Note: Data for covid-19 last updated 5/23/2020.
Data Set-up
Key for the dfs:
df_unfiltered: USA as states, no as country
df_world: USA as country, no as states
df_filtered: Social variables (population, age, urban, density, HDI) and USA as country, no as states.
VARIABLES
dependent_variables <- names(df_unfiltered)[c(23:28,30:33,35:50)]
dependent_variables
## [1] "total_deaths_per_million"
## [2] "days_to_reached_0.1_deaths_per_million"
## [3] "days_to_reached_1_deaths_per_million"
## [4] "mean_daily_deaths_per_million"
## [5] "median_daily_deaths_per_million"
## [6] "max_daily_deaths_per_million"
## [7] "total_deaths_week_3_per_million"
## [8] "median_daily_deaths_per_million_week_3"
## [9] "mean_daily_deaths_per_million_week_3"
## [10] "max_daily_deaths_per_million_week_3"
## [11] "total_deaths_month_1_per_million"
## [12] "median_daily_deaths_per_million_month_1"
## [13] "mean_daily_deaths_per_million_month_1"
## [14] "max_daily_deaths_per_million_month_1"
## [15] "log_total_deaths_per_million"
## [16] "log_mean_daily_deaths_per_million"
## [17] "log_median_daily_deaths_per_million"
## [18] "log_max_daily_deaths_per_million"
## [19] "log_total_deaths_week_3_per_million"
## [20] "log_median_daily_deaths_per_million_week_3"
## [21] "log_mean_daily_deaths_per_million_week_3"
## [22] "log_max_daily_deaths_per_million_week_3"
## [23] "log_total_deaths_month_1_per_million"
## [24] "log_median_daily_deaths_per_million_month_1"
## [25] "log_mean_daily_deaths_per_million_month_1"
## [26] "log_max_daily_deaths_per_million_month_1"
independent_variables_continuous <- names(df_unfiltered)[17:18]
independent_variables_continuous
## [1] "BCG_mean_coverage" "BCG_median_coverage"
independent_variables_categorical <- names(df_unfiltered)[12]
independent_variables_categorical
## [1] "BCG_policy"
confounding_varibales <- names(df_unfiltered)[c(7,51,6,10)]
confounding_varibales
## [1] "population_density_2018" "urban_percentage_2018"
## [3] "HDI_2018" "ages_65_up"
dependent_variables_label <- df_labels$New.label[df_labels$Variable %in% dependent_variables]
confounding_varibales_label <- df_labels$New.label[df_labels$Variable %in% confounding_varibales]
Models with UNFILTERED data
All data, including states of USA
Linear Models Unfiltered
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_continuous), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_continuous, "_LMU")
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_continuous[i]])
model_results[j,i] <- glance(linear_model)$p.value
}
}
| total_deaths_per_million |
0.2525661 |
0.3111653 |
| days_to_reached_0.1_deaths_per_million |
0.0045333 |
0.0027851 |
| days_to_reached_1_deaths_per_million |
0.0009710 |
0.0010236 |
| mean_daily_deaths_per_million |
0.3281958 |
0.3814714 |
| median_daily_deaths_per_million |
0.5989774 |
0.6878797 |
| max_daily_deaths_per_million |
0.0827120 |
0.0923322 |
| total_deaths_week_3_per_million |
0.1197871 |
0.1487372 |
| median_daily_deaths_per_million_week_3 |
0.0936020 |
0.1180391 |
| mean_daily_deaths_per_million_week_3 |
0.1197871 |
0.1487372 |
| max_daily_deaths_per_million_week_3 |
0.2077102 |
0.2517715 |
| total_deaths_month_1_per_million |
0.5544449 |
0.6131759 |
| median_daily_deaths_per_million_month_1 |
0.0907533 |
0.1167336 |
| mean_daily_deaths_per_million_month_1 |
0.5544449 |
0.6131759 |
| max_daily_deaths_per_million_month_1 |
0.7810019 |
0.8059700 |
| log_total_deaths_per_million |
0.0015710 |
0.0022768 |
| log_mean_daily_deaths_per_million |
0.0092376 |
0.0114251 |
| log_median_daily_deaths_per_million |
0.0294174 |
0.0339341 |
| log_max_daily_deaths_per_million |
0.0008927 |
0.0007768 |
| log_total_deaths_week_3_per_million |
0.0023889 |
0.0034696 |
| log_median_daily_deaths_per_million_week_3 |
0.0121006 |
0.0126740 |
| log_mean_daily_deaths_per_million_week_3 |
0.0023889 |
0.0034696 |
| log_max_daily_deaths_per_million_week_3 |
0.0044500 |
0.0057825 |
| log_total_deaths_month_1_per_million |
0.0031469 |
0.0036257 |
| log_median_daily_deaths_per_million_month_1 |
0.0069309 |
0.0089112 |
| log_mean_daily_deaths_per_million_month_1 |
0.0031469 |
0.0036257 |
| log_max_daily_deaths_per_million_month_1 |
0.0036552 |
0.0033046 |
Anova Models Unfiltered
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_categorical), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_categorical, "_AMU")
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_categorical[i]])
model_results[j,i] <- glance(aov_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.0001084 |
| days_to_reached_1_deaths_per_million |
