean) |
1 |
0.0725442 |
0.3735312 |
48.18814 |
|
| Deaths/1 M/month 1 log(median) |
BCG % (mean) |
1 |
0.0628783 |
0.4846813 |
34.29566 |
|
| Deaths/1 M/month 1 log(mean) |
BCG % (mean) |
1 |
0.0725442 |
0.3735312 |
48.18814 |
|
| Deaths/1 M/month 1 log(max) |
BCG % (mean) |
1 |
0.1830745 |
0.1446985 |
40.88857 |
|
| Deaths/1 M (Total) |
BCG % (median) |
1 |
0.2508993 |
0.0812290 |
173.60399 |
|
| Days to 0.1 Death/1 M |
BCG % (median) |
1 |
0.0019095 |
0.8872806 |
85.92537 |
|
| Days to 1 Death/1 M |
BCG % (median) |
1 |
0.0001546 |
0.9678422 |
93.15174 |
|
| Deaths/day/1 M (mean) |
BCG % (median) |
1 |
0.2961326 |
0.0545268 |
58.33829 |
|
| Deaths/day/1 M (median) |
BCG % (median) |
1 |
0.2726945 |
0.0671536 |
54.10491 |
|
| Deaths/day/1 M (max) |
BCG % (median) |
1 |
0.1954382 |
0.1303914 |
91.11453 |
|
| Deaths/1 M/week 3 (Total) |
BCG % (median) |
1 |
0.0784003 |
0.3541563 |
87.07041 |
|
| Deaths/1 M/week 3 (median) |
BCG % (median) |
1 |
0.0981120 |
0.2973710 |
38.24280 |
|
| Deaths/1 M/week 3 (mean) |
BCG % (median) |
1 |
0.0784003 |
0.3541563 |
36.47674 |
|
| Deaths/1 M/week 3 (max) |
BCG % (median) |
1 |
0.1291221 |
0.2278724 |
46.99879 |
|
| Deaths/1 M/month 1 (Total) |
BCG % (median) |
1 |
0.2412295 |
0.0883046 |
125.18323 |
|
| Deaths/1 M/month 1 (median) |
BCG % (median) |
1 |
0.0000443 |
0.9827768 |
29.51026 |
|
| Deaths/1 M/month 1 (mean) |
BCG % (median) |
1 |
0.2412295 |
0.0883046 |
36.75210 |
|
| Deaths/1 M/month 1 (max) |
BCG % (median) |
1 |
0.3752214 |
0.0260383 |
70.34411 |
YES |
| Deaths/1 M (Total) |
BCG % (median) |
1 |
0.0333967 |
0.5501185 |
50.41436 |
|
| Deaths/day/1 M log(mean) |
BCG % (median) |
1 |
0.0411450 |
0.5062876 |
48.76599 |
|
| Deaths/day/1 M log(median) |
BCG % (median) |
1 |
0.4550100 |
0.0161222 |
36.14933 |
YES |
| Deaths/day/1 M loglog(max) |
BCG % (median) |
1 |
0.0806055 |
0.3471881 |
45.11426 |
|
| Deaths/1 M/week 3 log(Total) |
BCG % (median) |
1 |
0.0525224 |
0.4513514 |
51.87485 |
|
| Deaths/1 M/week 3 log(median) |
BCG % (median) |
1 |
0.1377221 |
0.2611631 |
45.51737 |
|
| Deaths/1 M/week 3 log(mean) |
BCG % (median) |
1 |
0.0525224 |
0.4513514 |
51.87485 |
|
| Deaths/1 M/week 3 log(max) |
BCG % (median) |
1 |
0.0805917 |
0.3472311 |
46.77951 |
|
| Deaths/1 M/month 1 log(Total) |
BCG % (median) |
1 |
0.0683899 |
0.3881031 |
48.24624 |
|
| Deaths/1 M/month 1 log(median) |
BCG % (median) |
1 |
0.0662416 |
0.4728291 |
34.25970 |
|
| Deaths/1 M/month 1 log(mean) |
BCG % (median) |
1 |
0.0683899 |
0.3881031 |
48.24624 |
|
| Deaths/1 M/month 1 log(max) |
BCG % (median) |
1 |
0.1787759 |
0.1500235 |
40.95680 |
|
Anova Models Filtered
model_results <- data.frame()
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_categorical[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_labels_categorical$V2[i],
F_statistic = glance(aov_model)$statistic,
df = glance(aov_model)$df-1,
df.residual = glance(aov_model)$df.residual,
r_squared = glance(aov_model)$r.squared,
p_value = glance(aov_model)$p.value,
AIC = glance(aov_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
BCG Policy |
5.6924285 |
2 |
20 |
0.3627500 |
0.0110433 |
305.30309 |
YES |
| Days to 0.1 Death/1 M |
BCG Policy |
0.6885200 |
2 |
20 |
0.0644168 |
0.5138357 |
145.06209 |
|
| Days to 1 Death/1 M |
BCG Policy |
0.1505715 |
2 |
20 |
0.0148338 |
0.8611822 |
168.91091 |
|
| Deaths/day/1 M (mean) |
BCG Policy |
5.2073382 |
2 |
20 |
0.3424227 |
0.0151171 |
102.18718 |
YES |
| Deaths/day/1 M (median) |
BCG Policy |
6.6144859 |
2 |
20 |
0.3981156 |
0.0062392 |
93.39816 |
YES |
| Deaths/day/1 M (max) |
BCG Policy |
4.3263005 |
2 |
20 |
0.3019831 |
0.0274574 |
152.91915 |
YES |
| Deaths/1 M/week 3 (Total) |
BCG Policy |
1.7184796 |
2 |
20 |
0.1466470 |
0.2047799 |
171.72751 |
|
| Deaths/1 M/week 3 (median) |
BCG Policy |
2.4802982 |
2 |
20 |
0.1987371 |
0.1090813 |
75.10446 |
|
| Deaths/1 M/week 3 (mean) |
BCG Policy |
1.7184796 |
2 |
20 |
0.1466470 |
0.2047799 |
82.21565 |
|
| Deaths/1 M/week 3 (max) |
BCG Policy |
0.9971117 |
2 |
20 |
0.0906703 |
0.3865571 |
110.98744 |
|
| Deaths/1 M/month 1 (Total) |
BCG Policy |
1.7950091 |
2 |
20 |
0.1521838 |
0.1918745 |
244.10306 |
|
| Deaths/1 M/month 1 (median) |
BCG Policy |
1.9468584 |
2 |
20 |
0.1629599 |
0.1688351 |
56.51448 |
|
| Deaths/1 M/month 1 (mean) |
BCG Policy |
1.7950091 |
2 |
20 |
0.1521838 |
0.1918745 |
87.64798 |
|
| Deaths/1 M/month 1 (max) |
BCG Policy |
1.9314023 |
2 |
20 |
0.1618756 |
0.1710350 |
143.17506 |
|
| Deaths/1 M (Total) |
BCG Policy |
5.3244083 |
2 |
20 |
0.3474463 |
0.0140011 |
82.61545 |
YES |
| Deaths/day/1 M log(mean) |
BCG Policy |
4.7773193 |
2 |
20 |
0.3232873 |
0.0201393 |
80.86948 |
YES |
| Deaths/day/1 M log(median) |
BCG Policy |
5.9366651 |
2 |
18 |
0.3974559 |
0.0104689 |
70.31754 |
YES |
| Deaths/day/1 M loglog(max) |
