TidyDataUpdatedDataProcessing_tidyrdplyrinR_ MinervaSingh_Udemy

Source file ⇒ TidyDataUpdatedDataProcessing_tidyrdplyrinR.rmd

Read in Data From Different Sources

##   fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality
## 1                                                                                                  7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
## 2                                                                                                  7.8;0.88;0;2.6;0.098;25;67;0.9968;3.2;0.68;9.8;5
## 3                                                                                               7.8;0.76;0.04;2.3;0.092;15;54;0.997;3.26;0.65;9.8;5
## 4                                                                                              11.2;0.28;0.56;1.9;0.075;17;60;0.998;3.16;0.58;9.8;6
## 5                                                                                                  7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
## 6                                                                                                 7.4;0.66;0;1.8;0.075;13;40;0.9978;3.51;0.56;9.4;5
##  fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality
##  6.7;0.46;0.24;1.7;0.077;18;34;0.9948;3.39;0.6;10.6;6  :   4                                                                                      
##  7.2;0.36;0.46;2.1;0.074;24;44;0.99534;3.4;0.85;11;7   :   4                                                                                      
##  7.2;0.695;0.13;2;0.076;12;20;0.99546;3.29;0.54;10.1;5 :   4                                                                                      
##  7.5;0.51;0.02;1.7;0.084;13;31;0.99538;3.36;0.54;10.5;6:   4                                                                                      
##  11.5;0.18;0.51;4;0.104;4;23;0.9996;3.28;0.97;10.1;6   :   3                                                                                      
##  6.4;0.64;0.21;1.8;0.081;14;31;0.99689;3.59;0.66;9.8;5 :   3                                                                                      
##  (Other)                                               :1577
##   fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality
## 1                                                                                                  7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
## 2                                                                                                  7.8;0.88;0;2.6;0.098;25;67;0.9968;3.2;0.68;9.8;5
## 3                                                                                               7.8;0.76;0.04;2.3;0.092;15;54;0.997;3.26;0.65;9.8;5
## 4                                                                                              11.2;0.28;0.56;1.9;0.075;17;60;0.998;3.16;0.58;9.8;6
## 5                                                                                                  7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5
## 6                                                                                                 7.4;0.66;0;1.8;0.075;13;40;0.9978;3.51;0.56;9.4;5
##  fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality
##  6.7;0.46;0.24;1.7;0.077;18;34;0.9948;3.39;0.6;10.6;6  :   4                                                                                      
##  7.2;0.36;0.46;2.1;0.074;24;44;0.99534;3.4;0.85;11;7   :   4                                                                                      
##  7.2;0.695;0.13;2;0.076;12;20;0.99546;3.29;0.54;10.1;5 :   4                                                                                      
##  7.5;0.51;0.02;1.7;0.084;13;31;0.99538;3.36;0.54;10.5;6:   4                                                                                      
##  11.5;0.18;0.51;4;0.104;4;23;0.9996;3.28;0.97;10.1;6   :   3                                                                                      
##  6.4;0.64;0.21;1.8;0.081;14;31;0.99689;3.59;0.66;9.8;5 :   3                                                                                      
##  (Other)                                               :1577
##   fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
## 1           7.4             0.70        0.00            1.9     0.076
## 2           7.8             0.88        0.00            2.6     0.098
## 3           7.8             0.76        0.04            2.3     0.092
## 4          11.2             0.28        0.56            1.9     0.075
## 5           7.4             0.70        0.00            1.9     0.076
## 6           7.4             0.66        0.00            1.8     0.075
##   free.sulfur.dioxide total.sulfur.dioxide density  pH sulphates alcohol
## 1                  11                   34       1 3.5      0.56     9.4
## 2                  25                   67       1 3.2      0.68     9.8
## 3                  15                   54       1 3.3      0.65     9.8
## 4                  17                   60       1 3.2      0.58     9.8
## 5                  11                   34       1 3.5      0.56     9.4
## 6                  13                   40       1 3.5      0.56     9.4
##   quality
## 1       5
## 2       5
## 3       5
## 4       6
## 5       5
## 6       5
##  fixed.acidity  volatile.acidity  citric.acid   residual.sugar
##  Min.   : 4.6   Min.   :0.12     Min.   :0.00   Min.   : 0.9  
##  1st Qu.: 7.1   1st Qu.:0.39     1st Qu.:0.09   1st Qu.: 1.9  
##  Median : 7.9   Median :0.52     Median :0.26   Median : 2.2  
##  Mean   : 8.3   Mean   :0.53     Mean   :0.27   Mean   : 2.5  
##  3rd Qu.: 9.2   3rd Qu.:0.64     3rd Qu.:0.42   3rd Qu.: 2.6  
##  Max.   :15.9   Max.   :1.58     Max.   :1.00   Max.   :15.5  
##    chlorides    free.sulfur.dioxide total.sulfur.dioxide    density    
##  Min.   :0.01   Min.   : 1          Min.   :  6          Min.   :0.99  
##  1st Qu.:0.07   1st Qu.: 7          1st Qu.: 22          1st Qu.:1.00  
##  Median :0.08   Median :14          Median : 38          Median :1.00  
##  Mean   :0.09   Mean   :16          Mean   : 46          Mean   :1.00  
##  3rd Qu.:0.09   3rd Qu.:21          3rd Qu.: 62          3rd Qu.:1.00  
##  Max.   :0.61   Max.   :72          Max.   :289          Max.   :1.00  
##        pH        sulphates       alcohol        quality   
##  Min.   :2.7   Min.   :0.33   Min.   : 8.4   Min.   :3.0  
##  1st Qu.:3.2   1st Qu.:0.55   1st Qu.: 9.5   1st Qu.:5.0  
##  Median :3.3   Median :0.62   Median :10.2   Median :6.0  
##  Mean   :3.3   Mean   :0.66   Mean   :10.4   Mean   :5.6  
##  3rd Qu.:3.4   3rd Qu.:0.73   3rd Qu.:11.1   3rd Qu.:6.0  
##  Max.   :4.0   Max.   :2.00   Max.   :14.9   Max.   :8.0
## # A tibble: 6 x 10
##      MV INDUS   NOX    RM   TAX    PT LSTAT X__1  X__2  X__3               
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <lgl> <chr>              
## 1  24    2.31  53.8  6.58   296  15.3  4.98 NA    NA    Subset of Boston h~
## 2  21.6  7.07  46.9  6.42   242  17.8  9.14 NA    NA    data of Harrison a~
## 3  34.7  7.07  46.9  7.18   242  17.8  4.03 NA    NA    (1978).  Each case~
## 4  33.4  2.18  45.8  7.00   222  18.7  2.94 NA    NA    Census tract in th~
## 5  36.2  2.18  45.8  7.15   222  18.7  5.33 NA    NA    <NA>               
## 6  28.7  2.18  45.8  6.43   222  18.7  5.21 NA    NA    <NA>
##        MV         INDUS           NOX           RM           TAX     
##  Min.   : 5   Min.   : 0.5   Min.   :38   Min.   :3.6   Min.   :187  
##  1st Qu.:17   1st Qu.: 5.2   1st Qu.:45   1st Qu.:5.9   1st Qu.:279  
##  Median :21   Median : 9.7   Median :54   Median :6.2   Median :330  
##  Mean   :23   Mean   :11.1   Mean   :55   Mean   :6.3   Mean   :408  
##  3rd Qu.:25   3rd Qu.:18.1   3rd Qu.:62   3rd Qu.:6.6   3rd Qu.:666  
##  Max.   :50   Max.   :27.7   Max.   :87   Max.   :8.8   Max.   :711  
##        PT           LSTAT      X__1           X__2        
##  Min.   :12.6   Min.   : 2   Mode:logical   Mode:logical  
##  1st Qu.:17.4   1st Qu.: 7   NA's:506       NA's:506      
##  Median :19.1   Median :11                                
##  Mean   :18.5   Mean   :13                                
##  3rd Qu.:20.2   3rd Qu.:17                                
##  Max.   :22.0   Max.   :38                                
##      X__3          
##  Length:506        
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
##   Rank                 NOC Gold Silver Bronze Total
## 1    1 United States (USA)   46     37     38   121
## 2    2 Great Britain (GBR)   27     23     17    67
## 3    3         China (CHN)   26     18     26    70
## 4    4        Russia (RUS)   19     17     20    56
## 5    5       Germany (GER)   17     10     15    42
## 6    6         Japan (JPN)   12      8     21    41
##                                                                 Name Image
## 1                                     Blaenavon Industrial Landscape    NA
## 2                                                    Blenheim Palace    NA
## 3 Canterbury Cathedral, St Augustine's Abbey, and St Martin's Church    NA
## 4                   Castles and Town Walls of King Edward in Gwynedd    NA
## 5                                                       City of Bath    NA
## 6                           Cornwall and West Devon Mining Landscape    NA
##                                                                                                                                                                                                   Location
## 1                                                                     Blaenavon,  Wales51°47'N 3°05'W<U+FEFF> / <U+FEFF>51.78°N 3.08°W<U+FEFF> / 51.78; -3.08<U+FEFF> (Blaenavon Industrial Landscape)[14]
## 2                                             Woodstock, Oxfordshire,  England51°50'28<U+2033>N 1°21'40<U+2033>W<U+FEFF> / <U+FEFF>51.841°N 1.361°W<U+FEFF> / 51.841; -1.361<U+FEFF> (Blenheim Palace)[15]
## 3                         Canterbury, Kent,  England51°17'N 1°05'E<U+FEFF> / <U+FEFF>51.28°N 1.08°E<U+FEFF> / 51.28; 1.08<U+FEFF> (Canterbury Cathedral, St Augustine's Abbey, and St Martin's Church)[16]
## 4 Conwy, Isle of Anglesey and Gwynedd,  Wales53°08'20<U+2033>N 4°16'34<U+2033>W<U+FEFF> / <U+FEFF>53.139°N 4.276°W<U+FEFF> / 53.139; -4.276<U+FEFF> (Castles and Town Walls of King Edward in Gwynedd)[19]
## 5                                                        Bath, Somerset,  England51°22'48<U+2033>N 2°21'36<U+2033>W<U+FEFF> / <U+FEFF>51.380°N 2.360°W<U+FEFF> / 51.380; -2.360<U+FEFF> (City of Bath)[21]
## 6                                                Cornwall and Devon,  England50°08'N 5°23'W<U+FEFF> / <U+FEFF>50.13°N 5.38°W<U+FEFF> / 50.13; -5.38<U+FEFF> (Cornwall and West Devon Mining Landscape)[22]
##                          Date                 UNESCO data
## 1            19th century[14]       984; 2000;iii, iv[14]
## 2               1705–1722[15]        425; 1987;ii, iv[15]
## 3            11th century[16]     496; 1988;i, ii, vi[16]
## 4     13th–14th centuries[19]    374; 1986;i, iii, iv[19]
## 5      1st–19th centuries[21]     428; 1987;i, ii, iv[21]
## 6 18th and 19th centuries[22] 1,215; 2006;ii, iii, iv[22]
##                                                                                                                                                                                                                                                                                                                                                                                               Description
## 1                                                                                                       In the 19th century, Wales was the world's foremost producer of iron and coal. Blaenavon is an example of the landscape created by the industrial processes associated with the production of these materials. The site includes quarries, public buildings, workers' housing, and a railway.[14]
## 2                        Blenheim Palace, the residence of John Churchill, 1st Duke of Marlborough, was designed by architects John Vanbrugh and Nicholas Hawksmoor. The associated park was landscaped by Capability Brown. The palace celebrated victory over the French and is significant for establishing English Romantic Architecture as a separate entity from French Classical Architecture.[15]
## 3                                                                                                  St Martin's Church is the oldest church in England. The church and St Augustine's Abbey were founded during the early stages of the introduction of Christianity to the Anglo-Saxons. The cathedral exhibits Romanesque and Gothic architecture, and is the seat of the Church of England.[16][17][18]
## 4 During the reign of Edward I of England (1272–1307), a series of castles was constructed in Wales with the purpose of subduing the population and establishing English colonies in Wales. The World Heritage Site covers many castles including Beaumaris, Caernarfon, Conwy, and Harlech. The castles of Edward I are considered the pinnacle of military architecture by military historians.[19][20]
## 5                                                                                                                                                             Founded by the Romans as a spa, an important centre of the wool industry in the medieval period, and a spa town in the 18th century, Bath has a varied history. The city is preserved for its Roman remains and Palladian architecture.[21]
## 6                                                                                                                            Tin and copper mining in Devon and Cornwall boomed in the 18th and 19th centuries, and at its peak the area produced two-thirds of the world's copper. The techniques and technology involved in deep mining developed in Devon and Cornwall were used around the world.[22]
##  [1] "BOD"              "CO2"              "ChickWeight"     
##  [4] "DNase"            "Formaldehyde"     "Indometh"        
##  [7] "InsectSprays"     "LifeCycleSavings" "Loblolly"        
## [10] "Orange"           "OrchardSprays"    "PlantGrowth"     
## [13] "Puromycin"        "Theoph"           "ToothGrowth"     
## [16] "USArrests"        "USJudgeRatings"   "airquality"      
## [19] "anscombe"         "attenu"           "attitude"        
## [22] "cars"             "chickwts"         "esoph"           
## [25] "faithful"         "freeny"           "infert"          
## [28] "iris"             "longley"          "morley"          
## [31] "mtcars"           "npk"              "pressure"        
## [34] "quakes"           "randu"            "rock"            
## [37] "sleep"            "stackloss"        "swiss"           
## [40] "trees"            "warpbreaks"       "women"
##    Plant        Type  Treatment conc uptake
## 1    Qn1      Quebec nonchilled   95   16.0
## 2    Qn1      Quebec nonchilled  175   30.4
## 3    Qn1      Quebec nonchilled  250   34.8
## 4    Qn1      Quebec nonchilled  350   37.2
## 5    Qn1      Quebec nonchilled  500   35.3
## 6    Qn1      Quebec nonchilled  675   39.2
## 7    Qn1      Quebec nonchilled 1000   39.7
## 8    Qn2      Quebec nonchilled   95   13.6
## 9    Qn2      Quebec nonchilled  175   27.3
## 10   Qn2      Quebec nonchilled  250   37.1
## 11   Qn2      Quebec nonchilled  350   41.8
## 12   Qn2      Quebec nonchilled  500   40.6
## 13   Qn2      Quebec nonchilled  675   41.4
## 14   Qn2      Quebec nonchilled 1000   44.3
## 15   Qn3      Quebec nonchilled   95   16.2
## 16   Qn3      Quebec nonchilled  175   32.4
## 17   Qn3      Quebec nonchilled  250   40.3
## 18   Qn3      Quebec nonchilled  350   42.1
## 19   Qn3      Quebec nonchilled  500   42.9
## 20   Qn3      Quebec nonchilled  675   43.9
## 21   Qn3      Quebec nonchilled 1000   45.5
## 22   Qc1      Quebec    chilled   95   14.2
## 23   Qc1      Quebec    chilled  175   24.1
## 24   Qc1      Quebec    chilled  250   30.3
## 25   Qc1      Quebec    chilled  350   34.6
## 26   Qc1      Quebec    chilled  500   32.5
## 27   Qc1      Quebec    chilled  675   35.4
## 28   Qc1      Quebec    chilled 1000   38.7
## 29   Qc2      Quebec    chilled   95    9.3
## 30   Qc2      Quebec    chilled  175   27.3
## 31   Qc2      Quebec    chilled  250   35.0
## 32   Qc2      Quebec    chilled  350   38.8
## 33   Qc2      Quebec    chilled  500   38.6
## 34   Qc2      Quebec    chilled  675   37.5
## 35   Qc2      Quebec    chilled 1000   42.4
## 36   Qc3      Quebec    chilled   95   15.1
## 37   Qc3      Quebec    chilled  175   21.0
## 38   Qc3      Quebec    chilled  250   38.1
## 39   Qc3      Quebec    chilled  350   34.0
## 40   Qc3      Quebec    chilled  500   38.9
## 41   Qc3      Quebec    chilled  675   39.6
## 42   Qc3      Quebec    chilled 1000   41.4
## 43   Mn1 Mississippi nonchilled   95   10.6
## 44   Mn1 Mississippi nonchilled  175   19.2
## 45   Mn1 Mississippi nonchilled  250   26.2
## 46   Mn1 Mississippi nonchilled  350   30.0
## 47   Mn1 Mississippi nonchilled  500   30.9
## 48   Mn1 Mississippi nonchilled  675   32.4
## 49   Mn1 Mississippi nonchilled 1000   35.5
## 50   Mn2 Mississippi nonchilled   95   12.0
## 51   Mn2 Mississippi nonchilled  175   22.0
## 52   Mn2 Mississippi nonchilled  250   30.6
## 53   Mn2 Mississippi nonchilled  350   31.8
## 54   Mn2 Mississippi nonchilled  500   32.4
## 55   Mn2 Mississippi nonchilled  675   31.1
## 56   Mn2 Mississippi nonchilled 1000   31.5
## 57   Mn3 Mississippi nonchilled   95   11.3
## 58   Mn3 Mississippi nonchilled  175   19.4
## 59   Mn3 Mississippi nonchilled  250   25.8
## 60   Mn3 Mississippi nonchilled  350   27.9
## 61   Mn3 Mississippi nonchilled  500   28.5
## 62   Mn3 Mississippi nonchilled  675   28.1
## 63   Mn3 Mississippi nonchilled 1000   27.8
## 64   Mc1 Mississippi    chilled   95   10.5
## 65   Mc1 Mississippi    chilled  175   14.9
## 66   Mc1 Mississippi    chilled  250   18.1
## 67   Mc1 Mississippi    chilled  350   18.9
## 68   Mc1 Mississippi    chilled  500   19.5
## 69   Mc1 Mississippi    chilled  675   22.2
## 70   Mc1 Mississippi    chilled 1000   21.9
## 71   Mc2 Mississippi    chilled   95    7.7
## 72   Mc2 Mississippi    chilled  175   11.4
## 73   Mc2 Mississippi    chilled  250   12.3
## 74   Mc2 Mississippi    chilled  350   13.0
## 75   Mc2 Mississippi    chilled  500   12.5
## 76   Mc2 Mississippi    chilled  675   13.7
## 77   Mc2 Mississippi    chilled 1000   14.4
## 78   Mc3 Mississippi    chilled   95   10.6
## 79   Mc3 Mississippi    chilled  175   18.0
## 80   Mc3 Mississippi    chilled  250   17.9
## 81   Mc3 Mississippi    chilled  350   17.9
## 82   Mc3 Mississippi    chilled  500   17.9
## 83   Mc3 Mississippi    chilled  675   18.9
## 84   Mc3 Mississippi    chilled 1000   19.9
##    Plant        Type  Treatment conc uptake
## 1    Qn1      Quebec nonchilled   95   16.0
## 2    Qn2      Quebec nonchilled   95   13.6
## 3    Qn3      Quebec nonchilled   95   16.2
## 4    Qc1      Quebec    chilled   95   14.2
## 5    Qc2      Quebec    chilled   95    9.3
## 6    Qc3      Quebec    chilled   95   15.1
## 7    Mn1 Mississippi nonchilled   95   10.6
## 8    Mn2 Mississippi nonchilled   95   12.0
## 9    Mn3 Mississippi nonchilled   95   11.3
## 10   Mc1 Mississippi    chilled   95   10.5
## 11   Mc2 Mississippi    chilled   95    7.7
## 12   Mc3 Mississippi    chilled   95   10.6
## [1] "Reviews"
##   Id  ProductId         UserId                     ProfileName
## 1  1 B001E4KFG0 A3SGXH7AUHU8GW                      delmartian
## 2  2 B00813GRG4 A1D87F6ZCVE5NK                          dll pa
## 3  3 B000LQOCH0  ABXLMWJIXXAIN Natalia Corres "Natalia Corres"
## 4  4 B000UA0QIQ A395BORC6FGVXV                            Karl
## 5  5 B006K2ZZ7K A1UQRSCLF8GW1T   Michael D. Bigham "M. Wassir"
## 6  6 B006K2ZZ7K  ADT0SRK1MGOEU                  Twoapennything
##   HelpfulnessNumerator HelpfulnessDenominator Score       Time
## 1                    1                      1     5 1303862400
## 2                    0                      0     1 1346976000
## 3                    1                      1     4 1219017600
## 4                    3                      3     2 1307923200
## 5                    0                      0     5 1350777600
## 6                    0                      0     4 1342051200
##                 Summary
## 1 Good Quality Dog Food
## 2     Not as Advertised
## 3 "Delight" says it all
## 4        Cough Medicine
## 5           Great taffy
## 6            Nice Taffy
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Text