0.0000000 |
| mean_daily_deaths_per_million |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
| max_daily_deaths_per_million |
0.0000001 |
| total_deaths_week_3_per_million |
0.0000830 |
| median_daily_deaths_per_million_week_3 |
0.0000000 |
| mean_daily_deaths_per_million_week_3 |
0.0000826 |
| max_daily_deaths_per_million_week_3 |
0.0065881 |
| total_deaths_month_1_per_million |
0.0000001 |
| median_daily_deaths_per_million_month_1 |
0.0000002 |
| mean_daily_deaths_per_million_month_1 |
0.0000001 |
| max_daily_deaths_per_million_month_1 |
0.0000267 |
| log_total_deaths_per_million |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.0000000 |
| log_median_daily_deaths_per_million |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.0000000 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
T-test Models Unfiltered
df_unfiltered$BCG_TF <- 1
df_unfiltered[which(df_unfiltered$BCG_policy == "never"),]$BCG_TF <- 0
df_unfiltered[which(df_unfiltered$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_unfiltered$BCG_TF_2 <- 1
df_unfiltered[which(df_unfiltered$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_unfiltered[which(df_unfiltered$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_unfiltered)[c(ncol(df_unfiltered)-1, ncol(df_unfiltered))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_t_test), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_t_test, "_TMU")
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
model_results[j, i] <- glance(t_test_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.9999692 |
0.9999679 |
| days_to_reached_1_deaths_per_million |
1.0000000 |
1.0000000 |
| mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| max_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| total_deaths_week_3_per_million |
0.0000071 |
0.0000110 |
| median_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| mean_daily_deaths_per_million_week_3 |
0.0000071 |
0.0000110 |
| max_daily_deaths_per_million_week_3 |
0.0009609 |
0.0009861 |
| total_deaths_month_1_per_million |
0.0000000 |
0.0000000 |
| median_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| mean_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| max_daily_deaths_per_million_month_1 |
0.0000075 |
0.0000060 |
| log_total_deaths_per_million |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
Models without USA states (UNFILTEREDish data)
All data, excluding states of USA
Linear Models without USA states
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_continuous), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_continuous, "_LMU2")
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_world[,dependent_variables[j]]~df_world[,independent_variables_continuous[i]])
model_results[j,i] <- glance(linear_model)$p.value
}
}
| total_deaths_per_million |
0.2525661 |
0.3111653 |
| days_to_reached_0.1_deaths_per_million |
0.0045333 |
0.0027851 |
| days_to_reached_1_deaths_per_million |
0.0009710 |
0.0010236 |
| mean_daily_deaths_per_million |
0.3281958 |
0.3814714 |
| median_daily_deaths_per_million |
0.5989774 |
0.6878797 |
| max_daily_deaths_per_million |
0.0827120 |
0.0923322 |
| total_deaths_week_3_per_million |
0.1197871 |
0.1487372 |
| median_daily_deaths_per_million_week_3 |
0.0936020 |
0.1180391 |
| mean_daily_deaths_per_million_week_3 |
0.1197871 |
0.1487372 |
| max_daily_deaths_per_million_week_3 |
0.2077102 |
0.2517715 |
| total_deaths_month_1_per_million |
0.5544449 |
0.6131759 |
| median_daily_deaths_per_million_month_1 |
0.0907533 |
0.1167336 |
| mean_daily_deaths_per_million_month_1 |
0.5544449 |
0.6131759 |
| max_daily_deaths_per_million_month_1 |
0.7810019 |
0.8059700 |
| log_total_deaths_per_million |
0.0015710 |
0.0022768 |
| log_mean_daily_deaths_per_million |
0.0092376 |
0.0114251 |
| log_median_daily_deaths_per_million |
0.0294174 |
0.0339341 |
| log_max_daily_deaths_per_million |
0.0008927 |
0.0007768 |
| log_total_deaths_week_3_per_million |
0.0023889 |
0.0034696 |
| log_median_daily_deaths_per_million_week_3 |
0.0121006 |
0.0126740 |
| log_mean_daily_deaths_per_million_week_3 |
0.0023889 |
0.0034696 |
| log_max_daily_deaths_per_million_week_3 |
0.0044500 |
0.0057825 |
| log_total_deaths_month_1_per_million |
0.0031469 |
0.0036257 |
| log_median_daily_deaths_per_million_month_1 |
0.0069309 |
0.0089112 |
| log_mean_daily_deaths_per_million_month_1 |
0.0031469 |
0.0036257 |
| log_max_daily_deaths_per_million_month_1 |
0.0036552 |
0.0033046 |
Anova Models without USA states
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_categorical), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_categorical, "_AMU2")