BCG Policy |
5.0265215 |
2 |
20 |
0.3345100 |
0.0170379 |
73.27426 |
YES |
| Deaths/1 M/week 3 log(Total) |
BCG Policy |
0.6793881 |
2 |
20 |
0.0636168 |
0.5182464 |
91.84391 |
|
| Deaths/1 M/week 3 log(median) |
BCG Policy |
1.3854314 |
2 |
16 |
0.1476151 |
0.2786673 |
75.73075 |
|
| Deaths/1 M/week 3 log(mean) |
BCG Policy |
0.6793881 |
2 |
20 |
0.0636168 |
0.5182464 |
91.84391 |
|
| Deaths/1 M/week 3 log(max) |
BCG Policy |
0.4226547 |
2 |
20 |
0.0405515 |
0.6610229 |
87.07605 |
|
| Deaths/1 M/month 1 log(Total) |
BCG Policy |
1.4282063 |
2 |
20 |
0.1249720 |
0.2631596 |
87.26353 |
|
| Deaths/1 M/month 1 log(median) |
BCG Policy |
3.7725406 |
2 |
15 |
0.3346664 |
0.0470756 |
62.74446 |
YES |
| Deaths/1 M/month 1 log(mean) |
BCG Policy |
1.4282063 |
2 |
20 |
0.1249720 |
0.2631596 |
87.26353 |
|
| Deaths/1 M/month 1 log(max) |
BCG Policy |
1.8847822 |
2 |
20 |
0.1585879 |
0.1778639 |
78.22170 |
|
T-test Filtered
df_filtered$BCG_TF <- 1
df_filtered[which(df_filtered$BCG_policy == "never"),]$BCG_TF <- 0
df_filtered[which(df_filtered$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_filtered$BCG_TF_2 <- 1
df_filtered[which(df_filtered$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_filtered[which(df_filtered$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_filtered)[c(ncol(df_filtered)-1, ncol(df_filtered))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
model_results <- data.frame()
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = independent_variables_t_test_labels[i],
t_statistic = glance(t_test_model)$statistic,
df = glance(t_test_model)$parameter,
p_value = glance(t_test_model)$p.value)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| t |
Deaths/1 M (Total) |
BCG Yes/No |
2.8671204 |
21 |
0.0046129 |
YES |
| t1 |
Days to 0.1 Death/1 M |
BCG Yes/No |
0.8530290 |
21 |
0.2016341 |
|
| t2 |
Days to 1 Death/1 M |
BCG Yes/No |
0.1965676 |
21 |
0.4230279 |
|
| t3 |
Deaths/day/1 M (mean) |
BCG Yes/No |
2.9232477 |
21 |
0.0040625 |
YES |
| t4 |
Deaths/day/1 M (median) |
BCG Yes/No |
2.9212037 |
21 |
0.0040814 |
YES |
| t5 |
Deaths/day/1 M (max) |
BCG Yes/No |
2.9432473 |
21 |
0.0038820 |
YES |
| t6 |
Deaths/1 M/week 3 (Total) |
BCG Yes/No |
1.8499652 |
21 |
0.0392208 |
YES |
| t7 |
Deaths/1 M/week 3 (median) |
BCG Yes/No |
2.2603642 |
21 |
0.0172725 |
YES |
| t8 |
Deaths/1 M/week 3 (mean) |
BCG Yes/No |
1.8499652 |
21 |
0.0392208 |
YES |
| t9 |
Deaths/1 M/week 3 (max) |
BCG Yes/No |
1.3623322 |
21 |
0.0937636 |
|
| t10 |
Deaths/1 M/month 1 (Total) |
BCG Yes/No |
1.9403120 |
21 |
0.0329438 |
YES |
| t11 |
Deaths/1 M/month 1 (median) |
BCG Yes/No |
1.8172900 |
21 |
0.0417358 |
YES |
| t12 |
Deaths/1 M/month 1 (mean) |
BCG Yes/No |
1.9403120 |
21 |
0.0329438 |
YES |
| t13 |
Deaths/1 M/month 1 (max) |
BCG Yes/No |
1.8928796 |
21 |
0.0361193 |
YES |
| t14 |
Deaths/1 M (Total) |
BCG Yes/No |
2.8965111 |
21 |
0.0043163 |
YES |
| t15 |
Deaths/day/1 M log(mean) |
BCG Yes/No |
2.7933282 |
21 |
0.0054457 |
YES |
| t16 |
Deaths/day/1 M log(median) |
BCG Yes/No |
3.1169482 |
19 |
0.0028382 |
YES |
| t17 |
Deaths/day/1 M loglog(max) |
BCG Yes/No |
3.0750525 |
21 |
0.0028718 |
YES |
| t18 |
Deaths/1 M/week 3 log(Total) |
BCG Yes/No |
1.1868313 |
21 |
0.1242737 |
|
| t19 |
Deaths/1 M/week 3 log(median) |
BCG Yes/No |
1.6151611 |
17 |
0.0623407 |
|
| t20 |
Deaths/1 M/week 3 log(mean) |
BCG Yes/No |
1.1868313 |
21 |
0.1242737 |
|
| t21 |
Deaths/1 M/week 3 log(max) |
BCG Yes/No |
0.9119274 |
21 |
0.1860787 |
|
| t22 |
Deaths/1 M/month 1 log(Total) |
BCG Yes/No |
1.6941149 |
21 |
0.0525123 |
|
| t23 |
Deaths/1 M/month 1 log(median) |
BCG Yes/No |
2.1208456 |
16 |
0.0249550 |
YES |
| t24 |
Deaths/1 M/month 1 log(mean) |
BCG Yes/No |
1.6941149 |
21 |
0.0525123 |
|
| t25 |
Deaths/1 M/month 1 log(max) |
BCG Yes/No |
1.8285492 |
21 |
0.0408538 |
YES |
| t26 |
Deaths/1 M (Total) |
BCG Yes/No 2 |
7.8482143 |
8 |
0.0000251 |
YES |
| t27 |
Days to 0.1 Death/1 M |
BCG Yes/No 2 |
1.3253436 |
8 |
0.1108277 |
|
| t28 |
Days to 1 Death/1 M |
BCG Yes/No 2 |
0.5746378 |
8 |
0.2906656 |
|
| t29 |
Deaths/day/1 M (mean) |
BCG Yes/No 2 |
8.5677874 |
8 |
0.0000133 |
YES |
| t30 |
Deaths/day/1 M (median) |
BCG Yes/No 2 |
12.1221109 |
8 |
0.0000010 |
YES |
| t31 |
Deaths/day/1 M (max) |
BCG Yes/No 2 |
5.6882904 |
8 |
0.0002303 |
YES |
| t32 |
Deaths/1 M/week 3 (Total) |
BCG Yes/No 2 |
1.5260112 |
8 |
0.0827602 |
|
| t33 |
Deaths/1 M/week 3 (median) |
BCG Yes/No 2 |
1.8424168 |
8 |
0.0513321 |
|
| t34 |
Deaths/1 M/week 3 (mean) |
BCG Yes/No 2 |
1.5260112 |
8 |
0.0827602 |
|
| t35 |
Deaths/1 M/week 3 (max) |
BCG Yes/No 2 |
0.7726660 |
8 |
0.2309676 |
|
| t36 |
Deaths/1 M/month 1 (Total) |
BCG Yes/No 2 |
2.2145092 |
8 |
0.0288370 |
YES |
| t37 |
Deaths/1 M/month 1 (median) |
BCG Yes/No 2 |
0.8160790 |
8 |
0.2190385 |
|
| t38 |