## 1                                                                                                                                                                                                                                                       I have bought several of the Vitality canned dog food products and have found them all to be of good quality. The product looks more like a stew than a processed meat and it smells better. My Labrador is finicky and she appreciates this product better than  most.
## 2                                                                                                                                                                                                                                                                                                                                Product arrived labeled as Jumbo Salted Peanuts...the peanuts were actually small sized unsalted. Not sure if this was an error or if the vendor intended to represent the product as "Jumbo".
## 3 This is a confection that has been around a few centuries.  It is a light, pillowy citrus gelatin with nuts - in this case Filberts. And it is cut into tiny squares and then liberally coated with powdered sugar.  And it is a tiny mouthful of heaven.  Not too chewy, and very flavorful.  I highly recommend this yummy treat.  If you are familiar with the story of C.S. Lewis' "The Lion, The Witch, and The Wardrobe" - this is the treat that seduces Edmund into selling out his Brother and Sisters to the Witch.
## 4                                                                                                                                                                                                                                                                                                   If you are looking for the secret ingredient in Robitussin I believe I have found it.  I got this in addition to the Root Beer Extract I ordered (which was good) and made some cherry soda.  The flavor is very medicinal.
## 5                                                                                                                                                                                                                                                                                                                                                                                  Great taffy at a great price.  There was a wide assortment of yummy taffy.  Delivery was very quick.  If your a taffy lover, this is a deal.
## 6                                                                                              I got a wild hair for taffy and ordered this five pound bag. The taffy was all very enjoyable with many flavors: watermelon, root beer, melon, peppermint, grape, etc. My only complaint is there was a bit too much red/black licorice-flavored pieces (just not my particular favorites). Between me, my kids, and my husband, this lasted only two weeks! I would recommend this brand of taffy -- it was a delightful treat.
## [1] "Ball_by_Ball"   "Batsman_Scored" "Batting_Style"  "Bowling_Style" 
## [5] "City"           "Country"
##    Country_Id Country_Name
## 1           1        India
## 2           2 South Africa
## 3           3        U.A.E
## 4           4  New Zealand
## 5           5    Australia
## 6           6     Pakistan
## 7           7    Sri Lanka
## 8           8  West Indies
## 9           9    Zimbabwea
## 10         10      England
## 11         11   Bangladesh
## 12         12  Netherlands
##   Match_Id Over_Id Ball_Id Runs_Scored Innings_No
## 1   335987       1       1           0          1
## 2   335987       1       1           1          2
## 3   335987       1       2           0          1
## 4   335987       1       3           0          2
## 5   335987       1       4           0          1
## 6   335987       1       4           1          2
##     Match_Id         Over_Id        Ball_Id     Runs_Scored    Innings_No 
##  Min.   :335987   Min.   : 1.0   Min.   :1.0   Min.   :0.0   Min.   :1.0  
##  1st Qu.:419141   1st Qu.: 5.0   1st Qu.:2.0   1st Qu.:0.0   1st Qu.:1.0  
##  Median :548354   Median :10.0   Median :4.0   Median :1.0   Median :1.0  
##  Mean   :590912   Mean   :10.2   Mean   :3.6   Mean   :1.2   Mean   :1.5  
##  3rd Qu.:734000   3rd Qu.:15.0   3rd Qu.:5.0   3rd Qu.:1.0   3rd Qu.:2.0  
##  Max.   :981024   Max.   :20.0   Max.   :9.0   Max.   :6.0   Max.   :4.0
## 'data.frame':    133097 obs. of  5 variables:
##  $ Match_Id   : int  335987 335987 335987 335987 335987 335987 335987 335987 335987 335987 ...
##  $ Over_Id    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Ball_Id    : int  1 1 2 3 4 4 5 5 6 6 ...
##  $ Runs_Scored: int  0 1 0 0 0 1 0 1 0 0 ...
##  $ Innings_No : int  1 2 1 2 1 2 1 2 1 2 ...
## $page
## [1] 1
## 
## $pages
## [1] 4
## 
## $per_page
## [1] "10"
## 
## $total
## [1] 32
## [[1]]
## [[1]]$id
## [1] "AUS"
## 
## [[1]]$iso2Code
## [1] "AU"
## 
## [[1]]$name
## [1] "Australia"
## 
## [[1]]$region
## [[1]]$region$id
## [1] "EAS"
## 
## [[1]]$region$value
## [1] "East Asia & Pacific"
## 
## 
## [[1]]$adminregion
## [[1]]$adminregion$id
## [1] ""
## 
## [[1]]$adminregion$value
## [1] ""
## 
## 
## [[1]]$incomeLevel
## [[1]]$incomeLevel$id
## [1] "HIC"
## 
## [[1]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[1]]$lendingType
## [[1]]$lendingType$id
## [1] "LNX"
## 
## [[1]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[1]]$capitalCity
## [1] "Canberra"
## 
## [[1]]$longitude
## [1] "149.129"
## 
## [[1]]$latitude
## [1] "-35.282"
## 
## 
## [[2]]
## [[2]]$id
## [1] "AUT"
## 
## [[2]]$iso2Code
## [1] "AT"
## 
## [[2]]$name
## [1] "Austria"
## 
## [[2]]$region
## [[2]]$region$id
## [1] "ECS"
## 
## [[2]]$region$value
## [1] "Europe & Central Asia"
## 
## 
## [[2]]$adminregion
## [[2]]$adminregion$id
## [1] ""
## 
## [[2]]$adminregion$value
## [1] ""
## 
## 
## [[2]]$incomeLevel
## [[2]]$incomeLevel$id
## [1] "HIC"
## 
## [[2]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[2]]$lendingType
## [[2]]$lendingType$id
## [1] "LNX"
## 
## [[2]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[2]]$capitalCity
## [1] "Vienna"
## 
## [[2]]$longitude
## [1] "16.3798"
## 
## [[2]]$latitude
## [1] "48.2201"
## 
## 
## [[3]]
## [[3]]$id
## [1] "BEL"
## 
## [[3]]$iso2Code
## [1] "BE"
## 
## [[3]]$name
## [1] "Belgium"
## 
## [[3]]$region
## [[3]]$region$id
## [1] "ECS"
## 
## [[3]]$region$value
## [1] "Europe & Central Asia"
## 
## 
## [[3]]$adminregion
## [[3]]$adminregion$id
## [1] ""
## 
## [[3]]$adminregion$value
## [1] ""
## 
## 
## [[3]]$incomeLevel
## [[3]]$incomeLevel$id
## [1] "HIC"
## 
## [[3]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[3]]$lendingType
## [[3]]$lendingType$id
## [1] "LNX"
## 
## [[3]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[3]]$capitalCity
## [1] "Brussels"
## 
## [[3]]$longitude
## [1] "4.36761"
## 
## [[3]]$latitude
## [1] "50.8371"
## 
## 
## [[4]]
## [[4]]$id
## [1] "CAN"
## 
## [[4]]$iso2Code
## [1] "CA"
## 
## [[4]]$name
## [1] "Canada"
## 
## [[4]]$region
## [[4]]$region$id
## [1] "NAC"
## 
## [[4]]$region$value
## [1] "North America"
## 
## 
## [[4]]$adminregion
## [[4]]$adminregion$id
## [1] ""
## 
## [[4]]$adminregion$value
## [1] ""
## 
## 
## [[4]]$incomeLevel
## [[4]]$incomeLevel$id
## [1] "HIC"
## 
## [[4]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[4]]$lendingType
## [[4]]$lendingType$id
## [1] "LNX"
## 
## [[4]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[4]]$capitalCity
## [1] "Ottawa"
## 
## [[4]]$longitude
## [1] "-75.6919"
## 
## [[4]]$latitude
## [1] "45.4215"
## 
## 
## [[5]]
## [[5]]$id
## [1] "CHE"
## 
## [[5]]$iso2Code
## [1] "CH"
## 
## [[5]]$name
## [1] "Switzerland"
## 
## [[5]]$region
## [[5]]$region$id
## [1] "ECS"
## 
## [[5]]$region$value
## [1] "Europe & Central Asia"
## 
## 
## [[5]]$adminregion
## [[5]]$adminregion$id
## [1] ""
## 
## [[5]]$adminregion$value
## [1] ""
## 
## 
## [[5]]$incomeLevel
## [[5]]$incomeLevel$id
## [1] "HIC"
## 
## [[5]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[5]]$lendingType
## [[5]]$lendingType$id
## [1] "LNX"
## 
## [[5]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[5]]$capitalCity
## [1] "Bern"
## 
## [[5]]$longitude
## [1] "7.44821"
## 
## [[5]]$latitude
## [1] "46.948"
## 
## 
## [[6]]
## [[6]]$id
## [1] "CZE"
## 
## [[6]]$iso2Code
## [1] "CZ"
## 
## [[6]]$name
## [1] "Czech Republic"
## 
## [[6]]$region
## [[6]]$region$id
## [1] "ECS"
## 
## [[6]]$region$value
## [1] "Europe & Central Asia"
## 
## 
## [[6]]$adminregion
## [[6]]$adminregion$id
## [1] ""
## 
## [[6]]$adminregion$value
## [1] ""
## 
## 
## [[6]]$incomeLevel
## [[6]]$incomeLevel$id
## [1] "HIC"
## 
## [[6]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[6]]$lendingType
## [[6]]$lendingType$id
## [1] "LNX"
## 
## [[6]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[6]]$capitalCity
## [1] "Prague"
## 
## [[6]]$longitude
## [1] "14.4205"
## 
## [[6]]$latitude
## [1] "50.0878"
## 
## 
## [[7]]
## [[7]]$id
## [1] "DEU"
## 
## [[7]]$iso2Code
## [1] "DE"
## 
## [[7]]$name
## [1] "Germany"
## 
## [[7]]$region
## [[7]]$region$id
## [1] "ECS"
## 
## [[7]]$region$value
## [1] "Europe & Central Asia"
## 
## 
## [[7]]$adminregion
## [[7]]$adminregion$id
## [1] ""
## 
## [[7]]$adminregion$value
## [1] ""
## 
## 
## [[7]]$incomeLevel
## [[7]]$incomeLevel$id
## [1] "HIC"
## 
## [[7]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[7]]$lendingType
## [[7]]$lendingType$id
## [1] "LNX"
## 
## [[7]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[7]]$capitalCity
## [1] "Berlin"
## 
## [[7]]$longitude
## [1] "13.4115"
## 
## [[7]]$latitude
## [1] "52.5235"
## 
## 
## [[8]]
## [[8]]$id
## [1] "DNK"
## 
## [[8]]$iso2Code
## [1] "DK"
## 
## [[8]]$name
## [1] "Denmark"
## 
## [[8]]$region
## [[8]]$region$id
## [1] "ECS"
## 
## [[8]]$region$value
## [1] "Europe & Central Asia"
## 
## 
## [[8]]$adminregion
## [[8]]$adminregion$id
## [1] ""
## 
## [[8]]$adminregion$value
## [1] ""
## 
## 
## [[8]]$incomeLevel
## [[8]]$incomeLevel$id
## [1] "HIC"
## 
## [[8]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[8]]$lendingType
## [[8]]$lendingType$id
## [1] "LNX"
## 
## [[8]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[8]]$capitalCity
## [1] "Copenhagen"
## 
## [[8]]$longitude
## [1] "12.5681"
## 
## [[8]]$latitude
## [1] "55.6763"
## 
## 
## [[9]]
## [[9]]$id
## [1] "ESP"
## 
## [[9]]$iso2Code
## [1] "ES"
## 
## [[9]]$name
## [1] "Spain"
## 
## [[9]]$region
## [[9]]$region$id
## [1] "ECS"
## 
## [[9]]$region$value
## [1] "Europe & Central Asia"
## 
## 
## [[9]]$adminregion
## [[9]]$adminregion$id
## [1] ""
## 
## [[9]]$adminregion$value
## [1] ""
## 
## 
## [[9]]$incomeLevel
## [[9]]$incomeLevel$id
## [1] "HIC"
## 
## [[9]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[9]]$lendingType
## [[9]]$lendingType$id
## [1] "LNX"
## 
## [[9]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[9]]$capitalCity
## [1] "Madrid"
## 
## [[9]]$longitude
## [1] "-3.70327"
## 
## [[9]]$latitude
## [1] "40.4167"
## 
## 
## [[10]]
## [[10]]$id
## [1] "EST"
## 
## [[10]]$iso2Code
## [1] "EE"
## 
## [[10]]$name
## [1] "Estonia"
## 
## [[10]]$region
## [[10]]$region$id
## [1] "ECS"
## 
## [[10]]$region$value
## [1] "Europe & Central Asia"
## 
## 
## [[10]]$adminregion
## [[10]]$adminregion$id
## [1] ""
## 
## [[10]]$adminregion$value
## [1] ""
## 
## 
## [[10]]$incomeLevel
## [[10]]$incomeLevel$id
## [1] "HIC"
## 
## [[10]]$incomeLevel$value
## [1] "High income"
## 
## 
## [[10]]$lendingType
## [[10]]$lendingType$id
## [1] "LNX"
## 
## [[10]]$lendingType$value
## [1] "Not classified"
## 
## 
## [[10]]$capitalCity
## [1] "Tallinn"
## 
## [[10]]$longitude
## [1] "24.7586"
## 
## [[10]]$latitude
## [1] "59.4392"
##       id    iso2Code
##  [1,] "AUS" "AU"    
##  [2,] "AUT" "AT"    
##  [3,] "BEL" "BE"    
##  [4,] "CAN" "CA"    
##  [5,] "CHE" "CH"    
##  [6,] "CZE" "CZ"    
##  [7,] "DEU" "DE"    
##  [8,] "DNK" "DK"    
##  [9,] "ESP" "ES"    
## [10,] "EST" "EE"
##       id    iso2Code id    value                   capitalCity 
##  [1,] "AUS" "AU"     "EAS" "East Asia & Pacific"   "Canberra"  
##  [2,] "AUT" "AT"     "ECS" "Europe & Central Asia" "Vienna"    
##  [3,] "BEL" "BE"     "ECS" "Europe & Central Asia" "Brussels"  
##  [4,] "CAN" "CA"     "NAC" "North America"         "Ottawa"    
##  [5,] "CHE" "CH"     "ECS" "Europe & Central Asia" "Bern"      
##  [6,] "CZE" "CZ"     "ECS" "Europe & Central Asia" "Prague"    
##  [7,] "DEU" "DE"     "ECS" "Europe & Central Asia" "Berlin"    
##  [8,] "DNK" "DK"     "ECS" "Europe & Central Asia" "Copenhagen"
##  [9,] "ESP" "ES"     "ECS" "Europe & Central Asia" "Madrid"    
## [10,] "EST" "EE"     "ECS" "Europe & Central Asia" "Tallinn"
## $Description
## [1] ""
## 
## $Image
## [1] "/wiki/File:MuryeongsTomb.jpg"
## 
## $Criteria
## [1] "Cultural: (ii)(iii)"
## 
## $Site
## [1] "Baekje Historic Areas"
## 
## $`Area ha (acre)`
## [1] "135 (330)"
## 
## $Location
## [1] "South Chungcheong, North Jeolla"
## 
## $Year
## [1] "2015"
## $Description
## [1] ""
## 
## $Image
## [1] "/wiki/File:Korea-Gwangju-Gochang_Dolmens_5350-06.JPG"
## 
## $Criteria
## [1] "Cultural: (iii)"
## 
## $Site
## [1] "Gochang, Hwasun and Ganghwa Dolmen Sites"
## 
## $`Area ha (acre)`
## [1] ""
## 
## $Location
## [1] "Incheon, North Jeolla, South Jeolla"
## 
## $Year
## [1] "2000"
## $Description
## [1] ""
## 
## $Image
## [1] "/wiki/File:Haeinsa_Temple_(6222053899).jpg"
## 
## $Criteria
## [1] "Cultural: (iv)(vi)"
## 
## $Site
## [1] "Haeinsa Temple Janggyeong Panjeon, the Depositories for the Tripitaka Koreana Woodblocks"
## 
## $`Area ha (acre)`
## [1] ""
## 
## $Location
## [1] "South Gyeongsang"
## 
## $Year
## [1] "1995"
##       Image                                                        
##  [1,] "/wiki/File:MuryeongsTomb.jpg"                               
##  [2,] "/wiki/File:Korea-Gwangju-Gochang_Dolmens_5350-06.JPG"       
##  [3,] "/wiki/File:Juhamnu,_Changdeokgung_-_Seoul,_Korea.JPG"       
##  [4,] "/wiki/File:Korea-Gyeongju-Bunhwangsa-Lanterns-03.jpg"       
##  [5,] "/wiki/File:Haeinsa_Temple_(6222053899).jpg"                 
##  [6,] "/wiki/File:Hahoe_8784.jpg"                                  
##  [7,] "/wiki/File:Hwaseong2.jpg"                                   
##  [8,] "/wiki/File:KOCIS_Halla_Mountain_in_Jeju-do_(6387785543).jpg"
##  [9,] "/wiki/File:Chongmyo_repository_(1509268349).jpg"            
## [10,] "/wiki/File:Khitai5.jpg"                                     
## [11,] "/wiki/File:Sejong_tomb_1.jpg"                               
## [12,] "/wiki/File:Bulguk_Tempel.jpg"                               
##       Criteria                 
##  [1,] "Cultural: (ii)(iii)"    
##  [2,] "Cultural: (iii)"        
##  [3,] "Cultural: (ii)(iii)(iv)"
##  [4,] "Cultural: (ii)(iii)"    
##  [5,] "Cultural: (iv)(vi)"     
##  [6,] "Cultural: (iii)(iv)"    
##  [7,] "Cultural: (ii)(iii)"    
##  [8,] "Natural: (vii)(viii)"   
##  [9,] "Cultural: (iv)"         
## [10,] "Cultural: (ii)(iv)"     
## [11,] "Cultural: (iii)(iv)(vi)"
## [12,] "Cultural: (i)(iv)"      
##       Site                                                                                      
##  [1,] "Baekje Historic Areas"                                                                   
##  [2,] "Gochang, Hwasun and Ganghwa Dolmen Sites"                                                
##  [3,] "Changdeokgung Palace Complex"                                                            
##  [4,] "Gyeongju Historic Areas"                                                                 
##  [5,] "Haeinsa Temple Janggyeong Panjeon, the Depositories for the Tripitaka Koreana Woodblocks"
##  [6,] "Historic Villages of Korea: Hahoe and Yangdong"                                          
##  [7,] "Hwaseong Fortress"                                                                       
##  [8,] "Jeju Volcanic Island and Lava Tubes"                                                     
##  [9,] "Jongmyo Shrine"                                                                          
## [10,] "Namhansanseong"                                                                          
## [11,] "Royal Tombs of the Joseon Dynasty"                                                       
## [12,] "Seokguram Grotto and Bulguksa Temple"                                                    
##       Area ha (acre)  
##  [1,] "135 (330)"     
##  [2,] ""              
##  [3,] ""              
##  [4,] "2,880 (7,100)" 
##  [5,] ""              
##  [6,] "600 (1,500)"   
##  [7,] ""              
##  [8,] "9,475 (23,410)"
##  [9,] "19 (47)"       
## [10,] "409 (1,010)"   
## [11,] "1,891 (4,670)" 
## [12,] ""
##       [,1] [,2] [,3] [,4]
##  [1,]    1    2    3    4
##  [2,]    1    2    3    4
##  [3,]    1    2    3    4
##  [4,]    1    2    3    4
##  [5,]    1    2    3    4
##  [6,]    1    2    3    4
##  [7,]    1    2    3    4
##  [8,]    1    2    3    4
##  [9,]    1    2    3    4
## [10,]    1    2    3    4
## [11,]    1    2    3    4
## [12,]    1    2    3    4
## [[1]]
## [1] "/wiki/File:MuryeongsTomb.jpg"
## 
## [[2]]
## [1] "/wiki/File:Korea-Gwangju-Gochang_Dolmens_5350-06.JPG"
## 
## [[3]]
## [1] "/wiki/File:Juhamnu,_Changdeokgung_-_Seoul,_Korea.JPG"
## 
## [[4]]
## [1] "/wiki/File:Korea-Gyeongju-Bunhwangsa-Lanterns-03.jpg"
## 
## [[5]]
## [1] "/wiki/File:Haeinsa_Temple_(6222053899).jpg"
## 
## [[6]]
## [1] "/wiki/File:Hahoe_8784.jpg"
## 
## [[7]]
## [1] "/wiki/File:Hwaseong2.jpg"
## 
## [[8]]
## [1] "/wiki/File:KOCIS_Halla_Mountain_in_Jeju-do_(6387785543).jpg"
## 
## [[9]]
## [1] "/wiki/File:Chongmyo_repository_(1509268349).jpg"
## 
## [[10]]
## [1] "/wiki/File:Khitai5.jpg"
## 
## [[11]]
## [1] "/wiki/File:Sejong_tomb_1.jpg"
## 
## [[12]]
## [1] "/wiki/File:Bulguk_Tempel.jpg"
## $Image
## [1] "/wiki/File:MuryeongsTomb.jpg"
## 
## $Criteria
## [1] "Cultural: (ii)(iii)"
## 
## $Site
## [1] "Baekje Historic Areas"
## 
## $`Area ha (acre)`
## [1] "135 (330)"