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_world[,dependent_variables[j]]~df_world[,independent_variables_categorical[i]])
model_results[j,i] <- glance(aov_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.3232947 |
| days_to_reached_1_deaths_per_million |
0.0535218 |
| mean_daily_deaths_per_million |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
| max_daily_deaths_per_million |
0.0000000 |
| total_deaths_week_3_per_million |
0.0000000 |
| median_daily_deaths_per_million_week_3 |
0.0000000 |
| mean_daily_deaths_per_million_week_3 |
0.0000000 |
| max_daily_deaths_per_million_week_3 |
0.0000005 |
| total_deaths_month_1_per_million |
0.0000000 |
| median_daily_deaths_per_million_month_1 |
0.0000015 |
| mean_daily_deaths_per_million_month_1 |
0.0000000 |
| max_daily_deaths_per_million_month_1 |
0.0000000 |
| log_total_deaths_per_million |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.0000000 |
| log_median_daily_deaths_per_million |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.0000020 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0000002 |
| log_total_deaths_month_1_per_million |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.0000002 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
T-test Models without USA states
df_world$BCG_TF <- 1
df_world[which(df_world$BCG_policy == "never"),]$BCG_TF <- 0
df_world[which(df_world$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_world$BCG_TF_2 <- 1
df_world[which(df_world$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_world[which(df_world$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_world)[c(ncol(df_world)-1, ncol(df_world))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_t_test), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_t_test, "_TMU2")
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_world[,dependent_variables[j]]~df_world[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
model_results[j,i] <- glance(t_test_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.9225754 |
0.7530464 |
| days_to_reached_1_deaths_per_million |
0.9879902 |
0.8595931 |
| mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| max_daily_deaths_per_million |
0.0000053 |
0.0000000 |
| total_deaths_week_3_per_million |
0.0000156 |
0.0000000 |
| median_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| mean_daily_deaths_per_million_week_3 |
0.0000156 |
0.0000000 |
| max_daily_deaths_per_million_week_3 |
0.0005770 |
0.0000001 |
| total_deaths_month_1_per_million |
0.0000000 |
0.0000000 |
| median_daily_deaths_per_million_month_1 |
0.0000001 |
0.0000000 |
| mean_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| max_daily_deaths_per_million_month_1 |
0.0000491 |
0.0000000 |
| log_total_deaths_per_million |
0.0000000 |
0.0000008 |
| log_mean_daily_deaths_per_million |
0.0000000 |
0.0000017 |
| log_median_daily_deaths_per_million |
0.0000000 |
0.0000084 |
| log_max_daily_deaths_per_million |
0.0000000 |
0.0000078 |
| log_total_deaths_week_3_per_million |
0.0000000 |
0.0000174 |
| log_median_daily_deaths_per_million_week_3 |
0.0000001 |
0.0040196 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000174 |
| log_max_daily_deaths_per_million_week_3 |
0.0000001 |
0.0000901 |
| log_total_deaths_month_1_per_million |
0.0000000 |
0.0000067 |
| log_median_daily_deaths_per_million_month_1 |
0.0000000 |
0.0051662 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000067 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000067 |
Models with FILTERED data
All data, filtered as follows
df_filtered <- subsoet(df_unfiltered,
covid19_cumulative_deaths > 0
& population_million > 1
& ages_65_up > 15
& urban_percentage_2018 > 60
& population_density_2018 < 300
& HDI_2018 > 0.7
& ISO3 != "USA_state")
Linear Models Filtered
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_continuous), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_continuous, "_LMF")
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_continuous[i]])
model_results[j,i] <- glance(linear_model)$p.value
}
}
| total_deaths_per_million |
0.0928875 |
0.0812290 |
| days_to_reached_0.1_deaths_per_million |
0.9575894 |
0.8872806 |
| days_to_reached_1_deaths_per_million |
0.9977671 |
0.9678422 |
| mean_daily_deaths_per_million |
0.0618269 |
0.0545268 |
| median_daily_deaths_per_million |
0.0734482 |
0.0671536 |
| max_daily_deaths_per_million |
0.1506741 |
0.1303914 |
| total_deaths_week_3_per_million |
0.3558381 |
0.3541563 |
| median_daily_deaths_per_million_week_3 |