Deaths/1 M/month 1 (mean) |
BCG Yes/No 2 |
2.2145092 |
8 |
0.0288370 |
YES |
| t39 |
Deaths/1 M/month 1 (max) |
BCG Yes/No 2 |
2.4929544 |
8 |
0.0186749 |
YES |
| t40 |
Deaths/1 M (Total) |
BCG Yes/No 2 |
6.8048878 |
8 |
0.0000686 |
YES |
| t41 |
Deaths/day/1 M log(mean) |
BCG Yes/No 2 |
6.1573308 |
8 |
0.0001359 |
YES |
| t42 |
Deaths/day/1 M log(median) |
BCG Yes/No 2 |
5.6183467 |
7 |
0.0004002 |
YES |
| t43 |
Deaths/day/1 M loglog(max) |
BCG Yes/No 2 |
3.7005387 |
8 |
0.0030190 |
YES |
| t44 |
Deaths/1 M/week 3 log(Total) |
BCG Yes/No 2 |
0.7257480 |
8 |
0.2443389 |
|
| t45 |
Deaths/1 M/week 3 log(median) |
BCG Yes/No 2 |
0.6077113 |
6 |
0.2828274 |
|
| t46 |
Deaths/1 M/week 3 log(mean) |
BCG Yes/No 2 |
0.7257480 |
8 |
0.2443389 |
|
| t47 |
Deaths/1 M/week 3 log(max) |
BCG Yes/No 2 |
0.3599300 |
8 |
0.3641082 |
|
| t48 |
Deaths/1 M/month 1 log(Total) |
BCG Yes/No 2 |
1.7408722 |
8 |
0.0599427 |
|
| t49 |
Deaths/1 M/month 1 log(median) |
BCG Yes/No 2 |
0.0730599 |
6 |
0.4720666 |
|
| t50 |
Deaths/1 M/month 1 log(mean) |
BCG Yes/No 2 |
1.7408722 |
8 |
0.0599427 |
|
| t51 |
Deaths/1 M/month 1 log(max) |
BCG Yes/No 2 |
2.0092334 |
8 |
0.0396862 |
YES |
Models with Confounding varibales
confounding_varibales <- names(df_unfiltered)[c(7,51,6,10)]
confounding_varibales
## [1] "population_density_2018" "urban_percentage_2018"
## [3] "HDI_2018" "ages_65_up"
df_confounding_models_stats <- data.frame()
Linear Models (with UNFILTERED data, including USA states)
model_results <- data.frame()
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,confounding_varibales[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = confounding_varibales_labels$V2[i],
df = glance(linear_model)$df-1,
r_squared = summary(linear_model)$r.squared,
p_value = glance(linear_model)$p.value,
AIC = glance(linear_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
Pop Dens |
1 |
0.0015626 |
0.5499921 |
3136.1817 |
|
| Days to 0.1 Death/1 M |
Pop Dens |
1 |
0.0014686 |
0.5835394 |
1364.4890 |
|
| Days to 1 Death/1 M |
Pop Dens |
1 |
0.0056609 |
0.3047965 |
1508.9396 |
|
| Deaths/day/1 M (mean) |
Pop Dens |
1 |
0.0022693 |
0.4912991 |
1080.1614 |
|
| Deaths/day/1 M (median) |
Pop Dens |
1 |
0.0001086 |
0.8803698 |
1015.6938 |
|
| Deaths/day/1 M (max) |
Pop Dens |
1 |
0.0385966 |
0.0041731 |
1769.4961 |
YES |
| Deaths/1 M/week 3 (Total) |
Pop Dens |
1 |
0.0119940 |
0.1144446 |
2037.8554 |
|
| Deaths/1 M/week 3 (median) |
Pop Dens |
1 |
0.0000743 |
0.9014046 |
921.6182 |
|
| Deaths/1 M/week 3 (mean) |
Pop Dens |
1 |
0.0119926 |
0.1144665 |
1224.4592 |
|
| Deaths/1 M/week 3 (max) |
Pop Dens |
1 |
0.0598486 |
0.0003571 |
1673.3058 |
YES |
| Deaths/1 M/month 1 (Total) |
Pop Dens |
1 |
0.0066389 |
0.2466448 |
2395.1370 |
|
| Deaths/1 M/month 1 (median) |
Pop Dens |
1 |
0.0000018 |
0.9849843 |
786.3645 |
|
| Deaths/1 M/month 1 (mean) |
Pop Dens |
1 |
0.0066371 |
0.2467086 |
1007.4353 |
|
| Deaths/1 M/month 1 (max) |
Pop Dens |
1 |
0.0499107 |
0.0013183 |
1683.6438 |
YES |
| Deaths/1 M (Total) |
Pop Dens |
1 |
0.0028610 |
0.4395827 |
941.9856 |
|
| Deaths/day/1 M log(mean) |
Pop Dens |
1 |
0.0033667 |
0.4017288 |
919.9606 |
|
| Deaths/day/1 M log(median) |
Pop Dens |
1 |
0.0122279 |
0.2195715 |
490.8730 |
|
| Deaths/day/1 M loglog(max) |
Pop Dens |
1 |
0.0129545 |
0.0991806 |
858.1680 |
|
| Deaths/1 M/week 3 log(Total) |
Pop Dens |
1 |
0.0123495 |
0.1375008 |
756.2934 |
|
| Deaths/1 M/week 3 log(median) |
Pop Dens |
1 |
0.0100677 |
0.2735047 |
474.3841 |
|
| Deaths/1 M/week 3 log(mean) |
Pop Dens |
1 |
0.0123148 |
0.1380584 |
755.3188 |
|
| Deaths/1 M/week 3 log(max) |
Pop Dens |
1 |
0.0272380 |
0.0268278 |
717.0527 |
YES |
| Deaths/1 M/month 1 log(Total) |
Pop Dens |
1 |
0.0085750 |
0.1877320 |
882.0224 |
|
| Deaths/1 M/month 1 log(median) |
Pop Dens |
1 |
0.0108051 |
0.2668111 |
443.6131 |
|
| Deaths/1 M/month 1 log(mean) |
Pop Dens |
1 |
0.0085353 |
0.1887620 |
881.3420 |
|
| Deaths/1 M/month 1 log(max) |
Pop Dens |
1 |
0.0185014 |
0.0523995 |
832.2929 |
|
| Deaths/1 M (Total) |
Urban (%) |
1 |
0.1435458 |
0.0000000 |
3101.1139 |
YES |
| Days to 0.1 Death/1 M |
Urban (%) |
1 |
0.0801226 |
0.0000343 |
1389.4160 |
YES |
| Days to 1 Death/1 M |
Urban (%) |
1 |
0.0756802 |
0.0001387 |
1502.9333 |
YES |
| Deaths/day/1 M (mean) |
Urban (%) |
1 |
0.1416456 |
0.0000000 |
1053.0725 |
YES |
| Deaths/day/1 M (median) |
Urban (%) |
1 |
0.1200590 |
0.0000002 |
992.5756 |
YES |
| Deaths/day/1 M (max) |
Urban (%) |
1 |
0.0952023 |
0.0000047 |
1764.1964 |
YES |
| Deaths/1 M/week 3 (Total) |
Urban (%) |
1 |
0.0644215 |
0.0002162 |
2017.7806 |
YES |
| Deaths/1 M/week 3 (median) |
Urban (%) |
1 |
0.0712431 |
0.0000973 |
902.7307 |
YES |
| Deaths/1 M/week 3 (mean) |
Urban (%) |
1 |
0.0644355 |
0.0002159 |
1208.2728 |
YES |
| Deaths/1 M/week 3 (max) |
Urban (%) |
1 |
0.0509735 |