Data Processing With dplyr

Pipe Operator %>%

##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
##        Species Petal.Width
## 1       setosa         0.2
## 2       setosa         0.2
## 3       setosa         0.2
## 4       setosa         0.2
## 5       setosa         0.2
## 6       setosa         0.4
## 7       setosa         0.3
## 8       setosa         0.2
## 9       setosa         0.2
## 10      setosa         0.1
## 11      setosa         0.2
## 12      setosa         0.2
## 13      setosa         0.1
## 14      setosa         0.1
## 15      setosa         0.2
## 16      setosa         0.4
## 17      setosa         0.4
## 18      setosa         0.3
## 19      setosa         0.3
## 20      setosa         0.3
## 21      setosa         0.2
## 22      setosa         0.4
## 23      setosa         0.2
## 24      setosa         0.5
## 25      setosa         0.2
## 26      setosa         0.2
## 27      setosa         0.4
## 28      setosa         0.2
## 29      setosa         0.2
## 30      setosa         0.2
## 31      setosa         0.2
## 32      setosa         0.4
## 33      setosa         0.1
## 34      setosa         0.2
## 35      setosa         0.2
## 36      setosa         0.2
## 37      setosa         0.2
## 38      setosa         0.1
## 39      setosa         0.2
## 40      setosa         0.2
## 41      setosa         0.3
## 42      setosa         0.3
## 43      setosa         0.2
## 44      setosa         0.6
## 45      setosa         0.4
## 46      setosa         0.3
## 47      setosa         0.2
## 48      setosa         0.2
## 49      setosa         0.2
## 50      setosa         0.2
## 51  versicolor         1.4
## 52  versicolor         1.5
## 53  versicolor         1.5
## 54  versicolor         1.3
## 55  versicolor         1.5
## 56  versicolor         1.3
## 57  versicolor         1.6
## 58  versicolor         1.0
## 59  versicolor         1.3
## 60  versicolor         1.4
## 61  versicolor         1.0
## 62  versicolor         1.5
## 63  versicolor         1.0
## 64  versicolor         1.4
## 65  versicolor         1.3
## 66  versicolor         1.4
## 67  versicolor         1.5
## 68  versicolor         1.0
## 69  versicolor         1.5
## 70  versicolor         1.1
## 71  versicolor         1.8
## 72  versicolor         1.3
## 73  versicolor         1.5
## 74  versicolor         1.2
## 75  versicolor         1.3
## 76  versicolor         1.4
## 77  versicolor         1.4
## 78  versicolor         1.7
## 79  versicolor         1.5
## 80  versicolor         1.0
## 81  versicolor         1.1
## 82  versicolor         1.0
## 83  versicolor         1.2
## 84  versicolor         1.6
## 85  versicolor         1.5
## 86  versicolor         1.6
## 87  versicolor         1.5
## 88  versicolor         1.3
## 89  versicolor         1.3
## 90  versicolor         1.3
## 91  versicolor         1.2
## 92  versicolor         1.4
## 93  versicolor         1.2
## 94  versicolor         1.0
## 95  versicolor         1.3
## 96  versicolor         1.2
## 97  versicolor         1.3
## 98  versicolor         1.3
## 99  versicolor         1.1
## 100 versicolor         1.3
## 101  virginica         2.5
## 102  virginica         1.9
## 103  virginica         2.1
## 104  virginica         1.8
## 105  virginica         2.2
## 106  virginica         2.1
## 107  virginica         1.7
## 108  virginica         1.8
## 109  virginica         1.8
## 110  virginica         2.5
## 111  virginica         2.0
## 112  virginica         1.9
## 113  virginica         2.1
## 114  virginica         2.0
## 115  virginica         2.4
## 116  virginica         2.3
## 117  virginica         1.8
## 118  virginica         2.2
## 119  virginica         2.3
## 120  virginica         1.5
## 121  virginica         2.3
## 122  virginica         2.0
## 123  virginica         2.0
## 124  virginica         1.8
## 125  virginica         2.1
## 126  virginica         1.8
## 127  virginica         1.8
## 128  virginica         1.8
## 129  virginica         2.1
## 130  virginica         1.6
## 131  virginica         1.9
## 132  virginica         2.0
## 133  virginica         2.2
## 134  virginica         1.5
## 135  virginica         1.4
## 136  virginica         2.3
## 137  virginica         2.4
## 138  virginica         1.8
## 139  virginica         1.8
## 140  virginica         2.1
## 141  virginica         2.4
## 142  virginica         2.3
## 143  virginica         1.9
## 144  virginica         2.3
## 145  virginica         2.5
## 146  virginica         2.3
## 147  virginica         1.9
## 148  virginica         2.0
## 149  virginica         2.3
## 150  virginica         1.8
##   Species Petal.Width
## 1  setosa         0.2
## 2  setosa         0.2
## 3  setosa         0.2
## 4  setosa         0.2
## 5  setosa         0.2
## 6  setosa         0.4
##     Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1            5.1         3.5          1.4         0.2
## 2            4.9         3.0          1.4         0.2
## 3            4.7         3.2          1.3         0.2
## 4            4.6         3.1          1.5         0.2
## 5            5.0         3.6          1.4         0.2
## 6            5.4         3.9          1.7         0.4
## 7            4.6         3.4          1.4         0.3
## 8            5.0         3.4          1.5         0.2
## 9            4.4         2.9          1.4         0.2
## 10           4.9         3.1          1.5         0.1
## 11           5.4         3.7          1.5         0.2
## 12           4.8         3.4          1.6         0.2
## 13           4.8         3.0          1.4         0.1
## 14           4.3         3.0          1.1         0.1
## 15           5.8         4.0          1.2         0.2
## 16           5.7         4.4          1.5         0.4
## 17           5.4         3.9          1.3         0.4
## 18           5.1         3.5          1.4         0.3
## 19           5.7         3.8          1.7         0.3
## 20           5.1         3.8          1.5         0.3
## 21           5.4         3.4          1.7         0.2
## 22           5.1         3.7          1.5         0.4
## 23           4.6         3.6          1.0         0.2
## 24           5.1         3.3          1.7         0.5
## 25           4.8         3.4          1.9         0.2
## 26           5.0         3.0          1.6         0.2
## 27           5.0         3.4          1.6         0.4
## 28           5.2         3.5          1.5         0.2
## 29           5.2         3.4          1.4         0.2
## 30           4.7         3.2          1.6         0.2
## 31           4.8         3.1          1.6         0.2
## 32           5.4         3.4          1.5         0.4
## 33           5.2         4.1          1.5         0.1
## 34           5.5         4.2          1.4         0.2
## 35           4.9         3.1          1.5         0.2
## 36           5.0         3.2          1.2         0.2
## 37           5.5         3.5          1.3         0.2
## 38           4.9         3.6          1.4         0.1
## 39           4.4         3.0          1.3         0.2
## 40           5.1         3.4          1.5         0.2
## 41           5.0         3.5          1.3         0.3
## 42           4.5         2.3          1.3         0.3
## 43           4.4         3.2          1.3         0.2
## 44           5.0         3.5          1.6         0.6
## 45           5.1         3.8          1.9         0.4
## 46           4.8         3.0          1.4         0.3
## 47           5.1         3.8          1.6         0.2
## 48           4.6         3.2          1.4         0.2
## 49           5.3         3.7          1.5         0.2
## 50           5.0         3.3          1.4         0.2
## 51           7.0         3.2          4.7         1.4
## 52           6.4         3.2          4.5         1.5
## 53           6.9         3.1          4.9         1.5
## 54           5.5         2.3          4.0         1.3
## 55           6.5         2.8          4.6         1.5
## 56           5.7         2.8          4.5         1.3
## 57           6.3         3.3          4.7         1.6
## 58           4.9         2.4          3.3         1.0
## 59           6.6         2.9          4.6         1.3
## 60           5.2         2.7          3.9         1.4
## 61           5.0         2.0          3.5         1.0
## 62           5.9         3.0          4.2         1.5
## 63           6.0         2.2          4.0         1.0
## 64           6.1         2.9          4.7         1.4
## 65           5.6         2.9          3.6         1.3
## 66           6.7         3.1          4.4         1.4
## 67           5.6         3.0          4.5         1.5
## 68           5.8         2.7          4.1         1.0
## 69           6.2         2.2          4.5         1.5
## 70           5.6         2.5          3.9         1.1
## 71           5.9         3.2          4.8         1.8
## 72           6.1         2.8          4.0         1.3
## 73           6.3         2.5          4.9         1.5
## 74           6.1         2.8          4.7         1.2
## 75           6.4         2.9          4.3         1.3
## 76           6.6         3.0          4.4         1.4
## 77           6.8         2.8          4.8         1.4
## 78           6.7         3.0          5.0         1.7
## 79           6.0         2.9          4.5         1.5
## 80           5.7         2.6          3.5         1.0
## 81           5.5         2.4          3.8         1.1
## 82           5.5         2.4          3.7         1.0
## 83           5.8         2.7          3.9         1.2
## 84           6.0         2.7          5.1         1.6
## 85           5.4         3.0          4.5         1.5
## 86           6.0         3.4          4.5         1.6
## 87           6.7         3.1          4.7         1.5
## 88           6.3         2.3          4.4         1.3
## 89           5.6         3.0          4.1         1.3
## 90           5.5         2.5          4.0         1.3
## 91           5.5         2.6          4.4         1.2
## 92           6.1         3.0          4.6         1.4
## 93           5.8         2.6          4.0         1.2
## 94           5.0         2.3          3.3         1.0
## 95           5.6         2.7          4.2         1.3
## 96           5.7         3.0          4.2         1.2
## 97           5.7         2.9          4.2         1.3
## 98           6.2         2.9          4.3         1.3
## 99           5.1         2.5          3.0         1.1
## 100          5.7         2.8          4.1         1.3
## 101          6.3         3.3          6.0         2.5
## 102          5.8         2.7          5.1         1.9
## 103          7.1         3.0          5.9         2.1
## 104          6.3         2.9          5.6         1.8
## 105          6.5         3.0          5.8         2.2
## 106          7.6         3.0          6.6         2.1
## 107          4.9         2.5          4.5         1.7
## 108          7.3         2.9          6.3         1.8
## 109          6.7         2.5          5.8         1.8
## 110          7.2         3.6          6.1         2.5
## 111          6.5         3.2          5.1         2.0
## 112          6.4         2.7          5.3         1.9
## 113          6.8         3.0          5.5         2.1
## 114          5.7         2.5          5.0         2.0
## 115          5.8         2.8          5.1         2.4
## 116          6.4         3.2          5.3         2.3
## 117          6.5         3.0          5.5         1.8
## 118          7.7         3.8          6.7         2.2
## 119          7.7         2.6          6.9         2.3
## 120          6.0         2.2          5.0         1.5
## 121          6.9         3.2          5.7         2.3
## 122          5.6         2.8          4.9         2.0
## 123          7.7         2.8          6.7         2.0
## 124          6.3         2.7          4.9         1.8
## 125          6.7         3.3          5.7         2.1
## 126          7.2         3.2          6.0         1.8
## 127          6.2         2.8          4.8         1.8
## 128          6.1         3.0          4.9         1.8
## 129          6.4         2.8          5.6         2.1
## 130          7.2         3.0          5.8         1.6
## 131          7.4         2.8          6.1         1.9
## 132          7.9         3.8          6.4         2.0
## 133          6.4         2.8          5.6         2.2
## 134          6.3         2.8          5.1         1.5
## 135          6.1         2.6          5.6         1.4
## 136          7.7         3.0          6.1         2.3
## 137          6.3         3.4          5.6         2.4
## 138          6.4         3.1          5.5         1.8
## 139          6.0         3.0          4.8         1.8
## 140          6.9         3.1          5.4         2.1
## 141          6.7         3.1          5.6         2.4
## 142          6.9         3.1          5.1         2.3
## 143          5.8         2.7          5.1         1.9
## 144          6.8         3.2          5.9         2.3
## 145          6.7         3.3          5.7         2.5
## 146          6.7         3.0          5.2         2.3
## 147          6.3         2.5          5.0         1.9
## 148          6.5         3.0          5.2         2.0
## 149          6.2         3.4          5.4         2.3
## 150          5.9         3.0          5.1         1.8
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1          5.1         3.5          1.4         0.2
## 2          4.9         3.0          1.4         0.2
## 3          4.7         3.2          1.3         0.2
## 4          4.6         3.1          1.5         0.2
## 5          5.0         3.6          1.4         0.2
## 6          5.4         3.9          1.7         0.4
##   Sepal.Length Sepal.Width Petal.Length
## 1          5.1         3.5          1.4
## 2          4.9         3.0          1.4
## 3          4.7         3.2          1.3
## 4          4.6         3.1          1.5
## 5          5.0         3.6          1.4
## 6          5.4         3.9          1.7
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1          5.1         3.5          1.4         0.2
## 2          4.9         3.0          1.4         0.2
## 3          4.7         3.2          1.3         0.2
## 4          4.6         3.1          1.5         0.2
## 5          5.0         3.6          1.4         0.2
## 6          5.4         3.9          1.7         0.4
##   Petal.Width Species
## 1         0.2  setosa
## 2         0.2  setosa
## 3         0.2  setosa
## 4         0.2  setosa
## 5         0.2  setosa
## 6         0.4  setosa
##   Sepal.Length Sepal.Width Species
## 1          5.1         3.5  setosa
## 2          4.9         3.0  setosa
## 3          4.7         3.2  setosa
## 4          4.6         3.1  setosa
## 5          5.0         3.6  setosa
## 6          5.4         3.9  setosa
##        Species
## 1       setosa
## 2       setosa
## 3       setosa
## 4       setosa
## 5       setosa
## 6       setosa
## 7       setosa
## 8       setosa
## 9       setosa
## 10      setosa
## 11      setosa
## 12      setosa
## 13      setosa
## 14      setosa
## 15      setosa
## 16      setosa
## 17      setosa
## 18      setosa
## 19      setosa
## 20      setosa
## 21      setosa
## 22      setosa
## 23      setosa
## 24      setosa
## 25      setosa
## 26      setosa
## 27      setosa
## 28      setosa
## 29      setosa
## 30      setosa
## 31      setosa
## 32      setosa
## 33      setosa
## 34      setosa
## 35      setosa
## 36      setosa
## 37      setosa
## 38      setosa
## 39      setosa
## 40      setosa
## 41      setosa
## 42      setosa
## 43      setosa
## 44      setosa
## 45      setosa
## 46      setosa
## 47      setosa
## 48      setosa
## 49      setosa
## 50      setosa
## 51  versicolor
## 52  versicolor
## 53  versicolor
## 54  versicolor
## 55  versicolor
## 56  versicolor
## 57  versicolor
## 58  versicolor
## 59  versicolor
## 60  versicolor
## 61  versicolor
## 62  versicolor
## 63  versicolor
## 64  versicolor
## 65  versicolor
## 66  versicolor
## 67  versicolor
## 68  versicolor
## 69  versicolor
## 70  versicolor
## 71  versicolor
## 72  versicolor
## 73  versicolor
## 74  versicolor
## 75  versicolor
## 76  versicolor
## 77  versicolor
## 78  versicolor
## 79  versicolor
## 80  versicolor
## 81  versicolor
## 82  versicolor
## 83  versicolor
## 84  versicolor
## 85  versicolor
## 86  versicolor
## 87  versicolor
## 88  versicolor
## 89  versicolor
## 90  versicolor
## 91  versicolor
## 92  versicolor
## 93  versicolor
## 94  versicolor
## 95  versicolor
## 96  versicolor
## 97  versicolor
## 98  versicolor
## 99  versicolor
## 100 versicolor
## 101  virginica
## 102  virginica
## 103  virginica
## 104  virginica
## 105  virginica
## 106  virginica
## 107  virginica
## 108  virginica
## 109  virginica
## 110  virginica
## 111  virginica
## 112  virginica
## 113  virginica
## 114  virginica
## 115  virginica
## 116  virginica
## 117  virginica
## 118  virginica
## 119  virginica
## 120  virginica
## 121  virginica
## 122  virginica
## 123  virginica
## 124  virginica
## 125  virginica
## 126  virginica
## 127  virginica
## 128  virginica
## 129  virginica
## 130  virginica
## 131  virginica
## 132  virginica
## 133  virginica
## 134  virginica
## 135  virginica
## 136  virginica
## 137  virginica
## 138  virginica
## 139  virginica
## 140  virginica
## 141  virginica
## 142  virginica
## 143  virginica
## 144  virginica
## 145  virginica
## 146  virginica
## 147  virginica
## 148  virginica
## 149  virginica
## 150  virginica
##   Sepal.Width Petal.Width
## 1         3.5         0.2
## 2         3.0         0.2
## 3         3.2         0.2
## 4         3.1         0.2
## 5         3.6         0.2
## 6         3.9         0.4
##   Sepal.Length Petal.Length
## 1          5.1          1.4
## 2          4.9          1.4
## 3          4.7          1.3
## 4          4.6          1.5
## 5          5.0          1.4
## 6          5.4          1.7