0.3013023 |
0.2973710 |
| mean_daily_deaths_per_million_week_3 |
0.3558381 |
0.3541563 |
| max_daily_deaths_per_million_week_3 |
0.2263708 |
0.2278724 |
| total_deaths_month_1_per_million |
0.0882472 |
0.0883046 |
| median_daily_deaths_per_million_month_1 |
0.9914933 |
0.9827768 |
| mean_daily_deaths_per_million_month_1 |
0.0882472 |
0.0883046 |
| max_daily_deaths_per_million_month_1 |
0.0254745 |
0.0260383 |
| log_total_deaths_per_million |
0.5910722 |
0.5501185 |
| log_mean_daily_deaths_per_million |
0.5436489 |
0.5062876 |
| log_median_daily_deaths_per_million |
0.0195320 |
0.0161222 |
| log_max_daily_deaths_per_million |
0.3796605 |
0.3471881 |
| log_total_deaths_week_3_per_million |
0.4259286 |
0.4513514 |
| log_median_daily_deaths_per_million_week_3 |
0.2350580 |
0.2611631 |
| log_mean_daily_deaths_per_million_week_3 |
0.4259286 |
0.4513514 |
| log_max_daily_deaths_per_million_week_3 |
0.3204635 |
0.3472311 |
| log_total_deaths_month_1_per_million |
0.3735312 |
0.3881031 |
| log_median_daily_deaths_per_million_month_1 |
0.4846813 |
0.4728291 |
| log_mean_daily_deaths_per_million_month_1 |
0.3735312 |
0.3881031 |
| log_max_daily_deaths_per_million_month_1 |
0.1446985 |
0.1500235 |
Anova Models Filtered
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_categorical), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_categorical, "_AMF")
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_categorical[i]])
model_results[j,i] <- glance(aov_model)$p.value
}
}
| total_deaths_per_million |
0.0110433 |
| days_to_reached_0.1_deaths_per_million |
0.5138357 |
| days_to_reached_1_deaths_per_million |
0.8611822 |
| mean_daily_deaths_per_million |
0.0151171 |
| median_daily_deaths_per_million |
0.0062392 |
| max_daily_deaths_per_million |
0.0274574 |
| total_deaths_week_3_per_million |
0.2047799 |
| median_daily_deaths_per_million_week_3 |
0.1090813 |
| mean_daily_deaths_per_million_week_3 |
0.2047799 |
| max_daily_deaths_per_million_week_3 |
0.3865571 |
| total_deaths_month_1_per_million |
0.1918745 |
| median_daily_deaths_per_million_month_1 |
0.1688351 |
| mean_daily_deaths_per_million_month_1 |
0.1918745 |
| max_daily_deaths_per_million_month_1 |
0.1710350 |
| log_total_deaths_per_million |
0.0140011 |
| log_mean_daily_deaths_per_million |
0.0201393 |
| log_median_daily_deaths_per_million |
0.0104689 |
| log_max_daily_deaths_per_million |
0.0170379 |
| log_total_deaths_week_3_per_million |
0.5182464 |
| log_median_daily_deaths_per_million_week_3 |
0.2786673 |
| log_mean_daily_deaths_per_million_week_3 |
0.5182464 |
| log_max_daily_deaths_per_million_week_3 |
0.6610229 |
| log_total_deaths_month_1_per_million |
0.2631596 |
| log_median_daily_deaths_per_million_month_1 |
0.0470756 |
| log_mean_daily_deaths_per_million_month_1 |
0.2631596 |
| log_max_daily_deaths_per_million_month_1 |
0.1778639 |
T-test Filtered
df_filtered$BCG_TF <- 1
df_filtered[which(df_filtered$BCG_policy == "never"),]$BCG_TF <- 0
df_filtered[which(df_filtered$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_filtered$BCG_TF_2 <- 1
df_filtered[which(df_filtered$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_filtered[which(df_filtered$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_filtered)[c(ncol(df_filtered)-1, ncol(df_filtered))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_t_test), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_t_test, "_TMF")
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
model_results[j, i] <- glance(t_test_model)$p.value
}
}
| total_deaths_per_million |
0.0046129 |
0.0000251 |
| days_to_reached_0.1_deaths_per_million |
0.2016341 |
0.1108277 |
| days_to_reached_1_deaths_per_million |
0.4230279 |
0.2906656 |
| mean_daily_deaths_per_million |
0.0040625 |
0.0000133 |
| median_daily_deaths_per_million |
0.0040814 |
0.0000010 |
| max_daily_deaths_per_million |
0.0038820 |
0.0002303 |
| total_deaths_week_3_per_million |
0.0392208 |
0.0827602 |
| median_daily_deaths_per_million_week_3 |
0.0172725 |
0.0513321 |
| mean_daily_deaths_per_million_week_3 |
0.0392208 |
0.0827602 |
| max_daily_deaths_per_million_week_3 |
0.0937636 |
0.2309676 |
| total_deaths_month_1_per_million |
0.0329438 |
0.0288370 |
| median_daily_deaths_per_million_month_1 |
0.0417358 |
0.2190385 |
| mean_daily_deaths_per_million_month_1 |
0.0329438 |
0.0288370 |
| max_daily_deaths_per_million_month_1 |
0.0361193 |
0.0186749 |
| log_total_deaths_per_million |
0.0043163 |
0.0000686 |
| log_mean_daily_deaths_per_million |
0.0054457 |
0.0001359 |
| log_median_daily_deaths_per_million |