0.0010419 |
1668.2341 |
YES |
| Deaths/1 M/month 1 (Total) |
Urban (%) |
1 |
0.0896944 |
0.0000142 |
2366.9879 |
YES |
| Deaths/1 M/month 1 (median) |
Urban (%) |
1 |
0.0627204 |
0.0003136 |
770.2601 |
YES |
| Deaths/1 M/month 1 (mean) |
Urban (%) |
1 |
0.0897234 |
0.0000142 |
986.0819 |
YES |
| Deaths/1 M/month 1 (max) |
Urban (%) |
1 |
0.0688598 |
0.0001554 |
1671.7560 |
YES |
| Deaths/1 M (Total) |
Urban (%) |
1 |
0.3004096 |
0.0000000 |
879.5372 |
YES |
| Deaths/day/1 M log(mean) |
Urban (%) |
1 |
0.2721874 |
0.0000000 |
860.5901 |
YES |
| Deaths/day/1 M log(median) |
Urban (%) |
1 |
0.2191157 |
0.0000000 |
461.4949 |
YES |
| Deaths/day/1 M loglog(max) |
Urban (%) |
1 |
0.2543371 |
0.0000000 |
804.6305 |
YES |
| Deaths/1 M/week 3 log(Total) |
Urban (%) |
1 |
0.2359741 |
0.0000000 |
722.4069 |
YES |
| Deaths/1 M/week 3 log(median) |
Urban (%) |
1 |
0.2020207 |
0.0000002 |
448.3021 |
YES |
| Deaths/1 M/week 3 log(mean) |
Urban (%) |
1 |
0.2382830 |
0.0000000 |
720.9515 |
YES |
| Deaths/1 M/week 3 log(max) |
Urban (%) |
1 |
0.2032590 |
0.0000000 |
689.9442 |
YES |
| Deaths/1 M/month 1 log(Total) |
Urban (%) |
1 |
0.2314930 |
0.0000000 |
835.2429 |
YES |
| Deaths/1 M/month 1 log(median) |
Urban (%) |
1 |
0.1785410 |
0.0000023 |
422.0592 |
YES |
| Deaths/1 M/month 1 log(mean) |
Urban (%) |
1 |
0.2331996 |
0.0000000 |
834.1674 |
YES |
| Deaths/1 M/month 1 log(max) |
Urban (%) |
1 |
0.2038726 |
0.0000000 |
790.5829 |
YES |
| Deaths/1 M (Total) |
HDI |
1 |
0.1582823 |
0.0000000 |
2931.0132 |
YES |
| Days to 0.1 Death/1 M |
HDI |
1 |
0.1030880 |
0.0000045 |
1294.3788 |
YES |
| Days to 1 Death/1 M |
HDI |
1 |
0.2800296 |
0.0000000 |
1400.9526 |
YES |
| Deaths/day/1 M (mean) |
HDI |
1 |
0.1578105 |
0.0000000 |
980.8538 |
YES |
| Deaths/day/1 M (median) |
HDI |
1 |
0.1425348 |
0.0000000 |
941.7487 |
YES |
| Deaths/day/1 M (max) |
HDI |
1 |
0.1848134 |
0.0000000 |
1484.5827 |
YES |
| Deaths/1 M/week 3 (Total) |
HDI |
1 |
0.0986929 |
0.0000073 |
1671.6507 |
YES |
| Deaths/1 M/week 3 (median) |
HDI |
1 |
0.0987275 |
0.0000073 |
855.6164 |
YES |
| Deaths/1 M/week 3 (mean) |
HDI |
1 |
0.0987484 |
0.0000073 |
908.8270 |
YES |
| Deaths/1 M/week 3 (max) |
HDI |
1 |
0.0997234 |
0.0000065 |
1173.7940 |
YES |
| Deaths/1 M/month 1 (Total) |
HDI |
1 |
0.1110148 |
0.0000025 |
2143.2019 |
YES |
| Deaths/1 M/month 1 (median) |
HDI |
1 |
0.0799133 |
0.0000742 |
732.1773 |
YES |
| Deaths/1 M/month 1 (mean) |
HDI |
1 |
0.1110850 |
0.0000025 |
843.9108 |
YES |
| Deaths/1 M/month 1 (max) |
HDI |
1 |
0.1364666 |
0.0000001 |
1349.4479 |
YES |
| Deaths/1 M (Total) |
HDI |
1 |
0.5621381 |
0.0000000 |
729.6336 |
YES |
| Deaths/day/1 M log(mean) |
HDI |
1 |
0.5214629 |
0.0000000 |
720.8821 |
YES |
| Deaths/day/1 M log(median) |
HDI |
1 |
0.4439661 |
0.0000000 |
395.3305 |
YES |
| Deaths/day/1 M loglog(max) |
HDI |
1 |
0.4973115 |
0.0000000 |
673.5364 |
YES |
| Deaths/1 M/week 3 log(Total) |
HDI |
1 |
0.4686292 |
0.0000000 |
600.6595 |
YES |
| Deaths/1 M/week 3 log(median) |
HDI |
1 |
0.4542382 |
0.0000000 |
371.6139 |
YES |
| Deaths/1 M/week 3 log(mean) |
HDI |
1 |
0.4744106 |
0.0000000 |
597.8508 |
YES |
| Deaths/1 M/week 3 log(max) |
HDI |
1 |
0.4119289 |
0.0000000 |
577.0548 |
YES |
| Deaths/1 M/month 1 log(Total) |
HDI |
1 |
0.5393430 |
0.0000000 |
684.2942 |
YES |
| Deaths/1 M/month 1 log(median) |
HDI |
1 |
0.4611461 |
0.0000000 |
349.8992 |
YES |
| Deaths/1 M/month 1 log(mean) |
HDI |
1 |
0.5440775 |
0.0000000 |
681.6604 |
YES |
| Deaths/1 M/month 1 log(max) |
HDI |
1 |
0.4853272 |
0.0000000 |
655.1107 |
YES |
| Deaths/1 M (Total) |
>65 yrs |
1 |
0.1329859 |
0.0000000 |
2991.6707 |
YES |
| Days to 0.1 Death/1 M |
>65 yrs |
1 |
0.0462761 |
0.0020023 |
1373.1714 |
YES |
| Days to 1 Death/1 M |
>65 yrs |
1 |
0.1517510 |
0.0000001 |
1455.3284 |
YES |
| Deaths/day/1 M (mean) |
>65 yrs |
1 |
0.1166931 |
0.0000004 |
1013.4279 |
YES |
| Deaths/day/1 M (median) |
>65 yrs |
1 |
0.1101392 |
0.0000010 |
958.9121 |
YES |
| Deaths/day/1 M (max) |
>65 yrs |
1 |
0.1229898 |
0.0000002 |
1528.3747 |
YES |
| Deaths/1 M/week 3 (Total) |
>65 yrs |
1 |
0.0890077 |
0.0000146 |
1690.6765 |
YES |
| Deaths/1 M/week 3 (median) |
>65 yrs |
1 |
0.0850109 |
0.0000233 |
852.3407 |
YES |
| Deaths/1 M/week 3 (mean) |
>65 yrs |
1 |
0.0890310 |
0.0000146 |
896.7229 |
YES |
| Deaths/1 M/week 3 (max) |
>65 yrs |
1 |
0.0994454 |
0.0000043 |
1147.7613 |
YES |
| Deaths/1 M/month 1 (Total) |
>65 yrs |
1 |
0.0978625 |
0.0000068 |
2178.6439 |
YES |
| Deaths/1 M/month 1 (median) |
>65 yrs |
1 |
0.0782424 |
0.0000630 |
689.4063 |
YES |
| Deaths/1 M/month 1 (mean) |
>65 yrs |
1 |
0.0978909 |
0.0000068 |
824.9396 |
YES |
| Deaths/1 M/month 1 (max) |
>65 yrs |
1 |
0.0959641 |
0.0000085 |
1363.0371 |
YES |
| Deaths/1 M (Total) |
>65 yrs |
1 |
0.4551973 |
0.0000000 |
807.6933 |
YES |