Dplyr select

##   Country_region Ladder SD_Ladder Positive_affect Negative_affect
## 1        Finland      1         4              41              10
## 2        Denmark      2        13              24              26
## 3         Norway      3         8              16              29
## 4        Iceland      4         9               3               3
## 5    Netherlands      5         1              12              25
## 6    Switzerland      6        11              44              21
##   Social_support Freedom Corruption Generosity Log_GDP life_expectancy
## 1              2       5          4         47      22              27
## 2              4       6          3         22      14              23
## 3              3       3          8         11       7              12
## 4              1       7         45          3      15              13
## 5             15      19         12          7      12              18
## 6             13      11          7         16       8               4
## Observations: 156
## Variables: 11
## $ Country_region  <fct> Finland, Denmark, Norway, Iceland, Netherlands...
## $ Ladder          <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,...
## $ SD_Ladder       <int> 4, 13, 8, 9, 1, 11, 18, 15, 23, 10, 26, 62, 14...
## $ Positive_affect <int> 41, 24, 16, 3, 12, 44, 34, 22, 18, 64, 47, 4, ...
## $ Negative_affect <int> 10, 26, 29, 3, 25, 21, 8, 12, 49, 24, 37, 87, ...
## $ Social_support  <int> 2, 4, 3, 1, 15, 13, 25, 5, 20, 31, 7, 42, 38, ...
## $ Freedom         <int> 5, 6, 3, 7, 19, 11, 10, 8, 9, 26, 17, 16, 93, ...
## $ Corruption      <int> 4, 3, 8, 45, 12, 7, 6, 5, 11, 19, 13, 58, 74, ...
## $ Generosity      <int> 47, 22, 11, 3, 7, 16, 17, 8, 14, 25, 6, 75, 24...
## $ Log_GDP         <int> 22, 14, 7, 15, 12, 8, 13, 26, 19, 16, 18, 67, ...
## $ life_expectancy <int> 27, 23, 12, 13, 18, 4, 17, 14, 8, 15, 10, 28, ...
##     SD_Ladder
## 1           4
## 2          13
## 3           8
## 4           9
## 5           1
## 6          11
## 7          18
## 8          15
## 9          23
## 10         10
## 11         26
## 12         62
## 13         14
## 14          3
## 15         16
## 16         34
## 17         17
## 18          7
## 19         49
## 20         20
## 21         65
## 22         42
## 23         76
## 24         19
## 25         37
## 26         61
## 27        136
## 28         93
## 29         86
## 30         21
## 31        121
## 32        116
## 33         88
## 34          5
## 35        112
## 36         31
## 37         83
## 38         39
## 39         89
## 40         28
## 41         99
## 42         55
## 43        120
## 44         54
## 45        133
## 46        107
## 47         97
## 48         75
## 49         95
## 50        113
## 51         98
## 52         81
## 53         30
## 54         57
## 55         32
## 56        102
## 57         94
## 58         43
## 59        151
## 60         40
## 61         71
## 62         36
## 63         90
## 64         35
## 65        114
## 66         73
## 67         53
## 68         64
## 69        119
## 70        100
## 71         45
## 72        115
## 73         84
## 74         50
## 75         29
## 76         33
## 77        155
## 78         80
## 79         58
## 80         12
## 81         22
## 82         87
## 83         48
## 84         67
## 85        130
## 86         46
## 87          2
## 88         56
## 89        101
## 90         24
## 91         60
## 92        108
## 93         72
## 94         27
## 95          6
## 96        131
## 97         47
## 98        129
## 99        134
## 100       128
## 101       127
## 102       149
## 103       152
## 104       105
## 105        59
## 106       124
## 107       126
## 108       141
## 109       135
## 110       110
## 111        44
## 112        74
## 113       106
## 114       144
## 115        92
## 116        82
## 117       109
## 118       146
## 119        51
## 120       142
## 121       118
## 122        68
## 123       154
## 124        79
## 125        52
## 126       147
## 127        78
## 128        96
## 129       153
## 130        91
## 131        70
## 132       139
## 133        69
## 134        38
## 135       104
## 136       148
## 137        66
## 138       145
## 139       103
## 140        41
## 141       156
## 142       143
## 143        77
## 144       150
## 145       138
## 146       123
## 147       111
## 148       125
## 149       137
## 150       132
## 151        85
## 152        63
## 153       122
## 154        25
## 155       117
## 156       140
##     Social_support Freedom
## 1                2       5
## 2                4       6
## 3                3       3
## 4                1       7
## 5               15      19
## 6               13      11
## 7               25      10
## 8                5       8
## 9               20       9
## 10              31      26
## 11               7      17
## 12              42      16
## 13              38      93
## 14              27      28
## 15               9      63
## 16               6      33
## 17              39      44
## 18              22      53
## 19              37      62
## 20              24      58
## 21              72       4
## 22              16      12
## 23              67      71
## 24              32      69
## 25              48     102
## 26              58      98
## 27              78      25
## 28              62      68
## 29              NA      NA
## 30              26      95
## 31              41      32
## 32              43      84
## 33              35      30
## 34              36      20
## 35              83      74
## 36              23     132
## 37              59      24
## 38              21     108
## 39              29      51
## 40              44      52
## 41              11       1
## 42              17     122
## 43              52      56
## 44              14      13
## 45              66      70
## 46              85      50
## 47              46      54
## 48              86      57
## 49              90      81
## 50              71      42
## 51              69      47
## 52              53      18
## 53              34     126
## 54              91     144
## 55              12      45
## 56              28      49
## 57              54      40
## 58              50      64
## 59              84      39
## 60              19      80
## 61              93      35
## 62              51     138
## 63              30      34
## 64              81      77
## 65              77      61
## 66              47      37
## 67             130     114
## 68              40     107
## 69              75      15
## 70              57     124
## 71              65     128
## 72              73      79
## 73              60     139
## 74             113      86
## 75              79     118
## 76              76      66
## 77              55      43
## 78              92     137
## 79              61     140
## 80              97      36
## 81              33     131
## 82             102     150
## 83              10     112
## 84              74     105
## 85             111      75
## 86              45      38
## 87               8      83
## 88             101     149
## 89             139      76
## 90             104     101
## 91              89     136
## 92              94      48
## 93             108      31
## 94              64      23
## 95              68      59
## 96             129      90
## 97              18     115
## 98             132      91
## 99             137     100
## 100             87      67
## 101             88      88
## 102            153     103
## 103            138      92
## 104             95     119
## 105            120      22
## 106             63      85
## 107            133      87
## 108             49     145
## 109            109       2
## 110             82     134
## 111            106     121
## 112            145      14
## 113             70      82
## 114            140     111
## 115            116     127
## 116            117     123
## 117            134     117
## 118            136     109
## 119            147     104
## 120            125      89
## 121            123      72
## 122             99     151
## 123            122      46
## 124            121     143
## 125            126      27
## 126            124     130
## 127            107     125
## 128            112     110
## 129            135     116
## 130             80      55
## 131             96      29
## 132            141     142
## 133             56     141
## 134            119     106
## 135            103     113
## 136            114      99
## 137            118     129
## 138            115      73
## 139            149     120
## 140            142      41
## 141            127      94
## 142            143     148
## 143            128     146
## 144             98      97
## 145            152     135
## 146            110      96
## 147            146     152
## 148            105      60
## 149            154     153
## 150            150      65
## 151            100     147
## 152            144      21
## 153            131      78
## 154            151     155
## 155            155     133
## 156            148     154
##               Country_region Ladder SD_Ladder Positive_affect
## 1                    Finland      1         4              41
## 2                    Denmark      2        13              24
## 3                     Norway      3         8              16
## 4                    Iceland      4         9               3
## 5                Netherlands      5         1              12
## 6                Switzerland      6        11              44
## 7                     Sweden      7        18              34
## 8                New Zealand      8        15              22
## 9                     Canada      9        23              18
## 10                   Austria     10        10              64
## 11                 Australia     11        26              47
## 12                Costa Rica     12        62               4
## 13                    Israel     13        14             104
## 14                Luxembourg     14         3              62
## 15            United Kingdom     15        16              52
## 16                   Ireland     16        34              33
## 17                   Germany     17        17              65
## 18                   Belgium     18         7              57
## 19             United States     19        49              35
## 20            Czech Republic     20        20              74
## 21      United Arab Emirates     21        65              43
## 22                     Malta     22        42              83
## 23                    Mexico     23        76               6
## 24                    France     24        19              56
## 25                    Taiwan     25        37              17
## 26                     Chile     26        61              15
## 27                 Guatemala     27       136               8
## 28              Saudi Arabia     28        93              49
## 29                     Qatar     29        86              NA
## 30                     Spain     30        21             107
## 31                    Panama     31       121               7
## 32                    Brazil     32       116              69
## 33                   Uruguay     33        88              10
## 34                 Singapore     34         5              38
## 35               El Salvador     35       112              23
## 36                     Italy     36        31              99
## 37                   Bahrain     37        83              39
## 38                  Slovakia     38        39              53
## 39       Trinidad and Tobago     39        89              14
## 40                    Poland     40        28              76
## 41                Uzbekistan     41        99              19
## 42                 Lithuania     42        55             138
## 43                  Colombia     43       120              30
## 44                  Slovenia     44        54             114
## 45                 Nicaragua     45       133              31
## 46                    Kosovo     46       107              71
## 47                 Argentina     47        97              28
## 48                   Romania     48        75              80
## 49                    Cyprus     49        95              60
## 50                   Ecuador     50       113              11
## 51                    Kuwait     51        98              89
## 52                  Thailand     52        81              20
## 53                    Latvia     53        30             119
## 54               South Korea     54        57             101
## 55                   Estonia     55        32              50
## 56                   Jamaica     56       102              51
## 57                 Mauritius     57        94              55
## 58                     Japan     58        43              73
## 59                  Honduras     59       151              13
## 60                Kazakhstan     60        40              81
## 61                   Bolivia     61        71              70
## 62                   Hungary     62        36              86
## 63                  Paraguay     63        90               1
## 64           Northern Cyprus     64        35             144
## 65                      Peru     65       114              36
## 66                  Portugal     66        73              97
## 67                  Pakistan     67        53             130
## 68                    Russia     68        64              96
## 69               Philippines     69       119              42
## 70                    Serbia     70       100             148
## 71                   Moldova     71        45             133
## 72                     Libya     72       115              85
## 73                Montenegro     73        84             143
## 74                Tajikistan     74        50             120
## 75                   Croatia     75        29             122
## 76                 Hong Kong     76        33             105
## 77        Dominican Republic     77       155              66
## 78   Bosnia and Herzegovina      78        80             116
## 79                    Turkey     79        58             154
## 80                  Malaysia     80        12              25
## 81                   Belarus     81        22             149
## 82                    Greece     82        87             102
## 83                  Mongolia     83        48              95
## 84                 Macedonia     84        67             140
## 85                   Nigeria     85       130              61
## 86                Kyrgyzstan     86        46              58
## 87              Turkmenistan     87         2             135
## 88                   Algeria     88        56             113
## 89                   Morocco     89       101             110
## 90                Azerbaijan     90        24             134
## 91                   Lebanon     91        60             150
## 92                 Indonesia     92       108               9
## 93                     China     93        72              21
## 94                   Vietnam     94        27             121
## 95                    Bhutan     95         6              37
## 96                  Cameroon     96       131             106
## 97                  Bulgaria     97        47             117
## 98                     Ghana     98       129              92
## 99               Ivory Coast     99       134              88
## 100                    Nepal    100       128             137
## 101                   Jordan    101       127             112
## 102                    Benin    102       149             118
## 103      Congo (Brazzaville)    103       152             124
## 104                    Gabon    104       105             111
## 105                     Laos    105        59               5
## 106             South Africa    106       124              40
## 107                  Albania    107       126              90
## 108                Venezuela    108       141              77
## 109                 Cambodia    109       135              27
## 110  Palestinian Territories    110       110             128
## 111                  Senegal    111        44              68
## 112                  Somalia    112        74               2
## 113                  Namibia    113       106              75
## 114                    Niger    114       144              79
## 115             Burkina Faso    115        92             115
## 116                  Armenia    116        82             126
## 117                     Iran    117       109             109
## 118                   Guinea    118       146              82
## 119                  Georgia    119        51             141
## 120                   Gambia    120       142              29
## 121                    Kenya    121       118              59
## 122               Mauritania    122        68              94
## 123               Mozambique    123       154             108
## 124                  Tunisia    124        79             147
## 125               Bangladesh    125        52             145
## 126                     Iraq    126       147             151
## 127         Congo (Kinshasa)    127        78             125
## 128                     Mali    128        96              48
## 129             Sierra Leone    129       153             139
## 130                Sri Lanka    130        91              32
## 131                  Myanmar    131        70              45
## 132                     Chad    132       139             136
## 133                  Ukraine    133        69             131
## 134                 Ethiopia    134        38             100
## 135                Swaziland    135       104              26
## 136                   Uganda    136       148              91
## 137                    Egypt    137        66             146
## 138                   Zambia    138       145              84
## 139                     Togo    139       103             123
## 140                    India    140        41              93
## 141                  Liberia    141       156             103
## 142                  Comoros    142       143              67
## 143               Madagascar    143        77              46
## 144                  Lesotho    144       150              72
## 145                  Burundi    145       138              98
## 146                 Zimbabwe    146       123              63
## 147                    Haiti    147       111             142
## 148                 Botswana    148       125              87
## 149                    Syria    149       137             155
## 150                   Malawi    150       132             129
## 151                    Yemen    151        85             153
## 152                   Rwanda    152        63              54
## 153                 Tanzania    153       122              78
## 154              Afghanistan    154        25             152
## 155 Central African Republic    155       117             132
## 156              South Sudan    156       140             127
##     Negative_affect Corruption Generosity Log_GDP life_expectancy
## 1                10          4         47      22              27
## 2                26          3         22      14              23
## 3                29          8         11       7              12
## 4                 3         45          3      15              13
## 5                25         12          7      12              18
## 6                21          7         16       8               4
## 7                 8          6         17      13              17
## 8                12          5          8      26              14
## 9                49         11         14      19               8
## 10               24         19         25      16              15
## 11               37         13          6      18              10
## 12               87         58         75      67              28
## 13               69         74         24      31              11
## 14               19          9         30       2              16
## 15               42         15          4      23              24
## 16               32         10          9       6              20
## 17               30         17         19      17              25
## 18               53         20         44      21              26
## 19               70         42         12      10              39
## 20               22        121        117      32              31
## 21               56         NA         15       4              60
## 22              103         32          5      28              19
## 23               40         87        120      57              46
## 24               66         21         68      25               5
## 25                1         56         56      NA              NA
## 26               78         99         45      49              30
## 27               85         82         78      99              85
## 28               82         NA         82      11              74
## 29               NA         NA         NA       1              43
## 30              107         78         50      30               3
## 31               48        104         88      51              33
## 32              105         71        108      70              72
## 33               76         33         80      52              35
## 34                2          1         21       3               1
## 35               84         85        134     100              75
## 36              123        128         48      29               7
## 37               83         NA         23      20              42
## 38               47        142         70      35              38
## 39               52        141         41      38              93
## 40               33        108         77      41              36
## 41               15         18         29     104              83
## 42               41        113        124      36              62
## 43               88        124        111      74              51
## 44               71         97         54      34              29
## 45              125         43         71     108              53
## 46                7        144         31      88              NA
## 47               93        109        123      55              37
## 48               62        146        102      48              61
## 49               99        115         39      33               6
## 50              113         68         95      86              45
## 51               97         NA         42       5              70
## 52               35        131         10      62              58
## 53               38         92        105      43              68
## 54               45        100         40      27               9
## 55                6         30         83      37              41
## 56               51        130        119      93              55
## 57               16         96         37      53              73
## 58               14         39         92      24               2
## 59               73         79         51     113              57
## 60                5         57         57      47              88
## 61              138         91        104     101              94
## 62               31        140        100      42              56
## 63               39         76         67      90              81
## 64               90         29         43      NA              NA
## 65              127        132        126      76              47
## 66              100        135        122      39              22
## 67              111         55         58     110             114
## 68                9        127        101      45              89
## 69              116         49        115      97              99
## 70               92        118         84      71              48
## 71               67        148         86     109              86
## 72              137         31         87      63              96
## 73              118         77         76      61              44
## 74               54         35         72     123              92
## 75              101        139         81      50              32
## 76               28         14         18       9              NA
## 77               77         52         93      69              80
## 78               79        145         32      82              50
## 79              121         50         98      44              69
## 80               23        137         27      40              59
## 81               36         37        103      58              76
## 82               94        123        152      46              21
## 83               17        119         38      80              97
## 84               89        125         55      75              52
## 85               55        114         59     107             145
## 86                4        138         36     120              91
## 87               63         NA         33      60             100
## 88              106         46        128      72              78
## 89               91         84        154      98              79
## 90               20         22        146      65              82
## 91               61        133         63      73              66
## 92              104        129          2      83              98
## 93               11         NA        133      68              34
## 94               27         86         97     105              49
## 95               98         25         13      95             104
## 96              129        120         91     121             141
## 97               13        147        112      56              65
## 98               72        117         52     114             121
## 99              130         62        114     118             147
## 100             134         65         46     127              95
## 101             120         NA        118      92              63
## 102             148         75        116     128             133
## 103             136         60        140     111             116
## 104             144        103        143      59             108
## 105             112         27         34     102             112
## 106              80        102         89      77             123
## 107             108        134         60      81              40
## 108             135        110        139      78              71
## 109             142         94         61     116             102
## 110             140         90        147     112              NA
## 111              60         88        130     126             109
## 112              18         16         96      NA             144
## 113              59         98        142      89             122
## 114             141         51        135     148             138
## 115             117         47        125     137             136
## 116             145         93        129      91              64
## 117             150         44         28      54              77
## 118             143         70         94     130             137
## 119              43         28        153      87              84
## 120             109         26         64     139             130
## 121              46        105         26     122             106
## 122              58         67        148     117             120
## 123             131         40        121     146             134
## 124             132        101        144      84              67
## 125              68         36        107     119              90
## 126             154         66         73      64             107
## 127              95        106        127     149             140
## 128             122        107        138     129             142
## 129             149        112         79     145             146
## 130              81        111         35      79              54
## 131              86         24          1     106             110
## 132             151         80        106     133             148
## 133              44        143         66      94              87
## 134              74         53         99     135             115
## 135              57         41        145      96              NA
## 136             139         95         74     136             127
## 137             124         89        132      85             101
## 138             128         69         53     115             131
## 139             147         72        131     142             132
## 140             115         73         65     103             105
## 141             146        126        110     150             126
## 142             114         81         62     143             117
## 143              96        116        136     144             111
## 144              64         59        151     124             149
## 145             126         23        149     151             135
## 146              34         63        141     131             129
## 147             119         48         20     138             125
## 148              65         54        150      66             113
## 149             155         38         69      NA             128
## 150             110         64        109     147             119
## 151              75         83        155     141             124
## 152             102          2         90     132             103
## 153              50         34         49     125             118
## 154             133        136        137     134             139
## 155             153        122        113     152             150
## 156             152         61         85     140             143
##     Freedom
## 1         5
## 2         6
## 3         3
## 4         7
## 5        19
## 6        11
## 7        10
## 8         8
## 9         9
## 10       26
## 11       17
## 12       16
## 13       93
## 14       28
## 15       63
## 16       33
## 17       44
## 18       53
## 19       62
## 20       58
## 21        4
## 22       12
## 23       71
## 24       69
## 25      102
## 26       98
## 27       25
## 28       68
## 29       NA
## 30       95
## 31       32
## 32       84
## 33       30
## 34       20
## 35       74
## 36      132
## 37       24
## 38      108
## 39       51
## 40       52
## 41        1
## 42      122
## 43       56
## 44       13
## 45       70
## 46       50
## 47       54
## 48       57
## 49       81
## 50       42
## 51       47
## 52       18
## 53      126
## 54      144
## 55       45
## 56       49
## 57       40
## 58       64
## 59       39
## 60       80
## 61       35
## 62      138
## 63       34
## 64       77
## 65       61
## 66       37
## 67      114
## 68      107
## 69       15
## 70      124
## 71      128
## 72       79
## 73      139
## 74       86
## 75      118
## 76       66
## 77       43
## 78      137
## 79      140
## 80       36
## 81      131
## 82      150
## 83      112
## 84      105
## 85       75
## 86       38
## 87       83
## 88      149
## 89       76
## 90      101
## 91      136
## 92       48
## 93       31
## 94       23
## 95       59
## 96       90
## 97      115
## 98       91
## 99      100
## 100      67
## 101      88
## 102     103
## 103      92
## 104     119
## 105      22
## 106      85
## 107      87
## 108     145
## 109       2
## 110     134
## 111     121
## 112      14
## 113      82
## 114     111
## 115     127
## 116     123
## 117     117
## 118     109
## 119     104
## 120      89
## 121      72
## 122     151
## 123      46
## 124     143
## 125      27
## 126     130
## 127     125
## 128     110
## 129     116
## 130      55
## 131      29
## 132     142
## 133     141
## 134     106
## 135     113
## 136      99
## 137     129
## 138      73
## 139     120
## 140      41
## 141      94
## 142     148
## 143     146
## 144      97
## 145     135
## 146      96
## 147     152
## 148      60
## 149     153
## 150      65
## 151     147
## 152      21
## 153      78
## 154     155
## 155     133
## 156     154
##     Freedom
## 1         5
## 2         6
## 3         3
## 4         7
## 5        19
## 6        11
## 7        10
## 8         8
## 9         9
## 10       26
## 11       17
## 12       16
## 13       93
## 14       28
## 15       63
## 16       33
## 17       44
## 18       53
## 19       62
## 20       58
## 21        4
## 22       12
## 23       71
## 24       69
## 25      102
## 26       98
## 27       25
## 28       68
## 29       NA
## 30       95
## 31       32
## 32       84
## 33       30
## 34       20
## 35       74
## 36      132
## 37       24
## 38      108
## 39       51
## 40       52
## 41        1
## 42      122
## 43       56
## 44       13
## 45       70
## 46       50
## 47       54
## 48       57
## 49       81
## 50       42
## 51       47
## 52       18
## 53      126
## 54      144
## 55       45
## 56       49
## 57       40
## 58       64
## 59       39
## 60       80
## 61       35
## 62      138
## 63       34
## 64       77
## 65       61
## 66       37
## 67      114
## 68      107
## 69       15
## 70      124
## 71      128
## 72       79
## 73      139
## 74       86
## 75      118
## 76       66
## 77       43
## 78      137
## 79      140
## 80       36
## 81      131
## 82      150
## 83      112
## 84      105
## 85       75
## 86       38
## 87       83
## 88      149
## 89       76
## 90      101
## 91      136
## 92       48
## 93       31
## 94       23
## 95       59
## 96       90
## 97      115
## 98       91
## 99      100
## 100      67
## 101      88
## 102     103
## 103      92
## 104     119
## 105      22
## 106      85
## 107      87
## 108     145
## 109       2
## 110     134
## 111     121
## 112      14
## 113      82
## 114     111
## 115     127
## 116     123
## 117     117
## 118     109
## 119     104
## 120      89
## 121      72
## 122     151
## 123      46
## 124     143
## 125      27
## 126     130
## 127     125
## 128     110
## 129     116
## 130      55
## 131      29
## 132     142
## 133     141
## 134     106
## 135     113
## 136      99
## 137     129
## 138      73
## 139     120
## 140      41
## 141      94
## 142     148
## 143     146
## 144      97
## 145     135
## 146      96
## 147     152
## 148      60
## 149     153
## 150      65
## 151     147
## 152      21
## 153      78
## 154     155
## 155     133
## 156     154
##   Country_region Ladder SD_Ladder Positive_affect Negative_affect
## 1        Finland      1         4              41              10
## 2        Denmark      2        13              24              26
## 3         Norway      3         8              16              29
## 4        Iceland      4         9               3               3
## 5    Netherlands      5         1              12              25
## 6    Switzerland      6        11              44              21
##   Social_support Freedom Corruption Generosity Log_GDP life_expectancy
## 1              2       5          4         47      22              27
## 2              4       6          3         22      14              23
## 3              3       3          8         11       7              12
## 4              1       7         45          3      15              13
## 5             15      19         12          7      12              18
## 6             13      11          7         16       8               4
## Observations: 156
## Variables: 11
## $ Country_region  <fct> Finland, Denmark, Norway, Iceland, Netherlands...
## $ Ladder          <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,...
## $ SD_Ladder       <int> 4, 13, 8, 9, 1, 11, 18, 15, 23, 10, 26, 62, 14...
## $ Positive_affect <int> 41, 24, 16, 3, 12, 44, 34, 22, 18, 64, 47, 4, ...
## $ Negative_affect <int> 10, 26, 29, 3, 25, 21, 8, 12, 49, 24, 37, 87, ...
## $ Social_support  <int> 2, 4, 3, 1, 15, 13, 25, 5, 20, 31, 7, 42, 38, ...
## $ Freedom         <int> 5, 6, 3, 7, 19, 11, 10, 8, 9, 26, 17, 16, 93, ...
## $ Corruption      <int> 4, 3, 8, 45, 12, 7, 6, 5, 11, 19, 13, 58, 74, ...
## $ Generosity      <int> 47, 22, 11, 3, 7, 16, 17, 8, 14, 25, 6, 75, 24...
## $ Log_GDP         <int> 22, 14, 7, 15, 12, 8, 13, 26, 19, 16, 18, 67, ...
## $ life_expectancy <int> 27, 23, 12, 13, 18, 4, 17, 14, 8, 15, 10, 28, ...