0.0028382 |
0.0004002 |
| log_max_daily_deaths_per_million |
0.0028718 |
0.0030190 |
| log_total_deaths_week_3_per_million |
0.1242737 |
0.2443389 |
| log_median_daily_deaths_per_million_week_3 |
0.0623407 |
0.2828274 |
| log_mean_daily_deaths_per_million_week_3 |
0.1242737 |
0.2443389 |
| log_max_daily_deaths_per_million_week_3 |
0.1860787 |
0.3641082 |
| log_total_deaths_month_1_per_million |
0.0525123 |
0.0599427 |
| log_median_daily_deaths_per_million_month_1 |
0.0249550 |
0.4720666 |
| log_mean_daily_deaths_per_million_month_1 |
0.0525123 |
0.0599427 |
| log_max_daily_deaths_per_million_month_1 |
0.0408538 |
0.0396862 |
Models with Confounding varibales
confounding_varibales <- names(df_unfiltered)[c(7,51,6,10)]
confounding_varibales
## [1] "population_density_2018" "urban_percentage_2018"
## [3] "HDI_2018" "ages_65_up"
Linear Models (with UNFILTERED data, including USA states)
df_confounding_models <- data.frame()
model_results <- data.frame(matrix(NA, ncol = length(confounding_varibales), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(confounding_varibales, "_LMU")
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
lm_model <- lm(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,confounding_varibales[i]], df_unfiltered)
model_results[j,i] <- glance(lm_model)$p.value
}
}
| total_deaths_per_million |
0.5499921 |
0.0000000 |
0.00e+00 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.5835394 |
0.0000343 |
4.50e-06 |
0.0020023 |
| days_to_reached_1_deaths_per_million |
0.3047965 |
0.0001387 |
0.00e+00 |
0.0000001 |
| mean_daily_deaths_per_million |
0.4912991 |
0.0000000 |
0.00e+00 |
0.0000004 |
| median_daily_deaths_per_million |
0.8803698 |
0.0000002 |
0.00e+00 |
0.0000010 |
| max_daily_deaths_per_million |
0.0041731 |
0.0000047 |
0.00e+00 |
0.0000002 |
| total_deaths_week_3_per_million |
0.1144446 |
0.0002162 |
7.30e-06 |
0.0000146 |
| median_daily_deaths_per_million_week_3 |
0.9014046 |
0.0000973 |
7.30e-06 |
0.0000233 |
| mean_daily_deaths_per_million_week_3 |
0.1144665 |
0.0002159 |
7.30e-06 |
0.0000146 |
| max_daily_deaths_per_million_week_3 |
0.0003571 |
0.0010419 |
6.50e-06 |
0.0000043 |
| total_deaths_month_1_per_million |
0.2466448 |
0.0000142 |
2.50e-06 |
0.0000068 |
| median_daily_deaths_per_million_month_1 |
0.9849843 |
0.0003136 |
7.42e-05 |
0.0000630 |
| mean_daily_deaths_per_million_month_1 |
0.2467086 |
0.0000142 |
2.50e-06 |
0.0000068 |
| max_daily_deaths_per_million_month_1 |
0.0013183 |
0.0001554 |
1.00e-07 |
0.0000085 |
| log_total_deaths_per_million |
0.4395827 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.4017288 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_median_daily_deaths_per_million |
0.2195715 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0991806 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.1375008 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.2735047 |
0.0000002 |
0.00e+00 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.1380584 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0268278 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.1877320 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.2668111 |
0.0000023 |
0.00e+00 |
0.0000000 |
| log_mean_daily_deaths_per_million_month_1 |
0.1887620 |
0.0000000 |
0.00e+00 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0523995 |
0.0000000 |
0.00e+00 |
0.0000000 |
Linear Models (with UNFILTEREDish data, excluding USA states)
model_results <- data.frame(matrix(NA, ncol = length(confounding_varibales), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(confounding_varibales, "_LMU2")
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
lm_model <- lm(df_world[,dependent_variables[j]]~df_world[,confounding_varibales[i]], df_world)
model_results[j,i] <- glance(lm_model)$p.value
}
}
| total_deaths_per_million |
0.7544052 |
0.0000057 |
0.0000002 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.4983133 |
0.0008668 |
0.0090812 |
0.1233536 |
| days_to_reached_1_deaths_per_million |
0.2442380 |
0.0014408 |
0.0000006 |
0.0004797 |
| mean_daily_deaths_per_million |
0.6443577 |
0.0000140 |
0.0000008 |
0.0000000 |
| median_daily_deaths_per_million |
0.6306911 |
0.0002138 |
0.0000070 |
0.0000000 |
| max_daily_deaths_per_million |
0.0064831 |
0.0018184 |
0.0000020 |
0.0000010 |
| total_deaths_week_3_per_million |
0.1546170 |
0.0056824 |
0.0004026 |
0.0000000 |
| median_daily_deaths_per_million_week_3 |
0.6754278 |
0.0029423 |
0.0002024 |
0.0000000 |
| mean_daily_deaths_per_million_week_3 |
0.1546170 |
0.0056824 |
0.0004026 |
0.0000000 |