| Deaths/day/1 M log(mean) |
>65 yrs |
1 |
0.4293954 |
0.0000000 |
790.1206 |
YES |
| Deaths/day/1 M log(median) |
>65 yrs |
1 |
0.2277763 |
0.0000000 |
454.2141 |
YES |
| Deaths/day/1 M loglog(max) |
>65 yrs |
1 |
0.3728709 |
0.0000000 |
740.7894 |
YES |
| Deaths/1 M/week 3 log(Total) |
>65 yrs |
1 |
0.3588054 |
0.0000000 |
667.5269 |
YES |
| Deaths/1 M/week 3 log(median) |
>65 yrs |
1 |
0.3503576 |
0.0000000 |
417.0047 |
YES |
| Deaths/1 M/week 3 log(mean) |
>65 yrs |
1 |
0.3611842 |
0.0000000 |
665.9352 |
YES |
| Deaths/1 M/week 3 log(max) |
>65 yrs |
1 |
0.3158804 |
0.0000000 |
633.2293 |
YES |
| Deaths/1 M/month 1 log(Total) |
>65 yrs |
1 |
0.4229158 |
0.0000000 |
753.3609 |
YES |
| Deaths/1 M/month 1 log(median) |
>65 yrs |
1 |
0.3202529 |
0.0000000 |
392.4027 |
YES |
| Deaths/1 M/month 1 log(mean) |
>65 yrs |
1 |
0.4249439 |
0.0000000 |
752.0420 |
YES |
| Deaths/1 M/month 1 log(max) |
>65 yrs |
1 |
0.3624869 |
0.0000000 |
714.6538 |
YES |
Linear Models (with UNFILTEREDish data, excluding USA states)
model_results <- data.frame()
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_world[,dependent_variables[j]]~df_world[,confounding_varibales[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = confounding_varibales_labels$V2[i],
df = glance(linear_model)$df-1,
r_squared = summary(linear_model)$r.squared,
p_value = glance(linear_model)$p.value,
AIC = glance(linear_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
Pop Dens |
1 |
0.0005639 |
0.7544052 |
2276.2182 |
|
| Days to 0.1 Death/1 M |
Pop Dens |
1 |
0.0030420 |
0.4983133 |
1044.7279 |
|
| Days to 1 Death/1 M |
Pop Dens |
1 |
0.0102584 |
0.2442380 |
1098.1818 |
|
| Deaths/day/1 M (mean) |
Pop Dens |
1 |
0.0013783 |
0.6443577 |
677.4134 |
|
| Deaths/day/1 M (median) |
Pop Dens |
1 |
0.0014948 |
0.6306911 |
589.1414 |
|
| Deaths/day/1 M (max) |
Pop Dens |
1 |
0.0468337 |
0.0064831 |
1321.4424 |
YES |
| Deaths/1 M/week 3 (Total) |
Pop Dens |
1 |
0.0131979 |
0.1546170 |
1524.8768 |
|
| Deaths/1 M/week 3 (median) |
Pop Dens |
1 |
0.0011490 |
0.6754278 |
524.9351 |
|
| Deaths/1 M/week 3 (mean) |
Pop Dens |
1 |
0.0131979 |
0.1546170 |
921.6446 |
|
| Deaths/1 M/week 3 (max) |
Pop Dens |
1 |
0.0643706 |
0.0014454 |
1277.1431 |
YES |
| Deaths/1 M/month 1 (Total) |
Pop Dens |
1 |
0.0079138 |
0.2790044 |
1738.2920 |
|
| Deaths/1 M/month 1 (median) |
Pop Dens |
1 |
0.0006363 |
0.7592899 |
478.9128 |
|
| Deaths/1 M/month 1 (mean) |
Pop Dens |
1 |
0.0079138 |
0.2790044 |
717.9327 |
|
| Deaths/1 M/month 1 (max) |
Pop Dens |
1 |
0.0564143 |
0.0034264 |
1254.4429 |
YES |
| Deaths/1 M (Total) |
Pop Dens |
1 |
0.0061338 |
0.3295656 |
687.7941 |
|
| Deaths/day/1 M log(mean) |
Pop Dens |
1 |
0.0072417 |
0.2892904 |
667.4229 |
|
| Deaths/day/1 M log(median) |
Pop Dens |
1 |
0.0129292 |
0.3183875 |
311.1856 |
|
| Deaths/day/1 M loglog(max) |
Pop Dens |
1 |
0.0241730 |
0.0518483 |
623.0497 |
|
| Deaths/1 M/week 3 log(Total) |
Pop Dens |
1 |
0.0230960 |
0.0843342 |
536.1813 |
|
| Deaths/1 M/week 3 log(median) |
Pop Dens |
1 |
0.0143965 |
0.2986153 |
303.4768 |
|
| Deaths/1 M/week 3 log(mean) |
Pop Dens |
1 |
0.0230960 |
0.0843342 |
536.1813 |
|
| Deaths/1 M/week 3 log(max) |
Pop Dens |
1 |
0.0470930 |
0.0131376 |
511.3166 |
YES |
| Deaths/1 M/month 1 log(Total) |
Pop Dens |
1 |
0.0162128 |
0.1204841 |
637.3359 |
|
| Deaths/1 M/month 1 log(median) |
Pop Dens |
1 |
0.0129070 |
0.3420044 |
277.3585 |
|
| Deaths/1 M/month 1 log(mean) |
Pop Dens |
1 |
0.0162128 |
0.1204841 |
637.3359 |
|
| Deaths/1 M/month 1 log(max) |
Pop Dens |
1 |
0.0324002 |
0.0275145 |
598.2388 |
YES |
| Deaths/1 M (Total) |
Urban (%) |
1 |
0.1094471 |
0.0000057 |
2303.5114 |
YES |
| Days to 0.1 Death/1 M |
Urban (%) |
1 |
0.0692776 |
0.0008668 |
1084.8643 |
YES |
| Days to 1 Death/1 M |
Urban (%) |
1 |
0.0732286 |
0.0014408 |
1116.3956 |
YES |
| Deaths/day/1 M (mean) |
Urban (%) |
1 |
0.1122285 |
0.0000140 |
672.1685 |
YES |
| Deaths/day/1 M (median) |
Urban (%) |
1 |
0.0828349 |
0.0002138 |
586.8015 |
YES |
| Deaths/day/1 M (max) |
Urban (%) |
1 |
0.0595074 |
0.0018184 |
1349.0993 |
YES |
| Deaths/1 M/week 3 (Total) |
Urban (%) |
1 |
0.0482977 |
0.0056824 |
1536.8551 |
YES |
| Deaths/1 M/week 3 (median) |
Urban (%) |
1 |
0.0556275 |
0.0029423 |
521.0240 |
YES |
| Deaths/1 M/week 3 (mean) |
Urban (%) |
1 |
0.0482977 |
0.0056824 |
925.8393 |
YES |
| Deaths/1 M/week 3 (max) |
Urban (%) |
1 |
0.0445511 |
0.0079651 |
1294.8857 |
YES |
| Deaths/1 M/month 1 (Total) |
Urban (%) |
1 |
0.0673157 |
0.0012475 |
1750.1509 |
YES |
| Deaths/1 M/month 1 (median) |
Urban (%) |
1 |
0.0416414 |
0.0116798 |
476.9704 |
YES |
| Deaths/1 M/month 1 (mean) |
Urban (%) |
1 |
0.0673157 |
0.0012475 |
716.1869 |
YES |
| Deaths/1 M/month 1 (max) |
Urban (%) |
1 |
0.0466417 |
0.0075344 |
1270.7622 |
YES |
| Deaths/1 M (Total) |