##     SD_Ladder
## 1           4
## 2          13
## 3           8
## 4           9
## 5           1
## 6          11
## 7          18
## 8          15
## 9          23
## 10         10
## 11         26
## 12         62
## 13         14
## 14          3
## 15         16
## 16         34
## 17         17
## 18          7
## 19         49
## 20         20
## 21         65
## 22         42
## 23         76
## 24         19
## 25         37
## 26         61
## 27        136
## 28         93
## 29         86
## 30         21
## 31        121
## 32        116
## 33         88
## 34          5
## 35        112
## 36         31
## 37         83
## 38         39
## 39         89
## 40         28
## 41         99
## 42         55
## 43        120
## 44         54
## 45        133
## 46        107
## 47         97
## 48         75
## 49         95
## 50        113
## 51         98
## 52         81
## 53         30
## 54         57
## 55         32
## 56        102
## 57         94
## 58         43
## 59        151
## 60         40
## 61         71
## 62         36
## 63         90
## 64         35
## 65        114
## 66         73
## 67         53
## 68         64
## 69        119
## 70        100
## 71         45
## 72        115
## 73         84
## 74         50
## 75         29
## 76         33
## 77        155
## 78         80
## 79         58
## 80         12
## 81         22
## 82         87
## 83         48
## 84         67
## 85        130
## 86         46
## 87          2
## 88         56
## 89        101
## 90         24
## 91         60
## 92        108
## 93         72
## 94         27
## 95          6
## 96        131
## 97         47
## 98        129
## 99        134
## 100       128
## 101       127
## 102       149
## 103       152
## 104       105
## 105        59
## 106       124
## 107       126
## 108       141
## 109       135
## 110       110
## 111        44
## 112        74
## 113       106
## 114       144
## 115        92
## 116        82
## 117       109
## 118       146
## 119        51
## 120       142
## 121       118
## 122        68
## 123       154
## 124        79
## 125        52
## 126       147
## 127        78
## 128        96
## 129       153
## 130        91
## 131        70
## 132       139
## 133        69
## 134        38
## 135       104
## 136       148
## 137        66
## 138       145
## 139       103
## 140        41
## 141       156
## 142       143
## 143        77
## 144       150
## 145       138
## 146       123
## 147       111
## 148       125
## 149       137
## 150       132
## 151        85
## 152        63
## 153       122
## 154        25
## 155       117
## 156       140
##     Social_support Freedom
## 1                2       5
## 2                4       6
## 3                3       3
## 4                1       7
## 5               15      19
## 6               13      11
## 7               25      10
## 8                5       8
## 9               20       9
## 10              31      26
## 11               7      17
## 12              42      16
## 13              38      93
## 14              27      28
## 15               9      63
## 16               6      33
## 17              39      44
## 18              22      53
## 19              37      62
## 20              24      58
## 21              72       4
## 22              16      12
## 23              67      71
## 24              32      69
## 25              48     102
## 26              58      98
## 27              78      25
## 28              62      68
## 29              NA      NA
## 30              26      95
## 31              41      32
## 32              43      84
## 33              35      30
## 34              36      20
## 35              83      74
## 36              23     132
## 37              59      24
## 38              21     108
## 39              29      51
## 40              44      52
## 41              11       1
## 42              17     122
## 43              52      56
## 44              14      13
## 45              66      70
## 46              85      50
## 47              46      54
## 48              86      57
## 49              90      81
## 50              71      42
## 51              69      47
## 52              53      18
## 53              34     126
## 54              91     144
## 55              12      45
## 56              28      49
## 57              54      40
## 58              50      64
## 59              84      39
## 60              19      80
## 61              93      35
## 62              51     138
## 63              30      34
## 64              81      77
## 65              77      61
## 66              47      37
## 67             130     114
## 68              40     107
## 69              75      15
## 70              57     124
## 71              65     128
## 72              73      79
## 73              60     139
## 74             113      86
## 75              79     118
## 76              76      66
## 77              55      43
## 78              92     137
## 79              61     140
## 80              97      36
## 81              33     131
## 82             102     150
## 83              10     112
## 84              74     105
## 85             111      75
## 86              45      38
## 87               8      83
## 88             101     149
## 89             139      76
## 90             104     101
## 91              89     136
## 92              94      48
## 93             108      31
## 94              64      23
## 95              68      59
## 96             129      90
## 97              18     115
## 98             132      91
## 99             137     100
## 100             87      67
## 101             88      88
## 102            153     103
## 103            138      92
## 104             95     119
## 105            120      22
## 106             63      85
## 107            133      87
## 108             49     145
## 109            109       2
## 110             82     134
## 111            106     121
## 112            145      14
## 113             70      82
## 114            140     111
## 115            116     127
## 116            117     123
## 117            134     117
## 118            136     109
## 119            147     104
## 120            125      89
## 121            123      72
## 122             99     151
## 123            122      46
## 124            121     143
## 125            126      27
## 126            124     130
## 127            107     125
## 128            112     110
## 129            135     116
## 130             80      55
## 131             96      29
## 132            141     142
## 133             56     141
## 134            119     106
## 135            103     113
## 136            114      99
## 137            118     129
## 138            115      73
## 139            149     120
## 140            142      41
## 141            127      94
## 142            143     148
## 143            128     146
## 144             98      97
## 145            152     135
## 146            110      96
## 147            146     152
## 148            105      60
## 149            154     153
## 150            150      65
## 151            100     147
## 152            144      21
## 153            131      78
## 154            151     155
## 155            155     133
## 156            148     154
##               Country_region Ladder SD_Ladder Positive_affect
## 1                    Finland      1         4              41
## 2                    Denmark      2        13              24
## 3                     Norway      3         8              16
## 4                    Iceland      4         9               3
## 5                Netherlands      5         1              12
## 6                Switzerland      6        11              44
## 7                     Sweden      7        18              34
## 8                New Zealand      8        15              22
## 9                     Canada      9        23              18
## 10                   Austria     10        10              64
## 11                 Australia     11        26              47
## 12                Costa Rica     12        62               4
## 13                    Israel     13        14             104
## 14                Luxembourg     14         3              62
## 15            United Kingdom     15        16              52
## 16                   Ireland     16        34              33
## 17                   Germany     17        17              65
## 18                   Belgium     18         7              57
## 19             United States     19        49              35
## 20            Czech Republic     20        20              74
## 21      United Arab Emirates     21        65              43
## 22                     Malta     22        42              83
## 23                    Mexico     23        76               6
## 24                    France     24        19              56
## 25                    Taiwan     25        37              17
## 26                     Chile     26        61              15
## 27                 Guatemala     27       136               8
## 28              Saudi Arabia     28        93              49
## 29                     Qatar     29        86              NA
## 30                     Spain     30        21             107
## 31                    Panama     31       121               7
## 32                    Brazil     32       116              69
## 33                   Uruguay     33        88              10
## 34                 Singapore     34         5              38
## 35               El Salvador     35       112              23
## 36                     Italy     36        31              99
## 37                   Bahrain     37        83              39
## 38                  Slovakia     38        39              53
## 39       Trinidad and Tobago     39        89              14
## 40                    Poland     40        28              76
## 41                Uzbekistan     41        99              19
## 42                 Lithuania     42        55             138
## 43                  Colombia     43       120              30
## 44                  Slovenia     44        54             114
## 45                 Nicaragua     45       133              31
## 46                    Kosovo     46       107              71
## 47                 Argentina     47        97              28
## 48                   Romania     48        75              80
## 49                    Cyprus     49        95              60
## 50                   Ecuador     50       113              11
## 51                    Kuwait     51        98              89
## 52                  Thailand     52        81              20
## 53                    Latvia     53        30             119
## 54               South Korea     54        57             101
## 55                   Estonia     55        32              50
## 56                   Jamaica     56       102              51
## 57                 Mauritius     57        94              55
## 58                     Japan     58        43              73
## 59                  Honduras     59       151              13
## 60                Kazakhstan     60        40              81
## 61                   Bolivia     61        71              70
## 62                   Hungary     62        36              86
## 63                  Paraguay     63        90               1
## 64           Northern Cyprus     64        35             144
## 65                      Peru     65       114              36
## 66                  Portugal     66        73              97
## 67                  Pakistan     67        53             130
## 68                    Russia     68        64              96
## 69               Philippines     69       119              42
## 70                    Serbia     70       100             148
## 71                   Moldova     71        45             133
## 72                     Libya     72       115              85
## 73                Montenegro     73        84             143
## 74                Tajikistan     74        50             120
## 75                   Croatia     75        29             122
## 76                 Hong Kong     76        33             105
## 77        Dominican Republic     77       155              66
## 78   Bosnia and Herzegovina      78        80             116
## 79                    Turkey     79        58             154
## 80                  Malaysia     80        12              25
## 81                   Belarus     81        22             149
## 82                    Greece     82        87             102
## 83                  Mongolia     83        48              95
## 84                 Macedonia     84        67             140
## 85                   Nigeria     85       130              61
## 86                Kyrgyzstan     86        46              58
## 87              Turkmenistan     87         2             135
## 88                   Algeria     88        56             113
## 89                   Morocco     89       101             110
## 90                Azerbaijan     90        24             134
## 91                   Lebanon     91        60             150
## 92                 Indonesia     92       108               9
## 93                     China     93        72              21
## 94                   Vietnam     94        27             121
## 95                    Bhutan     95         6              37
## 96                  Cameroon     96       131             106
## 97                  Bulgaria     97        47             117
## 98                     Ghana     98       129              92
## 99               Ivory Coast     99       134              88
## 100                    Nepal    100       128             137
## 101                   Jordan    101       127             112
## 102                    Benin    102       149             118
## 103      Congo (Brazzaville)    103       152             124
## 104                    Gabon    104       105             111
## 105                     Laos    105        59               5
## 106             South Africa    106       124              40
## 107                  Albania    107       126              90
## 108                Venezuela    108       141              77
## 109                 Cambodia    109       135              27
## 110  Palestinian Territories    110       110             128
## 111                  Senegal    111        44              68
## 112                  Somalia    112        74               2
## 113                  Namibia    113       106              75
## 114                    Niger    114       144              79
## 115             Burkina Faso    115        92             115
## 116                  Armenia    116        82             126
## 117                     Iran    117       109             109
## 118                   Guinea    118       146              82
## 119                  Georgia    119        51             141
## 120                   Gambia    120       142              29
## 121                    Kenya    121       118              59
## 122               Mauritania    122        68              94
## 123               Mozambique    123       154             108
## 124                  Tunisia    124        79             147
## 125               Bangladesh    125        52             145
## 126                     Iraq    126       147             151
## 127         Congo (Kinshasa)    127        78             125
## 128                     Mali    128        96              48
## 129             Sierra Leone    129       153             139
## 130                Sri Lanka    130        91              32
## 131                  Myanmar    131        70              45
## 132                     Chad    132       139             136
## 133                  Ukraine    133        69             131
## 134                 Ethiopia    134        38             100
## 135                Swaziland    135       104              26
## 136                   Uganda    136       148              91
## 137                    Egypt    137        66             146
## 138                   Zambia    138       145              84
## 139                     Togo    139       103             123
## 140                    India    140        41              93
## 141                  Liberia    141       156             103
## 142                  Comoros    142       143              67
## 143               Madagascar    143        77              46
## 144                  Lesotho    144       150              72
## 145                  Burundi    145       138              98
## 146                 Zimbabwe    146       123              63
## 147                    Haiti    147       111             142
## 148                 Botswana    148       125              87
## 149                    Syria    149       137             155
## 150                   Malawi    150       132             129
## 151                    Yemen    151        85             153
## 152                   Rwanda    152        63              54
## 153                 Tanzania    153       122              78
## 154              Afghanistan    154        25             152
## 155 Central African Republic    155       117             132
## 156              South Sudan    156       140             127
##     Negative_affect Corruption Generosity Log_GDP life_expectancy
## 1                10          4         47      22              27
## 2                26          3         22      14              23
## 3                29          8         11       7              12
## 4                 3         45          3      15              13
## 5                25         12          7      12              18
## 6                21          7         16       8               4
## 7                 8          6         17      13              17
## 8                12          5          8      26              14
## 9                49         11         14      19               8
## 10               24         19         25      16              15
## 11               37         13          6      18              10
## 12               87         58         75      67              28
## 13               69         74         24      31              11
## 14               19          9         30       2              16
## 15               42         15          4      23              24
## 16               32         10          9       6              20
## 17               30         17         19      17              25
## 18               53         20         44      21              26
## 19               70         42         12      10              39
## 20               22        121        117      32              31
## 21               56         NA         15       4              60
## 22              103         32          5      28              19
## 23               40         87        120      57              46
## 24               66         21         68      25               5
## 25                1         56         56      NA              NA
## 26               78         99         45      49              30
## 27               85         82         78      99              85
## 28               82         NA         82      11              74
## 29               NA         NA         NA       1              43
## 30              107         78         50      30               3
## 31               48        104         88      51              33
## 32              105         71        108      70              72
## 33               76         33         80      52              35
## 34                2          1         21       3               1
## 35               84         85        134     100              75
## 36              123        128         48      29               7
## 37               83         NA         23      20              42
## 38               47        142         70      35              38
## 39               52        141         41      38              93
## 40               33        108         77      41              36
## 41               15         18         29     104              83
## 42               41        113        124      36              62
## 43               88        124        111      74              51
## 44               71         97         54      34              29
## 45              125         43         71     108              53
## 46                7        144         31      88              NA
## 47               93        109        123      55              37
## 48               62        146        102      48              61
## 49               99        115         39      33               6
## 50              113         68         95      86              45
## 51               97         NA         42       5              70
## 52               35        131         10      62              58
## 53               38         92        105      43              68
## 54               45        100         40      27               9
## 55                6         30         83      37              41
## 56               51        130        119      93              55
## 57               16         96         37      53              73
## 58               14         39         92      24               2
## 59               73         79         51     113              57
## 60                5         57         57      47              88
## 61              138         91        104     101              94
## 62               31        140        100      42              56
## 63               39         76         67      90              81
## 64               90         29         43      NA              NA
## 65              127        132        126      76              47
## 66              100        135        122      39              22
## 67              111         55         58     110             114
## 68                9        127        101      45              89
## 69              116         49        115      97              99
## 70               92        118         84      71              48
## 71               67        148         86     109              86
## 72              137         31         87      63              96
## 73              118         77         76      61              44
## 74               54         35         72     123              92
## 75              101        139         81      50              32
## 76               28         14         18       9              NA
## 77               77         52         93      69              80
## 78               79        145         32      82              50
## 79              121         50         98      44              69
## 80               23        137         27      40              59
## 81               36         37        103      58              76
## 82               94        123        152      46              21
## 83               17        119         38      80              97
## 84               89        125         55      75              52
## 85               55        114         59     107             145
## 86                4        138         36     120              91
## 87               63         NA         33      60             100
## 88              106         46        128      72              78
## 89               91         84        154      98              79
## 90               20         22        146      65              82
## 91               61        133         63      73              66
## 92              104        129          2      83              98
## 93               11         NA        133      68              34
## 94               27         86         97     105              49
## 95               98         25         13      95             104
## 96              129        120         91     121             141
## 97               13        147        112      56              65
## 98               72        117         52     114             121
## 99              130         62        114     118             147
## 100             134         65         46     127              95
## 101             120         NA        118      92              63
## 102             148         75        116     128             133
## 103             136         60        140     111             116
## 104             144        103        143      59             108
## 105             112         27         34     102             112
## 106              80        102         89      77             123
## 107             108        134         60      81              40
## 108             135        110        139      78              71
## 109             142         94         61     116             102
## 110             140         90        147     112              NA
## 111              60         88        130     126             109
## 112              18         16         96      NA             144
## 113              59         98        142      89             122
## 114             141         51        135     148             138
## 115             117         47        125     137             136
## 116             145         93        129      91              64
## 117             150         44         28      54              77
## 118             143         70         94     130             137
## 119              43         28        153      87              84
## 120             109         26         64     139             130
## 121              46        105         26     122             106
## 122              58         67        148     117             120
## 123             131         40        121     146             134
## 124             132        101        144      84              67
## 125              68         36        107     119              90
## 126             154         66         73      64             107
## 127              95        106        127     149             140
## 128             122        107        138     129             142
## 129             149        112         79     145             146
## 130              81        111         35      79              54
## 131              86         24          1     106             110
## 132             151         80        106     133             148
## 133              44        143         66      94              87
## 134              74         53         99     135             115
## 135              57         41        145      96              NA
## 136             139         95         74     136             127
## 137             124         89        132      85             101
## 138             128         69         53     115             131
## 139             147         72        131     142             132
## 140             115         73         65     103             105
## 141             146        126        110     150             126
## 142             114         81         62     143             117
## 143              96        116        136     144             111
## 144              64         59        151     124             149
## 145             126         23        149     151             135
## 146              34         63        141     131             129
## 147             119         48         20     138             125
## 148              65         54        150      66             113
## 149             155         38         69      NA             128
## 150             110         64        109     147             119
## 151              75         83        155     141             124
## 152             102          2         90     132             103
## 153              50         34         49     125             118
## 154             133        136        137     134             139
## 155             153        122        113     152             150
## 156             152         61         85     140             143
##     Freedom
## 1         5
## 2         6
## 3         3
## 4         7
## 5        19
## 6        11
## 7        10
## 8         8
## 9         9
## 10       26
## 11       17
## 12       16
## 13       93
## 14       28
## 15       63
## 16       33
## 17       44
## 18       53
## 19       62
## 20       58
## 21        4
## 22       12
## 23       71
## 24       69
## 25      102
## 26       98
## 27       25
## 28       68
## 29       NA
## 30       95
## 31       32
## 32       84
## 33       30
## 34       20
## 35       74
## 36      132
## 37       24
## 38      108
## 39       51
## 40       52
## 41        1
## 42      122
## 43       56
## 44       13
## 45       70
## 46       50
## 47       54
## 48       57
## 49       81
## 50       42
## 51       47
## 52       18
## 53      126
## 54      144
## 55       45
## 56       49
## 57       40
## 58       64
## 59       39
## 60       80
## 61       35
## 62      138
## 63       34
## 64       77
## 65       61
## 66       37
## 67      114
## 68      107
## 69       15
## 70      124
## 71      128
## 72       79
## 73      139
## 74       86
## 75      118
## 76       66
## 77       43
## 78      137
## 79      140
## 80       36
## 81      131
## 82      150
## 83      112
## 84      105
## 85       75
## 86       38
## 87       83
## 88      149
## 89       76
## 90      101
## 91      136
## 92       48
## 93       31
## 94       23
## 95       59
## 96       90
## 97      115
## 98       91
## 99      100
## 100      67
## 101      88
## 102     103
## 103      92
## 104     119
## 105      22
## 106      85
## 107      87
## 108     145
## 109       2
## 110     134
## 111     121
## 112      14
## 113      82
## 114     111
## 115     127
## 116     123
## 117     117
## 118     109
## 119     104
## 120      89
## 121      72
## 122     151
## 123      46
## 124     143
## 125      27
## 126     130
## 127     125
## 128     110
## 129     116
## 130      55
## 131      29
## 132     142
## 133     141
## 134     106
## 135     113
## 136      99
## 137     129
## 138      73
## 139     120
## 140      41
## 141      94
## 142     148
## 143     146
## 144      97
## 145     135
## 146      96
## 147     152
## 148      60
## 149     153
## 150      65
## 151     147
## 152      21
## 153      78
## 154     155
## 155     133
## 156     154
##     Freedom
## 1         5
## 2         6
## 3         3
## 4         7
## 5        19
## 6        11
## 7        10
## 8         8
## 9         9
## 10       26
## 11       17
## 12       16
## 13       93
## 14       28
## 15       63
## 16       33
## 17       44
## 18       53
## 19       62
## 20       58
## 21        4
## 22       12
## 23       71
## 24       69
## 25      102
## 26       98
## 27       25
## 28       68
## 29       NA
## 30       95
## 31       32
## 32       84
## 33       30
## 34       20
## 35       74
## 36      132
## 37       24
## 38      108
## 39       51
## 40       52
## 41        1
## 42      122
## 43       56
## 44       13
## 45       70
## 46       50
## 47       54
## 48       57
## 49       81
## 50       42
## 51       47
## 52       18
## 53      126
## 54      144
## 55       45
## 56       49
## 57       40
## 58       64
## 59       39
## 60       80
## 61       35
## 62      138
## 63       34
## 64       77
## 65       61
## 66       37
## 67      114
## 68      107
## 69       15
## 70      124
## 71      128
## 72       79
## 73      139
## 74       86
## 75      118
## 76       66
## 77       43
## 78      137
## 79      140
## 80       36
## 81      131
## 82      150
## 83      112
## 84      105
## 85       75
## 86       38
## 87       83
## 88      149
## 89       76
## 90      101
## 91      136
## 92       48
## 93       31
## 94       23
## 95       59
## 96       90
## 97      115
## 98       91
## 99      100
## 100      67
## 101      88
## 102     103
## 103      92
## 104     119
## 105      22
## 106      85
## 107      87
## 108     145
## 109       2
## 110     134
## 111     121
## 112      14
## 113      82
## 114     111
## 115     127
## 116     123
## 117     117
## 118     109
## 119     104
## 120      89
## 121      72
## 122     151
## 123      46
## 124     143
## 125      27
## 126     130
## 127     125
## 128     110
## 129     116
## 130      55
## 131      29
## 132     142
## 133     141
## 134     106
## 135     113
## 136      99
## 137     129
## 138      73
## 139     120
## 140      41
## 141      94
## 142     148
## 143     146
## 144      97
## 145     135
## 146      96
## 147     152
## 148      60
## 149     153
## 150      65
## 151     147
## 152      21
## 153      78
## 154     155
## 155     133
## 156     154
##     Ladder SD_Ladder
## 1        1         4
## 2        2        13
## 3        3         8
## 4        4         9
## 5        5         1
## 6        6        11
## 7        7        18
## 8        8        15
## 9        9        23
## 10      10        10
## 11      11        26
## 12      12        62
## 13      13        14
## 14      14         3
## 15      15        16
## 16      16        34
## 17      17        17
## 18      18         7
## 19      19        49
## 20      20        20
## 21      21        65
## 22      22        42
## 23      23        76
## 24      24        19
## 25      25        37
## 26      26        61
## 27      27       136
## 28      28        93
## 29      29        86
## 30      30        21
## 31      31       121
## 32      32       116
## 33      33        88
## 34      34         5
## 35      35       112
## 36      36        31
## 37      37        83
## 38      38        39
## 39      39        89
## 40      40        28
## 41      41        99
## 42      42        55
## 43      43       120
## 44      44        54
## 45      45       133
## 46      46       107
## 47      47        97
## 48      48        75
## 49      49        95
## 50      50       113
## 51      51        98
## 52      52        81
## 53      53        30
## 54      54        57
## 55      55        32
## 56      56       102
## 57      57        94
## 58      58        43
## 59      59       151
## 60      60        40
## 61      61        71
## 62      62        36
## 63      63        90
## 64      64        35
## 65      65       114
## 66      66        73
## 67      67        53
## 68      68        64
## 69      69       119
## 70      70       100
## 71      71        45
## 72      72       115
## 73      73        84
## 74      74        50
## 75      75        29
## 76      76        33
## 77      77       155
## 78      78        80
## 79      79        58
## 80      80        12
## 81      81        22
## 82      82        87
## 83      83        48
## 84      84        67
## 85      85       130
## 86      86        46
## 87      87         2
## 88      88        56
## 89      89       101
## 90      90        24
## 91      91        60
## 92      92       108
## 93      93        72
## 94      94        27
## 95      95         6
## 96      96       131
## 97      97        47
## 98      98       129
## 99      99       134
## 100    100       128
## 101    101       127
## 102    102       149
## 103    103       152
## 104    104       105
## 105    105        59
## 106    106       124
## 107    107       126
## 108    108       141
## 109    109       135
## 110    110       110
## 111    111        44
## 112    112        74
## 113    113       106
## 114    114       144
## 115    115        92
## 116    116        82
## 117    117       109
## 118    118       146
## 119    119        51
## 120    120       142
## 121    121       118
## 122    122        68
## 123    123       154
## 124    124        79
## 125    125        52
## 126    126       147
## 127    127        78
## 128    128        96
## 129    129       153
## 130    130        91
## 131    131        70
## 132    132       139
## 133    133        69
## 134    134        38
## 135    135       104
## 136    136       148
## 137    137        66
## 138    138       145
## 139    139       103
## 140    140        41
## 141    141       156
## 142    142       143
## 143    143        77
## 144    144       150
## 145    145       138
## 146    146       123
## 147    147       111
## 148    148       125
## 149    149       137
## 150    150       132
## 151    151        85
## 152    152        63
## 153    153       122
## 154    154        25
## 155    155       117
## 156    156       140
##     Ladder Freedom
## 1        1       5
## 2        2       6
## 3        3       3
## 4        4       7
## 5        5      19
## 6        6      11
## 7        7      10
## 8        8       8
## 9        9       9
## 10      10      26
## 11      11      17
## 12      12      16
## 13      13      93
## 14      14      28
## 15      15      63
## 16      16      33
## 17      17      44
## 18      18      53
## 19      19      62
## 20      20      58
## 21      21       4
## 22      22      12
## 23      23      71
## 24      24      69
## 25      25     102
## 26      26      98
## 27      27      25
## 28      28      68
## 29      29      NA
## 30      30      95
## 31      31      32
## 32      32      84
## 33      33      30
## 34      34      20
## 35      35      74
## 36      36     132
## 37      37      24
## 38      38     108
## 39      39      51
## 40      40      52
## 41      41       1
## 42      42     122
## 43      43      56
## 44      44      13
## 45      45      70
## 46      46      50
## 47      47      54
## 48      48      57
## 49      49      81
## 50      50      42
## 51      51      47
## 52      52      18
## 53      53     126
## 54      54     144
## 55      55      45
## 56      56      49
## 57      57      40
## 58      58      64
## 59      59      39
## 60      60      80
## 61      61      35
## 62      62     138
## 63      63      34
## 64      64      77
## 65      65      61
## 66      66      37
## 67      67     114
## 68      68     107
## 69      69      15
## 70      70     124
## 71      71     128
## 72      72      79
## 73      73     139
## 74      74      86
## 75      75     118
## 76      76      66
## 77      77      43
## 78      78     137
## 79      79     140
## 80      80      36
## 81      81     131
## 82      82     150
## 83      83     112
## 84      84     105
## 85      85      75
## 86      86      38
## 87      87      83
## 88      88     149
## 89      89      76
## 90      90     101
## 91      91     136
## 92      92      48
## 93      93      31
## 94      94      23
## 95      95      59
## 96      96      90
## 97      97     115
## 98      98      91
## 99      99     100
## 100    100      67
## 101    101      88
## 102    102     103
## 103    103      92
## 104    104     119
## 105    105      22
## 106    106      85
## 107    107      87
## 108    108     145
## 109    109       2
## 110    110     134
## 111    111     121
## 112    112      14
## 113    113      82
## 114    114     111
## 115    115     127
## 116    116     123
## 117    117     117
## 118    118     109
## 119    119     104
## 120    120      89
## 121    121      72
## 122    122     151
## 123    123      46
## 124    124     143
## 125    125      27
## 126    126     130
## 127    127     125
## 128    128     110
## 129    129     116
## 130    130      55
## 131    131      29
## 132    132     142
## 133    133     141
## 134    134     106
## 135    135     113
## 136    136      99
## 137    137     129
## 138    138      73
## 139    139     120
## 140    140      41
## 141    141      94
## 142    142     148
## 143    143     146
## 144    144      97
## 145    145     135
## 146    146      96
## 147    147     152
## 148    148      60
## 149    149     153
## 150    150      65
## 151    151     147
## 152    152      21
## 153    153      78
## 154    154     155
## 155    155     133
## 156    156     154
## Observations: 156
## Variables: 10
## $ Ladder          <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,...
## $ SD_Ladder       <int> 4, 13, 8, 9, 1, 11, 18, 15, 23, 10, 26, 62, 14...
## $ Positive_affect <int> 41, 24, 16, 3, 12, 44, 34, 22, 18, 64, 47, 4, ...
## $ Negative_affect <int> 10, 26, 29, 3, 25, 21, 8, 12, 49, 24, 37, 87, ...
## $ Social_support  <int> 2, 4, 3, 1, 15, 13, 25, 5, 20, 31, 7, 42, 38, ...
## $ Freedom         <int> 5, 6, 3, 7, 19, 11, 10, 8, 9, 26, 17, 16, 93, ...
## $ Corruption      <int> 4, 3, 8, 45, 12, 7, 6, 5, 11, 19, 13, 58, 74, ...
## $ Generosity      <int> 47, 22, 11, 3, 7, 16, 17, 8, 14, 25, 6, 75, 24...
## $ Log_GDP         <int> 22, 14, 7, 15, 12, 8, 13, 26, 19, 16, 18, 67, ...
## $ life_expectancy <int> 27, 23, 12, 13, 18, 4, 17, 14, 8, 15, 10, 28, ...
## Observations: 156
## Variables: 1
## $ Country_region <fct> Finland, Denmark, Norway, Iceland, Netherlands,...
## Observations: 156
## Variables: 0
## Observations: 156
## Variables: 1
## $ Country <fct> Finland, Denmark, Norway, Iceland, Netherlands, Switze...