| max_daily_deaths_per_million_week_3 |
0.0014454 |
0.0079651 |
0.0015257 |
0.0000001 |
| total_deaths_month_1_per_million |
0.2790044 |
0.0012475 |
0.0002928 |
0.0000000 |
| median_daily_deaths_per_million_month_1 |
0.7592899 |
0.0116798 |
0.0061438 |
0.0000000 |
| mean_daily_deaths_per_million_month_1 |
0.2790044 |
0.0012475 |
0.0002928 |
0.0000000 |
| max_daily_deaths_per_million_month_1 |
0.0034264 |
0.0075344 |
0.0000538 |
0.0000006 |
| log_total_deaths_per_million |
0.3295656 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.2892904 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million |
0.3183875 |
0.0000182 |
0.0000000 |
0.0000019 |
| log_max_daily_deaths_per_million |
0.0518483 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.0843342 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.2986153 |
0.0000199 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.0843342 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0131376 |
0.0000002 |
0.0000000 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.1204841 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.3420044 |
0.0000307 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_month_1 |
0.1204841 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0275145 |
0.0000001 |
0.0000000 |
0.0000000 |
Linear Models (with FILTERED data)
model_results <- data.frame(matrix(NA, ncol = length(confounding_varibales), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(confounding_varibales, "_LMF")
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
lm_model <- lm(df_filtered[,dependent_variables[j]]~df_filtered[,confounding_varibales[i]], df_filtered)
model_results[j,i] <- glance(lm_model)$p.value
}
}
| total_deaths_per_million |
0.0259357 |
0.2853816 |
0.2639330 |
0.5671965 |
| days_to_reached_0.1_deaths_per_million |
0.8324767 |
0.5762872 |
0.5796591 |
0.1549722 |
| days_to_reached_1_deaths_per_million |
0.6992257 |
0.5553264 |
0.4696498 |
0.0135677 |
| mean_daily_deaths_per_million |
0.0297402 |
0.2409108 |
0.2182460 |
0.6012273 |
| median_daily_deaths_per_million |
0.0269162 |
0.2746109 |
0.2343750 |
0.6875859 |
| max_daily_deaths_per_million |
0.0823445 |
0.1470788 |
0.1481730 |
0.3796946 |
| total_deaths_week_3_per_million |
0.2066132 |
0.6835253 |
0.4011812 |
0.2415917 |
| median_daily_deaths_per_million_week_3 |
0.1557906 |
0.5544300 |
0.2227274 |
0.1412244 |
| mean_daily_deaths_per_million_week_3 |
0.2066132 |
0.6835253 |
0.4011812 |
0.2415917 |
| max_daily_deaths_per_million_week_3 |
0.3503533 |
0.8095073 |
0.5237430 |
0.3205938 |
| total_deaths_month_1_per_million |
0.1089217 |
0.6012750 |
0.3677846 |
0.3569663 |
| median_daily_deaths_per_million_month_1 |
0.2028617 |
0.9351630 |
0.4418470 |
0.2295414 |
| mean_daily_deaths_per_million_month_1 |
0.1089217 |
0.6012750 |
0.3677846 |
0.3569663 |
| max_daily_deaths_per_million_month_1 |
0.0573573 |
0.5930605 |
0.2882405 |
0.3567455 |
| log_total_deaths_per_million |
0.0155019 |
0.5043627 |
0.1522237 |
0.2313471 |
| log_mean_daily_deaths_per_million |
0.0192657 |
0.5401530 |
0.1520931 |
0.2023825 |
| log_median_daily_deaths_per_million |
0.0523729 |
0.4443593 |
0.1343915 |
0.4251434 |
| log_max_daily_deaths_per_million |
0.0658775 |
0.2917277 |
0.0381601 |
0.1396601 |
| log_total_deaths_week_3_per_million |
0.1321516 |
0.9814656 |
0.1843091 |
0.0354790 |
| log_median_daily_deaths_per_million_week_3 |
0.4095748 |
0.3998172 |
0.1063668 |
0.0634728 |
| log_mean_daily_deaths_per_million_week_3 |
0.1321516 |
0.9814656 |
0.1843091 |
0.0354790 |
| log_max_daily_deaths_per_million_week_3 |
0.2496209 |
0.9511354 |
0.2169627 |
0.0416779 |
| log_total_deaths_month_1_per_million |
0.0504551 |
0.8859752 |
0.1189967 |
0.0564385 |
| log_median_daily_deaths_per_million_month_1 |
0.2744135 |
0.4103420 |
0.0737936 |
0.0216169 |
| log_mean_daily_deaths_per_million_month_1 |
0.0504551 |
0.8859752 |
0.1189967 |
0.0564385 |
| log_max_daily_deaths_per_million_month_1 |
0.0494041 |
0.8220960 |
0.0770338 |
0.1176949 |
Combination Tables (p-value matrix)
Linear Models
| total_deaths_per_million |
Deaths/1 M (Total) |
0.2525661 |
0.3111653 |
0.2525661 |
0.3111653 |
0.0928875 |
0.0812290 |
| days_to_reached_0.1_deaths_per_million |
Days to 0.1 Death/1 M |
0.0045333 |
0.0027851 |
0.0045333 |
0.0027851 |
0.9575894 |
0.8872806 |
| days_to_reached_1_deaths_per_million |
Days to 1 Death/1 M |
0.0009710 |
0.0010236 |
0.0009710 |
0.0010236 |
0.9977671 |
0.9678422 |
| mean_daily_deaths_per_million |
Deaths/day/1 M (mean) |
0.3281958 |
0.3814714 |
0.3281958 |
0.3814714 |
0.0618269 |
0.0545268 |