Urban (%) |
1 |
0.2715826 |
0.0000000 |
658.7387 |
YES |
| Deaths/day/1 M log(mean) |
Urban (%) |
1 |
0.2385094 |
0.0000000 |
640.4009 |
YES |
| Deaths/day/1 M log(median) |
Urban (%) |
1 |
0.2133931 |
0.0000182 |
293.2515 |
YES |
| Deaths/day/1 M loglog(max) |
Urban (%) |
1 |
0.2223444 |
0.0000000 |
602.2441 |
YES |
| Deaths/1 M/week 3 log(Total) |
Urban (%) |
1 |
0.2335778 |
0.0000000 |
518.2519 |
YES |
| Deaths/1 M/week 3 log(median) |
Urban (%) |
1 |
0.2167114 |
0.0000199 |
285.7858 |
YES |
| Deaths/1 M/week 3 log(mean) |
Urban (%) |
1 |
0.2335778 |
0.0000000 |
518.2519 |
YES |
| Deaths/1 M/week 3 log(max) |
Urban (%) |
1 |
0.1878719 |
0.0000002 |
501.6220 |
YES |
| Deaths/1 M/month 1 log(Total) |
Urban (%) |
1 |
0.2139539 |
0.0000000 |
618.2438 |
YES |
| Deaths/1 M/month 1 log(median) |
Urban (%) |
1 |
0.2211259 |
0.0000307 |
260.3006 |
YES |
| Deaths/1 M/month 1 log(mean) |
Urban (%) |
1 |
0.2139539 |
0.0000000 |
618.2438 |
YES |
| Deaths/1 M/month 1 log(max) |
Urban (%) |
1 |
0.1762536 |
0.0000001 |
586.3827 |
YES |
| Deaths/1 M (Total) |
HDI |
1 |
0.1556992 |
0.0000002 |
2051.0557 |
YES |
| Days to 0.1 Death/1 M |
HDI |
1 |
0.0476219 |
0.0090812 |
982.6650 |
YES |
| Days to 1 Death/1 M |
HDI |
1 |
0.1831021 |
0.0000006 |
1017.1018 |
YES |
| Deaths/day/1 M (mean) |
HDI |
1 |
0.1557030 |
0.0000008 |
562.6591 |
YES |
| Deaths/day/1 M (median) |
HDI |
1 |
0.1313091 |
0.0000070 |
537.7253 |
YES |
| Deaths/day/1 M (max) |
HDI |
1 |
0.1455739 |
0.0000020 |
1010.0633 |
YES |
| Deaths/1 M/week 3 (Total) |
HDI |
1 |
0.0858378 |
0.0004026 |
1094.7625 |
YES |
| Deaths/1 M/week 3 (median) |
HDI |
1 |
0.0942397 |
0.0002024 |
478.6189 |
YES |
| Deaths/1 M/week 3 (mean) |
HDI |
1 |
0.0858378 |
0.0004026 |
542.1240 |
YES |
| Deaths/1 M/week 3 (max) |
HDI |
1 |
0.0694892 |
0.0015257 |
777.9178 |
YES |
| Deaths/1 M/month 1 (Total) |
HDI |
1 |
0.0929102 |
0.0002928 |
1454.8914 |
YES |
| Deaths/1 M/month 1 (median) |
HDI |
1 |
0.0542882 |
0.0061438 |
442.2028 |
YES |
| Deaths/1 M/month 1 (mean) |
HDI |
1 |
0.0929102 |
0.0002928 |
522.9633 |
YES |
| Deaths/1 M/month 1 (max) |
HDI |
1 |
0.1141919 |
0.0000538 |
885.3958 |
YES |
| Deaths/1 M (Total) |
HDI |
1 |
0.4630266 |
0.0000000 |
547.7818 |
YES |
| Deaths/day/1 M log(mean) |
HDI |
1 |
0.4060149 |
0.0000000 |
538.0238 |
YES |
| Deaths/day/1 M log(median) |
HDI |
1 |
0.3690949 |
0.0000000 |
252.8348 |
YES |
| Deaths/day/1 M loglog(max) |
HDI |
1 |
0.3763225 |
0.0000000 |
505.3182 |
YES |
| Deaths/1 M/week 3 log(Total) |
HDI |
1 |
0.3771524 |
0.0000000 |
427.9810 |
YES |
| Deaths/1 M/week 3 log(median) |
HDI |
1 |
0.3700595 |
0.0000000 |
240.0427 |
YES |
| Deaths/1 M/week 3 log(mean) |
HDI |
1 |
0.3771524 |
0.0000000 |
427.9810 |
YES |
| Deaths/1 M/week 3 log(max) |
HDI |
1 |
0.2954448 |
0.0000000 |
416.6500 |
YES |
| Deaths/1 M/month 1 log(Total) |
HDI |
1 |
0.4407539 |
0.0000000 |
506.0474 |
YES |
| Deaths/1 M/month 1 log(median) |
HDI |
1 |
0.3963960 |
0.0000000 |
219.9212 |
YES |
| Deaths/1 M/month 1 log(mean) |
HDI |
1 |
0.4407539 |
0.0000000 |
506.0474 |
YES |
| Deaths/1 M/month 1 log(max) |
HDI |
1 |
0.3677285 |
0.0000000 |
483.0027 |
YES |
| Deaths/1 M (Total) |
>65 yrs |
1 |
0.2158669 |
0.0000000 |
2115.9801 |
YES |
| Days to 0.1 Death/1 M |
>65 yrs |
1 |
0.0156516 |
0.1233536 |
1068.5504 |
|
| Days to 1 Death/1 M |
>65 yrs |
1 |
0.0898534 |
0.0004797 |
1080.3805 |
YES |
| Deaths/day/1 M (mean) |
>65 yrs |
1 |
0.2103032 |
0.0000000 |
546.2240 |
YES |
| Deaths/day/1 M (median) |
>65 yrs |
1 |
0.2280842 |
0.0000000 |
465.7943 |
YES |
| Deaths/day/1 M (max) |
>65 yrs |
1 |
0.1435404 |
0.0000010 |
1021.3610 |
YES |
| Deaths/1 M/week 3 (Total) |
>65 yrs |
1 |
0.2236943 |
0.0000000 |
979.1238 |
YES |
| Deaths/1 M/week 3 (median) |
>65 yrs |
1 |
0.2414454 |
0.0000000 |
331.8721 |
YES |
| Deaths/1 M/week 3 (mean) |
>65 yrs |
1 |
0.2236943 |
0.0000000 |
383.6753 |
YES |
| Deaths/1 M/week 3 (max) |
>65 yrs |
1 |
0.1761894 |
0.0000001 |
626.5099 |
YES |
| Deaths/1 M/month 1 (Total) |
>65 yrs |
1 |
0.2040037 |
0.0000000 |
1397.1699 |
YES |
| Deaths/1 M/month 1 (median) |
>65 yrs |
1 |
0.2051907 |
0.0000000 |
211.2264 |
YES |
| Deaths/1 M/month 1 (mean) |
>65 yrs |
1 |
0.2040037 |
0.0000000 |
390.4155 |
YES |
| Deaths/1 M/month 1 (max) |
>65 yrs |
1 |
0.1568675 |
0.0000006 |
821.1937 |
YES |
| Deaths/1 M (Total) |
>65 yrs |
1 |
0.4138894 |
0.0000000 |
600.6195 |
YES |
| Deaths/day/1 M log(mean) |
>65 yrs |
1 |
0.3817056 |
0.0000000 |
583.0401 |
YES |
| Deaths/day/1 M log(median) |
>65 yrs |
1 |
0.2600148 |
0.0000019 |
280.9655 |
YES |
| Deaths/day/1 M loglog(max) |
>65 yrs |
1 |
0.3109188 |
0.0000000 |
547.3379 |
YES |
| Deaths/1 M/week 3 log(Total) |
>65 yrs |
1 |
0.3260549 |
0.0000000 |
471.5735 |
YES |
| Deaths/1 M/week 3 log(median) |
>65 yrs |
1 |
0.3795553 |
0.0000000 |