Dplyr filter

## # A tibble: 6 x 11
##   name  genus vore  order conservation sleep_total sleep_rem sleep_cycle
##   <chr> <chr> <chr> <chr> <chr>              <dbl>     <dbl>       <dbl>
## 1 Chee~ Acin~ carni Carn~ lc                  12.1      NA        NA    
## 2 Owl ~ Aotus omni  Prim~ <NA>                17         1.8      NA    
## 3 Moun~ Aplo~ herbi Rode~ nt                  14.4       2.4      NA    
## 4 Grea~ Blar~ omni  Sori~ lc                  14.9       2.3       0.133
## 5 Cow   Bos   herbi Arti~ domesticated         4         0.7       0.667
## 6 Thre~ Brad~ herbi Pilo~ <NA>                14.4       2.2       0.767
## # ... with 3 more variables: awake <dbl>, brainwt <dbl>, bodywt <dbl>
## Observations: 83
## Variables: 11
## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...
## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...
## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...
## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....
## $ sleep_cycle  <dbl> NA, NA, NA, 0.13, 0.67, 0.77, 0.38, NA, 0.33, NA,...
## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...
## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....
## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...
## Observations: 28
## Variables: 11
## $ name         <chr> "Cheetah", "Cow", "Northern fur seal", "Dog", "Ro...
## $ genus        <chr> "Acinonyx", "Bos", "Callorhinus", "Canis", "Capre...
## $ vore         <chr> "carni", "herbi", "carni", "carni", "herbi", "her...
## $ order        <chr> "Carnivora", "Artiodactyla", "Carnivora", "Carniv...
## $ conservation <chr> "lc", "domesticated", "vu", "domesticated", "lc",...
## $ sleep_total  <dbl> 12.1, 4.0, 8.7, 10.1, 3.0, 5.3, 3.9, 2.9, 3.1, 10...
## $ sleep_rem    <dbl> NA, 0.7, 1.4, 2.9, NA, 0.6, NA, 0.6, 0.4, 1.1, 0....
## $ sleep_cycle  <dbl> NA, 0.67, 0.38, 0.33, NA, NA, NA, 1.00, NA, NA, N...
## $ awake        <dbl> 11.9, 20.0, 15.3, 13.9, 21.0, 18.7, 20.1, 21.1, 2...
## $ brainwt      <dbl> NA, 0.423, NA, 0.070, 0.098, 0.115, 4.603, 0.655,...
## $ bodywt       <dbl> 50.0, 600.0, 20.5, 14.0, 14.8, 33.5, 2547.0, 521....
## Observations: 4
## Variables: 11
## $ name         <chr> "Asian elephant", "Golden hamster", "Tiger", "Gia...
## $ genus        <chr> "Elephas", "Mesocricetus", "Panthera", "Priodontes"
## $ vore         <chr> "herbi", "herbi", "carni", "insecti"
## $ order        <chr> "Proboscidea", "Rodentia", "Carnivora", "Cingulata"
## $ conservation <chr> "en", "en", "en", "en"
## $ sleep_total  <dbl> 3.9, 14.3, 15.8, 18.1
## $ sleep_rem    <dbl> NA, 3.1, NA, 6.1
## $ sleep_cycle  <dbl> NA, 0.2, NA, NA
## $ awake        <dbl> 20.1, 9.7, 8.2, 5.9
## $ brainwt      <dbl> 4.603, 0.001, NA, 0.081
## $ bodywt       <dbl> 2547.00, 0.12, 162.56, 60.00
## Observations: 3
## Variables: 11
## $ name         <chr> "Asian elephant", "Tiger", "Giant armadillo"
## $ genus        <chr> "Elephas", "Panthera", "Priodontes"
## $ vore         <chr> "herbi", "carni", "insecti"
## $ order        <chr> "Proboscidea", "Carnivora", "Cingulata"
## $ conservation <chr> "en", "en", "en"
## $ sleep_total  <dbl> 3.9, 15.8, 18.1
## $ sleep_rem    <dbl> NA, NA, 6.1
## $ sleep_cycle  <dbl> NA, NA, NA
## $ awake        <dbl> 20.1, 8.2, 5.9
## $ brainwt      <dbl> 4.603, NA, 0.081
## $ bodywt       <dbl> 2547, 163, 60
## Observations: 15
## Variables: 11
## $ name         <chr> "Cheetah", "Northern fur seal", "Dog", "Asian ele...
## $ genus        <chr> "Acinonyx", "Callorhinus", "Canis", "Elephas", "F...
## $ vore         <chr> "carni", "carni", "carni", "herbi", "carni", "car...
## $ order        <chr> "Carnivora", "Carnivora", "Carnivora", "Proboscid...
## $ conservation <chr> "lc", "vu", "domesticated", "en", "domesticated",...
## $ sleep_total  <dbl> 12.1, 8.7, 10.1, 3.9, 12.5, 6.2, 14.3, 15.8, 10.4...
## $ sleep_rem    <dbl> NA, 1.4, 2.9, NA, 3.2, 1.5, 3.1, NA, NA, NA, 0.4,...
## $ sleep_cycle  <dbl> NA, 0.38, 0.33, NA, 0.42, NA, 0.20, NA, NA, NA, N...
## $ awake        <dbl> 11.9, 15.3, 13.9, 20.1, 11.5, 17.8, 9.7, 8.2, 13....
## $ brainwt      <dbl> NA, NA, 0.070, 4.603, 0.026, 0.325, 0.001, NA, 0....
## $ bodywt       <dbl> 50.00, 20.49, 14.00, 2547.00, 3.30, 85.00, 0.12, ...
## # A tibble: 6 x 11
##   name  genus vore  order conservation sleep_total sleep_rem sleep_cycle
##   <chr> <chr> <chr> <chr> <chr>              <dbl>     <dbl>       <dbl>
## 1 Chee~ Acin~ carni Carn~ lc                  12.1      NA        NA    
## 2 Owl ~ Aotus omni  Prim~ <NA>                17         1.8      NA    
## 3 Moun~ Aplo~ herbi Rode~ nt                  14.4       2.4      NA    
## 4 Grea~ Blar~ omni  Sori~ lc                  14.9       2.3       0.133
## 5 Cow   Bos   herbi Arti~ domesticated         4         0.7       0.667
## 6 Thre~ Brad~ herbi Pilo~ <NA>                14.4       2.2       0.767
## # ... with 3 more variables: awake <dbl>, brainwt <dbl>, bodywt <dbl>
## Observations: 83
## Variables: 11
## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...
## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...
## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...
## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....
## $ sleep_cycle  <dbl> NA, NA, NA, 0.13, 0.67, 0.77, 0.38, NA, 0.33, NA,...
## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...
## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....
## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...
## Observations: 71
## Variables: 11
## $ name         <chr> "Owl monkey", "Mountain beaver", "Greater short-t...
## $ genus        <chr> "Aotus", "Aplodontia", "Blarina", "Bos", "Bradypu...
## $ vore         <chr> "omni", "herbi", "omni", "herbi", "herbi", NA, "h...
## $ order        <chr> "Primates", "Rodentia", "Soricomorpha", "Artiodac...
## $ conservation <chr> NA, "nt", "lc", "domesticated", NA, NA, "lc", "lc...
## $ sleep_total  <dbl> 17.0, 14.4, 14.9, 4.0, 14.4, 7.0, 3.0, 5.3, 9.4, ...
## $ sleep_rem    <dbl> 1.8, 2.4, 2.3, 0.7, 2.2, NA, NA, 0.6, 0.8, 0.7, 1...
## $ sleep_cycle  <dbl> NA, NA, 0.13, 0.67, 0.77, NA, NA, NA, 0.22, NA, 0...
## $ awake        <dbl> 7.0, 9.6, 9.1, 20.0, 9.6, 17.0, 21.0, 18.7, 14.6,...
## $ brainwt      <dbl> 0.01550, NA, 0.00029, 0.42300, NA, NA, 0.09820, 0...
## $ bodywt       <dbl> 0.480, 1.350, 0.019, 600.000, 3.850, 0.045, 14.80...
## Observations: 31
## Variables: 11
## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Br...
## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", NA, "domesticated", "lc", "...
## $ sleep_total  <dbl> 12, 17, 14, 15, 14, 12, 17, 18, 20, 15, 12, 19, 1...
## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 2.2, 1.5, 3.1, 4.9, 3.9, NA, 3...
## $ sleep_cycle  <dbl> NA, NA, NA, 0.13, 0.77, 0.12, 0.38, 0.33, 0.12, N...
## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 9.6, 11.5, 6.6, 6.0, 4.3, 9....
## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, NA, 0.00640, 0.01080, 0...
## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 3.850, 0.420, 3.500,...
## # A tibble: 11 x 11
##    name  genus vore  order conservation sleep_total sleep_rem sleep_cycle
##    <chr> <chr> <chr> <chr> <chr>              <dbl>     <dbl>       <dbl>
##  1 Nort~ Call~ carni Carn~ vu                   8.7       1.4       0.383
##  2 Asia~ Elep~ herbi Prob~ en                   3.9      NA        NA    
##  3 Mong~ Lemur herbi Prim~ vu                   9.5       0.9      NA    
##  4 Afri~ Loxo~ herbi Prob~ vu                   3.3      NA        NA    
##  5 Gold~ Meso~ herbi Rode~ en                  14.3       3.1       0.2  
##  6 Tiger Pant~ carni Carn~ en                  15.8      NA        NA    
##  7 Lion  Pant~ carni Carn~ vu                  13.5      NA        NA    
##  8 Casp~ Phoca carni Carn~ vu                   3.5       0.4      NA    
##  9 Comm~ Phoc~ carni Ceta~ vu                   5.6      NA        NA    
## 10 Gian~ Prio~ inse~ Cing~ en                  18.1       6.1      NA    
## 11 Braz~ Tapi~ herbi Peri~ vu                   4.4       1         0.9  
## # ... with 3 more variables: awake <dbl>, brainwt <dbl>, bodywt <dbl>
## Observations: 32
## Variables: 1
## $ vore <chr> "herbi", "herbi", "herbi", "herbi", "herbi", "herbi", "he...