| median_daily_deaths_per_million |
Deaths/day/1 M (median) |
0.5989774 |
0.6878797 |
0.5989774 |
0.6878797 |
0.0734482 |
0.0671536 |
| max_daily_deaths_per_million |
Deaths/day/1 M (max) |
0.0827120 |
0.0923322 |
0.0827120 |
0.0923322 |
0.1506741 |
0.1303914 |
| total_deaths_week_3_per_million |
Deaths/1 M/week 3 (Total) |
0.1197871 |
0.1487372 |
0.1197871 |
0.1487372 |
0.3558381 |
0.3541563 |
| median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (median) |
0.0936020 |
0.1180391 |
0.0936020 |
0.1180391 |
0.3013023 |
0.2973710 |
| mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (mean) |
0.1197871 |
0.1487372 |
0.1197871 |
0.1487372 |
0.3558381 |
0.3541563 |
| max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (max) |
0.2077102 |
0.2517715 |
0.2077102 |
0.2517715 |
0.2263708 |
0.2278724 |
| total_deaths_month_1_per_million |
Deaths/1 M/month 1 (Total) |
0.5544449 |
0.6131759 |
0.5544449 |
0.6131759 |
0.0882472 |
0.0883046 |
| median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (median) |
0.0907533 |
0.1167336 |
0.0907533 |
0.1167336 |
0.9914933 |
0.9827768 |
| mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (mean) |
0.5544449 |
0.6131759 |
0.5544449 |
0.6131759 |
0.0882472 |
0.0883046 |
| max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (max) |
0.7810019 |
0.8059700 |
0.7810019 |
0.8059700 |
0.0254745 |
0.0260383 |
| log_total_deaths_per_million |
Deaths/1 M (Total) |
0.0015710 |
0.0022768 |
0.0015710 |
0.0022768 |
0.5910722 |
0.5501185 |
| log_mean_daily_deaths_per_million |
Deaths/day/1 M log(mean) |
0.0092376 |
0.0114251 |
0.0092376 |
0.0114251 |
0.5436489 |
0.5062876 |
| log_median_daily_deaths_per_million |
Deaths/day/1 M log(median) |
0.0294174 |
0.0339341 |
0.0294174 |
0.0339341 |
0.0195320 |
0.0161222 |
| log_max_daily_deaths_per_million |
Deaths/day/1 M loglog(max) |
0.0008927 |
0.0007768 |
0.0008927 |
0.0007768 |
0.3796605 |
0.3471881 |
| log_total_deaths_week_3_per_million |
Deaths/1 M/week 3 log(Total) |
0.0023889 |
0.0034696 |
0.0023889 |
0.0034696 |
0.4259286 |
0.4513514 |
| log_median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(median) |
0.0121006 |
0.0126740 |
0.0121006 |
0.0126740 |
0.2350580 |
0.2611631 |
| log_mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(mean) |
0.0023889 |
0.0034696 |
0.0023889 |
0.0034696 |
0.4259286 |
0.4513514 |
| log_max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(max) |
0.0044500 |
0.0057825 |
0.0044500 |
0.0057825 |
0.3204635 |
0.3472311 |
| log_total_deaths_month_1_per_million |
Deaths/1 M/month 1 log(Total) |
0.0031469 |
0.0036257 |
0.0031469 |
0.0036257 |
0.3735312 |
0.3881031 |
| log_median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(median) |
0.0069309 |
0.0089112 |
0.0069309 |
0.0089112 |
0.4846813 |
0.4728291 |
| log_mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(mean) |
0.0031469 |
0.0036257 |
0.0031469 |
0.0036257 |
0.3735312 |
0.3881031 |
| log_max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(max) |
0.0036552 |
0.0033046 |
0.0036552 |
0.0033046 |
0.1446985 |
0.1500235 |
Anova Models
| total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0110433 |
| days_to_reached_0.1_deaths_per_million |
Days to 0.1 Death/1 M |
0.0001084 |
0.3232947 |
0.5138357 |
| days_to_reached_1_deaths_per_million |
Days to 1 Death/1 M |
0.0000000 |
0.0535218 |
0.8611822 |
| mean_daily_deaths_per_million |
Deaths/day/1 M (mean) |
0.0000000 |
0.0000000 |
0.0151171 |
| median_daily_deaths_per_million |
Deaths/day/1 M (median) |
0.0000000 |
0.0000000 |
0.0062392 |
| max_daily_deaths_per_million |
Deaths/day/1 M (max) |
0.0000001 |
0.0000000 |
0.0274574 |
| total_deaths_week_3_per_million |
Deaths/1 M/week 3 (Total) |
0.0000830 |
0.0000000 |
0.2047799 |
| median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (median) |
0.0000000 |
0.0000000 |
0.1090813 |
| mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (mean) |
0.0000826 |
0.0000000 |
0.2047799 |
| max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (max) |
0.0065881 |
0.0000005 |
0.3865571 |
| total_deaths_month_1_per_million |
Deaths/1 M/month 1 (Total) |
0.0000001 |
0.0000000 |
0.1918745 |
| median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (median) |
0.0000002 |
0.0000015 |
0.1688351 |
| mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (mean) |
0.0000001 |
0.0000000 |
0.1918745 |
| max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (max) |
0.0000267 |
0.0000000 |
0.1710350 |
| log_total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0140011 |
| log_mean_daily_deaths_per_million |