259.6630 |
YES |
| Deaths/1 M/week 3 log(mean) |
>65 yrs |
1 |
0.3260549 |
0.0000000 |
471.5735 |
YES |
| Deaths/1 M/week 3 log(max) |
>65 yrs |
1 |
0.2572991 |
0.0000000 |
453.0836 |
YES |
| Deaths/1 M/month 1 log(Total) |
>65 yrs |
1 |
0.3701677 |
0.0000000 |
554.7081 |
YES |
| Deaths/1 M/month 1 log(median) |
>65 yrs |
1 |
0.3634769 |
0.0000000 |
236.0110 |
YES |
| Deaths/1 M/month 1 log(mean) |
>65 yrs |
1 |
0.3701677 |
0.0000000 |
554.7081 |
YES |
| Deaths/1 M/month 1 log(max) |
>65 yrs |
1 |
0.2951913 |
0.0000000 |
522.7986 |
YES |
Linear Models (with FILTERED data)
model_results <- data.frame()
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_filtered[,dependent_variables[j]]~df_filtered[,confounding_varibales[i]])
new_row <- data.frame(dependent_variable = dependent_variables_labels$V2[j],
independent_variable = confounding_varibales_labels$V2[i],
df = glance(linear_model)$df-1,
r_squared = summary(linear_model)$r.squared,
p_value = glance(linear_model)$p.value,
AIC = glance(linear_model)$AIC)
model_results <- rbind(model_results, new_row)
}
}
model_results$significant <- ifelse(model_results$p_value < 0.05, "YES", "")
| Deaths/1 M (Total) |
Pop Dens |
1 |
0.2147676 |
0.0259357 |
308.10590 |
YES |
| Days to 0.1 Death/1 M |
Pop Dens |
1 |
0.0021796 |
0.8324767 |
144.54336 |
|
| Days to 1 Death/1 M |
Pop Dens |
1 |
0.0072532 |
0.6992257 |
167.08721 |
|
| Deaths/day/1 M (mean) |
Pop Dens |
1 |
0.2056850 |
0.0297402 |
104.53229 |
YES |
| Deaths/day/1 M (median) |
Pop Dens |
1 |
0.2123108 |
0.0269162 |
97.58604 |
YES |
| Deaths/day/1 M (max) |
Pop Dens |
1 |
0.1368203 |
0.0823445 |
155.80388 |
|
| Deaths/1 M/week 3 (Total) |
Pop Dens |
1 |
0.0748223 |
0.2066132 |
171.58620 |
|
| Deaths/1 M/week 3 (median) |
Pop Dens |
1 |
0.0935553 |
0.1557906 |
75.94130 |
|
| Deaths/1 M/week 3 (mean) |
Pop Dens |
1 |
0.0748223 |
0.2066132 |
82.07433 |
|
| Deaths/1 M/week 3 (max) |
Pop Dens |
1 |
0.0416372 |
0.3503533 |
110.19537 |
|
| Deaths/1 M/month 1 (Total) |
Pop Dens |
1 |
0.1177562 |
0.1089217 |
243.01856 |
|
| Deaths/1 M/month 1 (median) |
Pop Dens |
1 |
0.0760236 |
0.2028617 |
56.78722 |
|
| Deaths/1 M/month 1 (mean) |
Pop Dens |
1 |
0.1177562 |
0.1089217 |
86.56348 |
|
| Deaths/1 M/month 1 (max) |
Pop Dens |
1 |
0.1614571 |
0.0573573 |
141.18654 |
|
| Deaths/1 M (Total) |
Pop Dens |
1 |
0.2483851 |
0.0155019 |
83.86605 |
YES |
| Deaths/day/1 M log(mean) |
Pop Dens |
1 |
0.2342950 |
0.0192657 |
81.71113 |
YES |
| Deaths/day/1 M log(median) |
Pop Dens |
1 |
0.1839524 |
0.0523729 |
74.68709 |
|
| Deaths/day/1 M loglog(max) |
Pop Dens |
1 |
0.1520330 |
0.0658775 |
76.84758 |
|
| Deaths/1 M/week 3 log(Total) |
Pop Dens |
1 |
0.1046405 |
0.1321516 |
88.81352 |
|
| Deaths/1 M/week 3 log(median) |
Pop Dens |
1 |
0.0403543 |
0.4095748 |
75.98274 |
|
| Deaths/1 M/week 3 log(mean) |
Pop Dens |
1 |
0.1046405 |
0.1321516 |
88.81352 |
|
| Deaths/1 M/week 3 log(max) |
Pop Dens |
1 |
0.0625831 |
0.2496209 |
84.54175 |
|
| Deaths/1 M/month 1 log(Total) |
Pop Dens |
1 |
0.1701591 |
0.0504551 |
84.04403 |
|
| Deaths/1 M/month 1 log(median) |
Pop Dens |
1 |
0.0741212 |
0.2744135 |
66.69265 |
|
| Deaths/1 M/month 1 log(mean) |
Pop Dens |
1 |
0.1701591 |
0.0504551 |
84.04403 |
|
| Deaths/1 M/month 1 log(max) |
Pop Dens |
1 |
0.1715854 |
0.0494041 |
75.86364 |
YES |
| Deaths/1 M (Total) |
Urban (%) |
1 |
0.0541294 |
0.2853816 |
312.38680 |
|
| Days to 0.1 Death/1 M |
Urban (%) |
1 |
0.0151126 |
0.5762872 |
144.24330 |
|
| Days to 1 Death/1 M |
Urban (%) |
1 |
0.0168201 |
0.5553264 |
166.86448 |
|
| Deaths/day/1 M (mean) |
Urban (%) |
1 |
0.0648578 |
0.2409108 |
108.28632 |
|
| Deaths/day/1 M (median) |
Urban (%) |
1 |
0.0565375 |
0.2746109 |
101.73646 |
|
| Deaths/day/1 M (max) |
Urban (%) |
1 |
0.0974209 |
0.1470788 |
156.83045 |
|
| Deaths/1 M/week 3 (Total) |
Urban (%) |
1 |
0.0080713 |
0.6835253 |
173.18851 |
|
| Deaths/1 M/week 3 (median) |
Urban (%) |
1 |
0.0168959 |
0.5544300 |
77.80856 |
|
| Deaths/1 M/week 3 (mean) |
Urban (%) |
1 |
0.0080713 |
0.6835253 |
83.67664 |
|
| Deaths/1 M/week 3 (max) |
Urban (%) |
1 |
0.0028298 |
0.8095073 |
111.10835 |
|
| Deaths/1 M/month 1 (Total) |
Urban (%) |
1 |
0.0132283 |
0.6012750 |
245.59388 |
|
| Deaths/1 M/month 1 (median) |
Urban (%) |
1 |
0.0003227 |
0.9351630 |
58.59837 |
|
| Deaths/1 M/month 1 (mean) |
Urban (%) |
1 |
0.0132283 |
0.6012750 |
89.13880 |
|
| Deaths/1 M/month 1 (max) |
Urban (%) |
1 |
0.0138302 |
0.5930605 |
144.91629 |
|
| Deaths/1 M (Total) |
Urban (%) |
1 |
0.0215017 |
0.5043627 |
89.93334 |
|
| Deaths/day/1 M log(mean) |
Urban (%) |
1 |
0.0181327 |
0.5401530 |
87.43029 |
|
| Deaths/day/1 M log(median) |
Urban (%) |
1 |
0.0311135 |
0.4443593 |
78.29226 |
|
| Deaths/day/1 M loglog(max) |
Urban (%) |
1 |
0.0527610 |
0.2917277 |
79.39390 |
|
| Deaths/1 M/week 3 log(Total) |