Create new column using mutate

## # A tibble: 6 x 11
##   name  genus vore  order conservation sleep_total sleep_rem sleep_cycle
##   <chr> <chr> <chr> <chr> <chr>              <dbl>     <dbl>       <dbl>
## 1 Chee~ Acin~ carni Carn~ lc                  12.1      NA        NA    
## 2 Owl ~ Aotus omni  Prim~ <NA>                17         1.8      NA    
## 3 Moun~ Aplo~ herbi Rode~ nt                  14.4       2.4      NA    
## 4 Grea~ Blar~ omni  Sori~ lc                  14.9       2.3       0.133
## 5 Cow   Bos   herbi Arti~ domesticated         4         0.7       0.667
## 6 Thre~ Brad~ herbi Pilo~ <NA>                14.4       2.2       0.767
## # ... with 3 more variables: awake <dbl>, brainwt <dbl>, bodywt <dbl>
## Observations: 83
## Variables: 11
## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...
## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...
## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...
## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....
## $ sleep_cycle  <dbl> NA, NA, NA, 0.13, 0.67, 0.77, 0.38, NA, 0.33, NA,...
## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...
## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....
## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...
## Observations: 83
## Variables: 12
## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...
## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...
## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...
## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....
## $ sleep_cycle  <dbl> NA, NA, NA, 0.13, 0.67, 0.77, 0.38, NA, 0.33, NA,...
## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...
## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....
## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...
## $ S            <dbl> NA, NA, NA, 17.3, 5.4, 17.4, 10.5, NA, 13.3, NA, ...
## # A tibble: 61 x 12
##    name  genus vore  order conservation sleep_total sleep_rem sleep_cycle
##    <chr> <chr> <chr> <chr> <chr>              <dbl>     <dbl>       <dbl>
##  1 Owl ~ Aotus omni  Prim~ <NA>                17         1.8      NA    
##  2 Moun~ Aplo~ herbi Rode~ nt                  14.4       2.4      NA    
##  3 Grea~ Blar~ omni  Sori~ lc                  14.9       2.3       0.133
##  4 Cow   Bos   herbi Arti~ domesticated         4         0.7       0.667
##  5 Thre~ Brad~ herbi Pilo~ <NA>                14.4       2.2       0.767
##  6 Nort~ Call~ carni Carn~ vu                   8.7       1.4       0.383
##  7 Dog   Canis carni Carn~ domesticated        10.1       2.9       0.333
##  8 Goat  Capri herbi Arti~ lc                   5.3       0.6      NA    
##  9 Guin~ Cavis herbi Rode~ domesticated         9.4       0.8       0.217
## 10 Griv~ Cerc~ omni  Prim~ lc                  10         0.7      NA    
## # ... with 51 more rows, and 4 more variables: awake <dbl>, brainwt <dbl>,
## #   bodywt <dbl>, S <dbl>
## Observations: 32
## Variables: 12
## $ name         <chr> "Greater short-tailed shrew", "Cow", "Three-toed ...
## $ genus        <chr> "Blarina", "Bos", "Bradypus", "Callorhinus", "Can...
## $ vore         <chr> "omni", "herbi", "herbi", "carni", "carni", "herb...
## $ order        <chr> "Soricomorpha", "Artiodactyla", "Pilosa", "Carniv...
## $ conservation <chr> "lc", "domesticated", NA, "vu", "domesticated", "...
## $ sleep_total  <dbl> 14.9, 4.0, 14.4, 8.7, 10.1, 9.4, 12.5, 9.1, 17.4,...
## $ sleep_rem    <dbl> 2.3, 0.7, 2.2, 1.4, 2.9, 0.8, 1.5, 1.4, 3.1, 4.9,...
## $ sleep_cycle  <dbl> 0.13, 0.67, 0.77, 0.38, 0.33, 0.22, 0.12, 0.15, 0...
## $ awake        <dbl> 9.1, 20.0, 9.6, 15.3, 13.9, 14.6, 11.5, 14.9, 6.6...
## $ brainwt      <dbl> 0.00029, 0.42300, NA, NA, 0.07000, 0.00550, 0.006...
## $ bodywt       <dbl> 0.019, 600.000, 3.850, 20.490, 14.000, 0.728, 0.4...
## $ S            <dbl> 17.3, 5.4, 17.4, 10.5, 13.3, 10.4, 14.1, 10.6, 20...
## Observations: 83
## Variables: 1
## $ S <dbl> NA, NA, NA, 17.3, 5.4, 17.4, 10.5, NA, 13.3, NA, NA, 10.4, N...

Dplyr group_by

## Observations: 83
## Variables: 11
## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...
## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...
## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...
## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....
## $ sleep_cycle  <dbl> NA, NA, NA, 0.13, 0.67, 0.77, 0.38, NA, 0.33, NA,...
## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...
## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....
## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...
## # A tibble: 7 x 2
##   conservation `n()`
##   <chr>        <int>
## 1 cd               2
## 2 domesticated    10
## 3 en               4
## 4 lc              27
## 5 nt               4
## 6 vu               7
## 7 <NA>            29
## # A tibble: 7 x 2
##   conservation mean_a
##   <chr>         <dbl>
## 1 cd             21.7
## 2 domesticated   16.4
## 3 en             11.0
## 4 lc             12.6
## 5 nt             11.0
## 6 vu             17.1
## 7 <NA>           12.8
## # A tibble: 22 x 3
## # Groups:   conservation [7]
##    conservation vore    mean_a
##    <chr>        <chr>    <dbl>
##  1 cd           carni     21.4
##  2 cd           herbi     22.1
##  3 domesticated carni     12.7
##  4 domesticated herbi     17.7
##  5 domesticated omni      14.9
##  6 en           carni      8.2
##  7 en           herbi     14.9
##  8 en           insecti    5.9
##  9 lc           carni     10.1
## 10 lc           herbi     13.9
## # ... with 12 more rows
##   ID                     Name Sex Age Height Weight           Team NOC
## 1  1                A Dijiang   M  24    180     80          China CHN
## 2  2                 A Lamusi   M  23    170     60          China CHN
## 3  3      Gunnar Nielsen Aaby   M  24     NA     NA        Denmark DEN
## 4  4     Edgar Lindenau Aabye   M  34     NA     NA Denmark/Sweden DEN
## 5  5 Christine Jacoba Aaftink   F  21    185     82    Netherlands NED
## 6  5 Christine Jacoba Aaftink   F  21    185     82    Netherlands NED
##         Games Year Season      City         Sport
## 1 1992 Summer 1992 Summer Barcelona    Basketball
## 2 2012 Summer 2012 Summer    London          Judo
## 3 1920 Summer 1920 Summer Antwerpen      Football
## 4 1900 Summer 1900 Summer     Paris    Tug-Of-War
## 5 1988 Winter 1988 Winter   Calgary Speed Skating
## 6 1988 Winter 1988 Winter   Calgary Speed Skating
##                                Event Medal
## 1        Basketball Men's Basketball  <NA>
## 2       Judo Men's Extra-Lightweight  <NA>
## 3            Football Men's Football  <NA>
## 4        Tug-Of-War Men's Tug-Of-War  Gold
## 5   Speed Skating Women's 500 metres  <NA>
## 6 Speed Skating Women's 1,000 metres  <NA>
## Observations: 271,116
## Variables: 15
## $ ID     <int> 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7...
## $ Name   <fct> A Dijiang, A Lamusi, Gunnar Nielsen Aaby, Edgar Lindena...
## $ Sex    <fct> M, M, M, M, F, F, F, F, F, F, M, M, M, M, M, M, M, M, M...
## $ Age    <int> 24, 23, 24, 34, 21, 21, 25, 25, 27, 27, 31, 31, 31, 31,...
## $ Height <int> 180, 170, NA, NA, 185, 185, 185, 185, 185, 185, 188, 18...
## $ Weight <dbl> 80, 60, NA, NA, 82, 82, 82, 82, 82, 82, 75, 75, 75, 75,...
## $ Team   <fct> China, China, Denmark, Denmark/Sweden, Netherlands, Net...
## $ NOC    <fct> CHN, CHN, DEN, DEN, NED, NED, NED, NED, NED, NED, USA, ...
## $ Games  <fct> 1992 Summer, 2012 Summer, 1920 Summer, 1900 Summer, 198...
## $ Year   <int> 1992, 2012, 1920, 1900, 1988, 1988, 1992, 1992, 1994, 1...
## $ Season <fct> Summer, Summer, Summer, Summer, Winter, Winter, Winter,...
## $ City   <fct> Barcelona, London, Antwerpen, Paris, Calgary, Calgary, ...
## $ Sport  <fct> Basketball, Judo, Football, Tug-Of-War, Speed Skating, ...
## $ Event  <fct> "Basketball Men's Basketball", "Judo Men's Extra-Lightw...
## $ Medal  <fct> NA, NA, NA, Gold, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
## Observations: 13,688
## Variables: 15
## $ ID     <int> 22, 51, 51, 51, 51, 51, 51, 55, 62, 65, 73, 105, 110, 1...
## $ Name   <fct> Andreea Aanei, Nstor Abad Sanjun, Nstor Abad Sanjun, Ns...
## $ Sex    <fct> F, M, M, M, M, M, M, M, M, F, M, M, M, F, M, F, F, F, M...
## $ Age    <int> 22, 23, 23, 23, 23, 23, 23, 26, 21, 21, 31, 23, 20, 23,...
## $ Height <int> 170, 167, 167, 167, 167, 167, 167, 170, 198, 165, 182, ...
## $ Weight <dbl> 125, 64, 64, 64, 64, 64, 64, 65, 90, 49, 86, 75, 66, 72...
## $ Team   <fct> Romania, Spain, Spain, Spain, Spain, Spain, Spain, Spai...
## $ NOC    <fct> ROU, ESP, ESP, ESP, ESP, ESP, ESP, ESP, ITA, AZE, FRA, ...
## $ Games  <fct> 2016 Summer, 2016 Summer, 2016 Summer, 2016 Summer, 201...
## $ Year   <int> 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2...
## $ Season <fct> Summer, Summer, Summer, Summer, Summer, Summer, Summer,...
## $ City   <fct> Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Rio de ...
## $ Sport  <fct> Weightlifting, Gymnastics, Gymnastics, Gymnastics, Gymn...
## $ Event  <fct> "Weightlifting Women's Super-Heavyweight", "Gymnastics ...
## $ Medal  <fct> NA, NA, NA, NA, NA, NA, NA, NA, Bronze, Bronze, Silver,...
## # A tibble: 6 x 2
##   Sport            mean_age
##   <fct>               <dbl>
## 1 Archery              25.2
## 2 Athletics            26.4
## 3 Badminton            26.8
## 4 Basketball           27.7
## 5 Beach Volleyball     28.7
## 6 Boxing               25.1
## # A tibble: 6 x 3
##   Sport         mean_age mean_ht
##   <fct>            <dbl>   <dbl>
## 1 Trampolining      25.1    168.
## 2 Triathlon         27.7    173.
## 3 Volleyball        27.1    190.
## 4 Water Polo        26.6    185.
## 5 Weightlifting     24.8    167.
## 6 Wrestling         26.6    173.
## # A tibble: 6 x 2
##   Sport          corrl
##   <fct>          <dbl>
## 1 Trampolining   0.819
## 2 Triathlon     NA    
## 3 Volleyball     0.810
## 4 Water Polo     0.865
## 5 Weightlifting  0.855
## 6 Wrestling      0.855
## # A tibble: 6 x 15
## # Groups:   Sport, Sex [2]
##       ID Name  Sex     Age Height Weight Team  NOC   Games  Year Season
##    <int> <fct> <fct> <int>  <int>  <dbl> <fct> <fct> <fct> <int> <fct> 
## 1  15436 "Jul~ F        62    157     48 New ~ NZL   2016~  2016 Summer
## 2  45610 "Mar~ F        61    173     63 Aust~ AUS   2016~  2016 Summer
## 3  45610 "Mar~ F        61    173     63 Aust~ AUS   2016~  2016 Summer
## 4  46990 "Suz~ F        60    165     68 Aust~ AUS   2016~  2016 Summer
## 5  46990 "Suz~ F        60    165     68 Aust~ AUS   2016~  2016 Summer
## 6 120661 "Mar~ M        60    190     78 New ~ NZL   2016~  2016 Summer
## # ... with 4 more variables: City <fct>, Sport <fct>, Event <fct>,
## #   Medal <fct>
## # A tibble: 6 x 15
## # Groups:   Sport [3]
##      ID Name  Sex     Age Height Weight Team  NOC   Games  Year Season
##   <int> <fct> <fct> <int>  <int>  <dbl> <fct> <fct> <fct> <int> <fct> 
## 1  1277 "Car~ F        20    160     59 Colo~ COL   2016~  2016 Summer
## 2  1277 "Car~ F        20    160     59 Colo~ COL   2016~  2016 Summer
## 3    55 "Ant~ M        26    170     65 Spain ESP   2016~  2016 Summer
## 4   110 "Abu~ M        20    175     66 Bahr~ BRN   2016~  2016 Summer
## 5   433 "Pab~ M        31    177     68 Spain ESP   2016~  2016 Summer
## 6   867 "Chr~ M        27    183     80 Grea~ GBR   2016~  2016 Summer
## # ... with 4 more variables: City <fct>, Sport <fct>, Event <fct>,
## #   Medal <fct>