Deaths/day/1 M log(mean) |
0.0000000 |
0.0000000 |
0.0201393 |
| log_median_daily_deaths_per_million |
Deaths/day/1 M log(median) |
0.0000000 |
0.0000000 |
0.0104689 |
| log_max_daily_deaths_per_million |
Deaths/day/1 M loglog(max) |
0.0000000 |
0.0000000 |
0.0170379 |
| log_total_deaths_week_3_per_million |
Deaths/1 M/week 3 log(Total) |
0.0000000 |
0.0000000 |
0.5182464 |
| log_median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(median) |
0.0000000 |
0.0000020 |
0.2786673 |
| log_mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(mean) |
0.0000000 |
0.0000000 |
0.5182464 |
| log_max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(max) |
0.0000000 |
0.0000002 |
0.6610229 |
| log_total_deaths_month_1_per_million |
Deaths/1 M/month 1 log(Total) |
0.0000000 |
0.0000000 |
0.2631596 |
| log_median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(median) |
0.0000000 |
0.0000002 |
0.0470756 |
| log_mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(mean) |
0.0000000 |
0.0000000 |
0.2631596 |
| log_max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(max) |
0.0000000 |
0.0000000 |
0.1778639 |
T-test Models
| total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0046129 |
0.0000251 |
| days_to_reached_0.1_deaths_per_million |
Days to 0.1 Death/1 M |
0.9999692 |
0.9999679 |
0.9225754 |
0.7530464 |
0.2016341 |
0.1108277 |
| days_to_reached_1_deaths_per_million |
Days to 1 Death/1 M |
1.0000000 |
1.0000000 |
0.9879902 |
0.8595931 |
0.4230279 |
0.2906656 |
| mean_daily_deaths_per_million |
Deaths/day/1 M (mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0040625 |
0.0000133 |
| median_daily_deaths_per_million |
Deaths/day/1 M (median) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0040814 |
0.0000010 |
| max_daily_deaths_per_million |
Deaths/day/1 M (max) |
0.0000000 |
0.0000000 |
0.0000053 |
0.0000000 |
0.0038820 |
0.0002303 |
| total_deaths_week_3_per_million |
Deaths/1 M/week 3 (Total) |
0.0000071 |
0.0000110 |
0.0000156 |
0.0000000 |
0.0392208 |
0.0827602 |
| median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (median) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0172725 |
0.0513321 |
| mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (mean) |
0.0000071 |
0.0000110 |
0.0000156 |
0.0000000 |
0.0392208 |
0.0827602 |
| max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (max) |
0.0009609 |
0.0009861 |
0.0005770 |
0.0000001 |
0.0937636 |
0.2309676 |
| total_deaths_month_1_per_million |
Deaths/1 M/month 1 (Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0329438 |
0.0288370 |
| median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (median) |
0.0000000 |
0.0000000 |
0.0000001 |
0.0000000 |
0.0417358 |
0.2190385 |
| mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0329438 |
0.0288370 |
| max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (max) |
0.0000075 |
0.0000060 |
0.0000491 |
0.0000000 |
0.0361193 |
0.0186749 |
| log_total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000008 |
0.0043163 |
0.0000686 |
| log_mean_daily_deaths_per_million |
Deaths/day/1 M log(mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000017 |
0.0054457 |
0.0001359 |
| log_median_daily_deaths_per_million |
Deaths/day/1 M log(median) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000084 |
0.0028382 |
0.0004002 |
| log_max_daily_deaths_per_million |
Deaths/day/1 M loglog(max) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000078 |
0.0028718 |
0.0030190 |
| log_total_deaths_week_3_per_million |
Deaths/1 M/week 3 log(Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000174 |
0.1242737 |
0.2443389 |
| log_median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(median) |
0.0000000 |
0.0000000 |
0.0000001 |
0.0040196 |
0.0623407 |
0.2828274 |
| log_mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000174 |
0.1242737 |
0.2443389 |
| log_max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(max) |
0.0000000 |
0.0000000 |
0.0000001 |
0.0000901 |
0.1860787 |
0.3641082 |
| log_total_deaths_month_1_per_million |
Deaths/1 M/month 1 log(Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000067 |
0.0525123 |
0.0599427 |
| log_median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(median) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0051662 |
0.0249550 |
0.4720666 |
| log_mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000067 |
0.0525123 |
0.0599427 |
| log_max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(max) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000067 |
0.0408538 |
0.0396862 |