Urban (%) |
1 |
0.0000263 |
0.9814656 |
91.35510 |
|
| Deaths/1 M/week 3 log(median) |
Urban (%) |
1 |
0.0420291 |
0.3998172 |
75.94955 |
|
| Deaths/1 M/week 3 log(mean) |
Urban (%) |
1 |
0.0000263 |
0.9814656 |
91.35510 |
|
| Deaths/1 M/week 3 log(max) |
Urban (%) |
1 |
0.0001831 |
0.9511354 |
86.02396 |
|
| Deaths/1 M/month 1 log(Total) |
Urban (%) |
1 |
0.0010023 |
0.8859752 |
88.31096 |
|
| Deaths/1 M/month 1 log(median) |
Urban (%) |
1 |
0.0427607 |
0.4103420 |
67.29223 |
|
| Deaths/1 M/month 1 log(mean) |
Urban (%) |
1 |
0.0010023 |
0.8859752 |
88.31096 |
|
| Deaths/1 M/month 1 log(max) |
Urban (%) |
1 |
0.0024624 |
0.8220960 |
80.13649 |
|
| Deaths/1 M (Total) |
HDI |
1 |
0.0590384 |
0.2639330 |
312.26712 |
|
| Days to 0.1 Death/1 M |
HDI |
1 |
0.0148489 |
0.5796591 |
144.24946 |
|
| Days to 1 Death/1 M |
HDI |
1 |
0.0251713 |
0.4696498 |
166.66829 |
|
| Deaths/day/1 M (mean) |
HDI |
1 |
0.0712463 |
0.2182460 |
108.12865 |
|
| Deaths/day/1 M (median) |
HDI |
1 |
0.0666275 |
0.2343750 |
101.48916 |
|
| Deaths/day/1 M (max) |
HDI |
1 |
0.0969223 |
0.1481730 |
156.84315 |
|
| Deaths/1 M/week 3 (Total) |
HDI |
1 |
0.0337832 |
0.4011812 |
172.58446 |
|
| Deaths/1 M/week 3 (median) |
HDI |
1 |
0.0699252 |
0.2227274 |
76.53321 |
|
| Deaths/1 M/week 3 (mean) |
HDI |
1 |
0.0337832 |
0.4011812 |
83.07259 |
|
| Deaths/1 M/week 3 (max) |
HDI |
1 |
0.0196282 |
0.5237430 |
110.71759 |
|
| Deaths/1 M/month 1 (Total) |
HDI |
1 |
0.0387807 |
0.3677846 |
244.99045 |
|
| Deaths/1 M/month 1 (median) |
HDI |
1 |
0.0284305 |
0.4418470 |
57.94242 |
|
| Deaths/1 M/month 1 (mean) |
HDI |
1 |
0.0387807 |
0.3677846 |
88.53537 |
|
| Deaths/1 M/month 1 (max) |
HDI |
1 |
0.0535084 |
0.2882405 |
143.97176 |
|
| Deaths/1 M (Total) |
HDI |
1 |
0.0951097 |
0.1522237 |
88.13461 |
|
| Deaths/day/1 M log(mean) |
HDI |
1 |
0.0951673 |
0.1520931 |
85.55105 |
|
| Deaths/day/1 M log(median) |
HDI |
1 |
0.1140189 |
0.1343915 |
76.41377 |
|
| Deaths/day/1 M loglog(max) |
HDI |
1 |
0.1890112 |
0.0381601 |
75.82207 |
YES |
| Deaths/1 M/week 3 log(Total) |
HDI |
1 |
0.0823476 |
0.1843091 |
89.37917 |
|
| Deaths/1 M/week 3 log(median) |
HDI |
1 |
0.1460549 |
0.1063668 |
73.76549 |
|
| Deaths/1 M/week 3 log(mean) |
HDI |
1 |
0.0823476 |
0.1843091 |
89.37917 |
|
| Deaths/1 M/week 3 log(max) |
HDI |
1 |
0.0716302 |
0.2169627 |
84.31869 |
|
| Deaths/1 M/month 1 log(Total) |
HDI |
1 |
0.1117448 |
0.1189967 |
85.60861 |
|
| Deaths/1 M/month 1 log(median) |
HDI |
1 |
0.1861739 |
0.0737936 |
64.37071 |
|
| Deaths/1 M/month 1 log(mean) |
HDI |
1 |
0.1117448 |
0.1189967 |
85.60861 |
|
| Deaths/1 M/month 1 log(max) |
HDI |
1 |
0.1413680 |
0.0770338 |
76.68765 |
|
| Deaths/1 M (Total) |
>65 yrs |
1 |
0.0158385 |
0.5671965 |
313.29954 |
|
| Days to 0.1 Death/1 M |
>65 yrs |
1 |
0.0939086 |
0.1549722 |
142.32540 |
|
| Days to 1 Death/1 M |
>65 yrs |
1 |
0.2569404 |
0.0135677 |
160.42412 |
YES |
| Deaths/day/1 M (mean) |
>65 yrs |
1 |
0.0132317 |
0.6012273 |
109.52226 |
|
| Deaths/day/1 M (median) |
>65 yrs |
1 |
0.0078549 |
0.6875859 |
102.89365 |
|
| Deaths/day/1 M (max) |
>65 yrs |
1 |
0.0369302 |
0.3796946 |
158.32245 |
|
| Deaths/1 M/week 3 (Total) |
>65 yrs |
1 |
0.0646766 |
0.2415917 |
171.83705 |
|
| Deaths/1 M/week 3 (median) |
>65 yrs |
1 |
0.1001567 |
0.1412244 |
75.77319 |
|
| Deaths/1 M/week 3 (mean) |
>65 yrs |
1 |
0.0646766 |
0.2415917 |
82.32519 |
|
| Deaths/1 M/week 3 (max) |
>65 yrs |
1 |
0.0469654 |
0.3205938 |
110.06714 |
|
| Deaths/1 M/month 1 (Total) |
>65 yrs |
1 |
0.0405320 |
0.3569663 |
244.94851 |
|
| Deaths/1 M/month 1 (median) |
>65 yrs |
1 |
0.0679730 |
0.2295414 |
56.98675 |
|
| Deaths/1 M/month 1 (mean) |
>65 yrs |
1 |
0.0405320 |
0.3569663 |
88.49343 |
|
| Deaths/1 M/month 1 (max) |
>65 yrs |
1 |
0.0405685 |
0.3567455 |
144.28407 |
|
| Deaths/1 M (Total) |
>65 yrs |
1 |
0.0674666 |
0.2313471 |
88.82671 |
|
| Deaths/day/1 M log(mean) |
>65 yrs |
1 |
0.0761788 |
0.2023825 |
86.02872 |
|
| Deaths/day/1 M log(median) |
>65 yrs |
1 |
0.0337823 |
0.4251434 |
78.23434 |
|
| Deaths/day/1 M loglog(max) |
>65 yrs |
1 |
0.1009080 |
0.1396601 |
78.19408 |
|
| Deaths/1 M/week 3 log(Total) |
>65 yrs |
1 |
0.1939001 |
0.0354790 |
86.39811 |
YES |
| Deaths/1 M/week 3 log(median) |
>65 yrs |
1 |
0.1882285 |
0.0634728 |
72.80318 |
|
| Deaths/1 M/week 3 log(mean) |
>65 yrs |
1 |
0.1939001 |
0.0354790 |
86.39811 |
YES |
| Deaths/1 M/week 3 log(max) |
>65 yrs |
1 |
0.1830767 |
0.0416779 |
81.37734 |
YES |
| Deaths/1 M/month 1 log(Total) |
>65 yrs |
1 |
0.1625544 |
0.0564385 |
84.25384 |
|
| Deaths/1 M/month 1 log(median) |
>65 yrs |
1 |
0.2881761 |
0.0216169 |
61.96022 |
YES |
| Deaths/1 M/month 1 log(mean) |
>65 yrs |
1 |
0.1625544 |
0.0564385 |
84.25384 |
|
| Deaths/1 M/month 1 log(max) |
>65 yrs |
1 |
0.1124915 |
0.1176949 |
77.44844 |
|
—————-