Summarizing the Dplyr verbs

##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5    NA      NA 14.3   56     5   5
## 6    28      NA 14.9   66     5   6
##   Ozone Month
## 1    41     5
## 2    36     5
## 3    12     5
## 4    18     5
## 5    NA     5
## 6    28     5
##   Ozone Solar.R Wind Temp Month
## 1    41     190  7.4   67     5
## 2    36     118  8.0   72     5
## 3    12     149 12.6   74     5
## 4    18     313 11.5   62     5
## 5    NA      NA 14.3   56     5
## 6    28      NA 14.9   66     5
##    Ozone Solar.R Wind Temp Month Day
## 1     41     190  7.4   67     5   1
## 2     36     118  8.0   72     5   2
## 3     28      NA 14.9   66     5   6
## 4     34     307 12.0   66     5  17
## 5     30     322 11.5   68     5  19
## 6     32      92 12.0   61     5  24
## 7     45     252 14.9   81     5  29
## 8    115     223  5.7   79     5  30
## 9     37     279  7.4   76     5  31
## 10    29     127  9.7   82     6   7
## 11    71     291 13.8   90     6   9
## 12    39     323 11.5   87     6  10
## 13    37     284 20.7   72     6  17
## 14   135     269  4.1   84     7   1
## 15    49     248  9.2   85     7   2
## 16    32     236  9.2   81     7   3
## 17    64     175  4.6   83     7   5
## 18    40     314 10.9   83     7   6
## 19    77     276  5.1   88     7   7
## 20    97     267  6.3   92     7   8
## 21    97     272  5.7   92     7   9
## 22    85     175  7.4   89     7  10
## 23    27     175 14.9   81     7  13
## 24    48     260  6.9   81     7  16
## 25    35     274 10.3   82     7  17
## 26    61     285  6.3   84     7  18
## 27    79     187  5.1   87     7  19
## 28    63     220 11.5   85     7  20
## 29    80     294  8.6   86     7  24
## 30   108     223  8.0   85     7  25
## 31    52      82 12.0   86     7  27
## 32    82     213  7.4   88     7  28
## 33    50     275  7.4   86     7  29
## 34    64     253  7.4   83     7  30
## 35    59     254  9.2   81     7  31
## 36    39      83  6.9   81     8   1
## 37    78      NA  6.9   86     8   4
## 38    35      NA  7.4   85     8   5
## 39    66      NA  4.6   87     8   6
## 40   122     255  4.0   89     8   7
## 41    89     229 10.3   90     8   8
## 42   110     207  8.0   90     8   9
## 43    44     192 11.5   86     8  12
## 44    28     273 11.5   82     8  13
## 45    65     157  9.7   80     8  14
## 46    59      51  6.3   79     8  17
## 47    31     244 10.9   78     8  19
## 48    44     190 10.3   78     8  20
## 49    45     212  9.7   79     8  24
## 50   168     238  3.4   81     8  25
## 51    73     215  8.0   86     8  26
## 52    76     203  9.7   97     8  28
## 53   118     225  2.3   94     8  29
## 54    84     237  6.3   96     8  30
## 55    85     188  6.3   94     8  31
## 56    96     167  6.9   91     9   1
## 57    78     197  5.1   92     9   2
## 58    73     183  2.8   93     9   3
## 59    91     189  4.6   93     9   4
## 60    47      95  7.4   87     9   5
## 61    32      92 15.5   84     9   6
## 62    44     236 14.9   81     9  11
## 63    28     238  6.3   77     9  13
## 64    46     237  6.9   78     9  16
## 65    36     139 10.3   81     9  23
## 66    30     193  6.9   70     9  26
##   Ozone Solar.R Wind Temp Month Day
## 1    45     252 14.9   81     5  29
## 2   115     223  5.7   79     5  30
## 3    37     279  7.4   76     5  31
## 4    29     127  9.7   82     6   7
## 5    71     291 13.8   90     6   9
## 6    39     323 11.5   87     6  10
##   Ozone Solar.R Wind Temp Month Day TempInC
## 1    41     190  7.4   67     5   1      19
## 2    36     118  8.0   72     5   2      22
## 3    12     149 12.6   74     5   3      23
## 4    18     313 11.5   62     5   4      17
## 5    NA      NA 14.3   56     5   5      13
## 6    28      NA 14.9   66     5   6      19
##   min(Ozone, na.rm = TRUE)
## 1                        1
## # A tibble: 5 x 2
##   Month `mean(Wind, na.rm = TRUE)`
##   <int>                      <dbl>
## 1     5                      11.6 
## 2     6                      10.3 
## 3     7                       8.94
## 4     8                       8.79
## 5     9                      10.2
##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5    NA      NA 14.3   56     5   5
## 6    28      NA 14.9   66     5   6
##   Ozone Month
## 1    41     5
## 2    36     5
## 3    12     5
## 4    18     5
## 5    NA     5
## 6    28     5
##   Ozone Temp
## 1    41   67
## 2    36   72
## 3    12   74
## 4    18   62
## 5    NA   56
## 6    28   66
##   avg min max total
## 1  42   1 168   153
## # A tibble: 5 x 2
##   Month `mean(Temp, na.rm = TRUE)`
##   <int>                      <dbl>
## 1     5                       65.5
## 2     6                       79.1
## 3     7                       83.9
## 4     8                       84.0
## 5     9                       76.9
## # A tibble: 4 x 2
##   Month `mean(Temp, na.rm = TRUE)`
##   <int>                      <dbl>
## 1     6                       79.1
## 2     7                       83.9
## 3     8                       84.0
## 4     9                       76.9
##   Month Ozone Wind
## 1     5    12   13
## 2     5    NA   14
## 3     5    28   15
## 4     5    19   14
## 5     5     8   20
## 6     5    18   13

Data Processing the Tidy Way: The “tidyr” Package

Importing data as tibble

## [1] "data.frame"
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>  
## 1          5.1         3.5          1.4         0.2 setosa 
## 2          4.9         3            1.4         0.2 setosa 
## 3          4.7         3.2          1.3         0.2 setosa 
## 4          4.6         3.1          1.5         0.2 setosa 
## 5          5           3.6          1.4         0.2 setosa 
## 6          5.4         3.9          1.7         0.4 setosa
## # A tibble: 6 x 19
##    year month   day dep_time sched_dep_time dep_delay arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>
## 1  2013     1     1      517            515         2      830
## 2  2013     1     1      533            529         4      850
## 3  2013     1     1      542            540         2      923
## 4  2013     1     1      544            545        -1     1004
## 5  2013     1     1      554            600        -6      812
## 6  2013     1     1      554            558        -4      740
## # ... with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
## #   time_hour <dttm>

rename columns in data frame

##   Sepal.Length Sepal.Width Petal.Length petal_w Species
## 1          5.1         3.5          1.4     0.2  setosa
## 2          4.9         3.0          1.4     0.2  setosa
## 3          4.7         3.2          1.3     0.2  setosa
## 4          4.6         3.1          1.5     0.2  setosa
## 5          5.0         3.6          1.4     0.2  setosa
## 6          5.4         3.9          1.7     0.4  setosa
##   sepal_l sepal_w iris_s
## 1     5.1     3.5 setosa
## 2     4.9     3.0 setosa
## 3     4.7     3.2 setosa
## 4     4.6     3.1 setosa
## 5     5.0     3.6 setosa
## 6     5.4     3.9 setosa
##   sepal.length sepal.width petal.length petal.width species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
##   SEPAL.LENGTH SEPAL.WIDTH PETAL.LENGTH PETAL.WIDTH Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
##   Sepal.Length Sepal.Width petal.length petal.width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
##                   mpg cyl disp  hp drat  wt qsec vs am gear carb
## Mazda RX4          21   6  160 110  3.9 2.6   16  0  1    4    4
## Mazda RX4 Wag      21   6  160 110  3.9 2.9   17  0  1    4    4
## Datsun 710         23   4  108  93  3.8 2.3   19  1  1    4    1
## Hornet 4 Drive     21   6  258 110  3.1 3.2   19  1  0    3    1
## Hornet Sportabout  19   8  360 175  3.1 3.4   17  0  0    3    2
## Valiant            18   6  225 105  2.8 3.5   20  1  0    3    1
##               model mpg cyl disp  hp drat  wt qsec vs am gear carb
## 1         Mazda RX4  21   6  160 110  3.9 2.6   16  0  1    4    4
## 2     Mazda RX4 Wag  21   6  160 110  3.9 2.9   17  0  1    4    4
## 3        Datsun 710  23   4  108  93  3.8 2.3   19  1  1    4    1
## 4    Hornet 4 Drive  21   6  258 110  3.1 3.2   19  1  0    3    1
## 5 Hornet Sportabout  19   8  360 175  3.1 3.4   17  0  0    3    2
## 6           Valiant  18   6  225 105  2.8 3.5   20  1  0    3    1

Summarize columns in data frame using gather and summarize

Reshape data frame from wide to long and long to wide

##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5    NA      NA 14.3   56     5   5
## 6    28      NA 14.9   66     5   6
##   attribute value
## 1     ozone    41
## 2     ozone    36
## 3     ozone    12
## 4     ozone    18
## 5     ozone    NA
## 6     ozone    28
##     attribute value
## 913       day    25
## 914       day    26
## 915       day    27
## 916       day    28
## 917       day    29
## 918       day    30
##   temp month day attribute value
## 1   67     5   1     ozone    41
## 2   72     5   2     ozone    36
## 3   74     5   3     ozone    12
## 4   62     5   4     ozone    18
## 5   56     5   5     ozone    NA
## 6   66     5   6     ozone    28
##     temp month day attribute value
## 454   63     9  25      wind  16.6
## 455   70     9  26      wind   6.9
## 456   77     9  27      wind  13.2
## 457   75     9  28      wind  14.3
## 458   76     9  29      wind   8.0
## 459   68     9  30      wind  11.5
##   month day variable value
## 1     5   1    ozone    41
## 2     5   2    ozone    36
## 3     5   3    ozone    12
## 4     5   4    ozone    18
## 6     5   6    ozone    28
## 7     5   7    ozone    23
## # A tibble: 5 x 5
## # Groups:   month [5]
##   month ozone solar.r  temp  wind
##   <int> <dbl>   <dbl> <dbl> <dbl>
## 1     5  23.6    181.  65.5 11.6 
## 2     6  29.4    190.  79.1 10.3 
## 3     7  59.1    216.  83.9  8.94
## 4     8  60.0    172.  84.0  8.79
## 5     9  31.4    167.  76.9 10.2

Combining dataframes based on column matches

## # A tibble: 6 x 19
##    year month   day dep_time sched_dep_time dep_delay arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>
## 1  2013     1     1      517            515         2      830
## 2  2013     1     1      533            529         4      850
## 3  2013     1     1      542            540         2      923
## 4  2013     1     1      544            545        -1     1004
## 5  2013     1     1      554            600        -6      812
## 6  2013     1     1      554            558        -4      740
## # ... with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
## #   time_hour <dttm>
## # A tibble: 6 x 15
##   origin  year month   day  hour  temp  dewp humid wind_dir wind_speed
##   <chr>  <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl>    <dbl>      <dbl>
## 1 EWR     2013     1     1     1  39.0  26.1  59.4      270      10.4 
## 2 EWR     2013     1     1     2  39.0  27.0  61.6      250       8.06
## 3 EWR     2013     1     1     3  39.0  28.0  64.4      240      11.5 
## 4 EWR     2013     1     1     4  39.9  28.0  62.2      250      12.7 
## 5 EWR     2013     1     1     5  39.0  28.0  64.4      260      12.7 
## 6 EWR     2013     1     1     6  37.9  28.0  67.2      240      11.5 
## # ... with 5 more variables: wind_gust <dbl>, precip <dbl>,
## #   pressure <dbl>, visib <dbl>, time_hour <dttm>
## # A tibble: 6 x 9
##   tailnum  year type       manufacturer   model  engines seats speed engine
##   <chr>   <int> <chr>      <chr>          <chr>    <int> <int> <int> <chr> 
## 1 N10156   2004 Fixed win~ EMBRAER        EMB-1~       2    55    NA Turbo~
## 2 N102UW   1998 Fixed win~ AIRBUS INDUST~ A320-~       2   182    NA Turbo~
## 3 N103US   1999 Fixed win~ AIRBUS INDUST~ A320-~       2   182    NA Turbo~
## 4 N104UW   1999 Fixed win~ AIRBUS INDUST~ A320-~       2   182    NA Turbo~
## 5 N10575   2002 Fixed win~ EMBRAER        EMB-1~       2    55    NA Turbo~
## 6 N105UW   1999 Fixed win~ AIRBUS INDUST~ A320-~       2   182    NA Turbo~
## # A tibble: 6 x 8
##    year month   day  hour origin dest  tailnum carrier
##   <int> <int> <int> <dbl> <chr>  <chr> <chr>   <chr>  
## 1  2013     1     1     5 EWR    IAH   N14228  UA     
## 2  2013     1     1     5 LGA    IAH   N24211  UA     
## 3  2013     1     1     5 JFK    MIA   N619AA  AA     
## 4  2013     1     1     5 JFK    BQN   N804JB  B6     
## 5  2013     1     1     6 LGA    ATL   N668DN  DL     
## 6  2013     1     1     5 EWR    ORD   N39463  UA
## # A tibble: 6 x 2
##   carrier name                    
##   <chr>   <chr>                   
## 1 9E      Endeavor Air Inc.       
## 2 AA      American Airlines Inc.  
## 3 AS      Alaska Airlines Inc.    
## 4 B6      JetBlue Airways         
## 5 DL      Delta Air Lines Inc.    
## 6 EV      ExpressJet Airlines Inc.
## # A tibble: 6 x 9
##    year month   day  hour origin dest  tailnum carrier name                
##   <int> <int> <int> <dbl> <chr>  <chr> <chr>   <chr>   <chr>               
## 1  2013     1     1     5 EWR    IAH   N14228  UA      United Air Lines In~
## 2  2013     1     1     5 LGA    IAH   N24211  UA      United Air Lines In~
## 3  2013     1     1     5 JFK    MIA   N619AA  AA      American Airlines I~
## 4  2013     1     1     5 JFK    BQN   N804JB  B6      JetBlue Airways     
## 5  2013     1     1     6 LGA    ATL   N668DN  DL      Delta Air Lines Inc.
## 6  2013     1     1     5 EWR    ORD   N39463  UA      United Air Lines In~
## # A tibble: 6 x 15
##   origin  year month   day  hour  temp  dewp humid wind_dir wind_speed
##   <chr>  <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl>    <dbl>      <dbl>
## 1 EWR     2013     1     1     1  39.0  26.1  59.4      270      10.4 
## 2 EWR     2013     1     1     2  39.0  27.0  61.6      250       8.06
## 3 EWR     2013     1     1     3  39.0  28.0  64.4      240      11.5 
## 4 EWR     2013     1     1     4  39.9  28.0  62.2      250      12.7 
## 5 EWR     2013     1     1     5  39.0  28.0  64.4      260      12.7 
## 6 EWR     2013     1     1     6  37.9  28.0  67.2      240      11.5 
## # ... with 5 more variables: wind_gust <dbl>, precip <dbl>,
## #   pressure <dbl>, visib <dbl>, time_hour <dttm>
## # A tibble: 6 x 18
##    year month   day  hour origin dest  tailnum carrier  temp  dewp humid
##   <dbl> <dbl> <int> <dbl> <chr>  <chr> <chr>   <chr>   <dbl> <dbl> <dbl>
## 1  2013     1     1     5 EWR    IAH   N14228  UA       39.0  28.0  64.4
## 2  2013     1     1     5 LGA    IAH   N24211  UA       39.9  25.0  54.8
## 3  2013     1     1     5 JFK    MIA   N619AA  AA       39.0  27.0  61.6
## 4  2013     1     1     5 JFK    BQN   N804JB  B6       39.0  27.0  61.6
## 5  2013     1     1     6 LGA    ATL   N668DN  DL       39.9  25.0  54.8
## 6  2013     1     1     5 EWR    ORD   N39463  UA       39.0  28.0  64.4
## # ... with 7 more variables: wind_dir <dbl>, wind_speed <dbl>,
## #   wind_gust <dbl>, precip <dbl>, pressure <dbl>, visib <dbl>,
## #   time_hour <dttm>
## # A tibble: 6 x 2
##   dest      n
##   <chr> <int>
## 1 ORD   17283
## 2 ATL   17215
## 3 LAX   16174
## 4 BOS   15508
## 5 MCO   14082
## 6 CLT   14064
## # A tibble: 141,145 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>
##  1  2013     1     1      542            540         2      923
##  2  2013     1     1      554            600        -6      812
##  3  2013     1     1      554            558        -4      740
##  4  2013     1     1      555            600        -5      913
##  5  2013     1     1      557            600        -3      838
##  6  2013     1     1      558            600        -2      753
##  7  2013     1     1      558            600        -2      924
##  8  2013     1     1      558            600        -2      923
##  9  2013     1     1      559            559         0      702
## 10  2013     1     1      600            600         0      851
## # ... with 141,135 more rows, and 12 more variables: sched_arr_time <int>,
## #   arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>
## # A tibble: 722 x 2
##    tailnum     n
##    <chr>   <int>
##  1 <NA>     2512
##  2 N725MQ    575
##  3 N722MQ    513
##  4 N723MQ    507
##  5 N713MQ    483
##  6 N735MQ    396
##  7 N0EGMQ    371
##  8 N534MQ    364
##  9 N542MQ    363
## 10 N531MQ    349
## # ... with 712 more rows

Nesting

## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # ... with 1,694 more rows
## # A tibble: 142 x 2
##    country     data             
##    <fct>       <list>           
##  1 Afghanistan <tibble [12 x 5]>
##  2 Albania     <tibble [12 x 5]>
##  3 Algeria     <tibble [12 x 5]>
##  4 Angola      <tibble [12 x 5]>
##  5 Argentina   <tibble [12 x 5]>
##  6 Australia   <tibble [12 x 5]>
##  7 Austria     <tibble [12 x 5]>
##  8 Bahrain     <tibble [12 x 5]>
##  9 Bangladesh  <tibble [12 x 5]>
## 10 Belgium     <tibble [12 x 5]>
## # ... with 132 more rows
## [[1]]
## # A tibble: 12 x 5
##    continent  year lifeExp      pop gdpPercap
##    <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Europe     1952    68    8730405     8343.
##  2 Europe     1957    69.2  8989111     9715.
##  3 Europe     1962    70.2  9218400    10991.
##  4 Europe     1967    70.9  9556500    13149.
##  5 Europe     1972    71.4  9709100    16672.
##  6 Europe     1977    72.8  9821800    19118.
##  7 Europe     1982    73.9  9856303    20980.
##  8 Europe     1987    75.4  9870200    22526.
##  9 Europe     1992    76.5 10045622    25576.
## 10 Europe     1997    77.5 10199787    27561.
## 11 Europe     2002    78.3 10311970    30486.
## 12 Europe     2007    79.4 10392226    33693.
##                   mpg cyl disp  hp drat  wt qsec vs am gear carb
## Mazda RX4          21   6  160 110  3.9 2.6   16  0  1    4    4
## Mazda RX4 Wag      21   6  160 110  3.9 2.9   17  0  1    4    4
## Datsun 710         23   4  108  93  3.8 2.3   19  1  1    4    1
## Hornet 4 Drive     21   6  258 110  3.1 3.2   19  1  0    3    1
## Hornet Sportabout  19   8  360 175  3.1 3.4   17  0  0    3    2
## Valiant            18   6  225 105  2.8 3.5   20  1  0    3    1
## [[1]]
## 
##  One Sample t-test
## 
## data:  .$mpg
## t = 20, df = 10, p-value = 0.000000003
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  24 30
## sample estimates:
## mean of x 
##        27
## # A tibble: 3 x 4
##     cyl data               fit            p
##   <dbl> <list>             <list>     <dbl>
## 1     6 <tibble [7 x 10]>  <htest> 3.10e- 8
## 2     4 <tibble [11 x 10]> <htest> 2.60e- 9
## 3     8 <tibble [14 x 10]> <htest> 1.09e-11
## # A tibble: 3 x 11
##     cyl data  fit   estimate statistic  p.value parameter conf.low
##   <dbl> <lis> <lis>    <dbl>     <dbl>    <dbl>     <dbl>    <dbl>
## 1     6 <tib~ <hte~     19.7      35.9 3.10e- 8         6     18.4
## 2     4 <tib~ <hte~     26.7      19.6 2.60e- 9        10     23.6
## 3     8 <tib~ <hte~     15.1      22.1 1.09e-11        13     13.6
## # ... with 3 more variables: conf.high <dbl>, method <chr>,
## #   alternative <chr>

Dealing With Missing Values

Removing NAs- the ordinary way

## 'data.frame':    153 obs. of  6 variables:
##  $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ...
##  $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ...
##  $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
##  $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ...
##  $ Month  : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Day    : int  1 2 3 4 5 6 7 8 9 10 ...
##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5    NA      NA 14.3   56     5   5
## 6    28      NA 14.9   66     5   6
##      Ozone        Solar.R         Wind           Temp        Month  
##  Min.   :  1   Min.   :  7   Min.   : 1.7   Min.   :56   Min.   :5  
##  1st Qu.: 18   1st Qu.:116   1st Qu.: 7.4   1st Qu.:72   1st Qu.:6  
##  Median : 32   Median :205   Median : 9.7   Median :79   Median :7  
##  Mean   : 42   Mean   :186   Mean   :10.0   Mean   :78   Mean   :7  
##  3rd Qu.: 63   3rd Qu.:259   3rd Qu.:11.5   3rd Qu.:85   3rd Qu.:8  
##  Max.   :168   Max.   :334   Max.   :20.7   Max.   :97   Max.   :9  
##  NA's   :37    NA's   :7                                            
##       Day      
##  Min.   : 1.0  
##  1st Qu.: 8.0  
##  Median :16.0  
##  Mean   :15.8  
##  3rd Qu.:23.0  
##  Max.   :31.0  
## 
##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 7    23     299  8.6   65     5   7
## 8    19      99 13.8   59     5   8
##      Ozone        Solar.R         Wind           Temp        Month    
##  Min.   :  1   Min.   :  7   Min.   : 2.3   Min.   :57   Min.   :5.0  
##  1st Qu.: 18   1st Qu.:114   1st Qu.: 7.4   1st Qu.:71   1st Qu.:6.0  
##  Median : 31   Median :207   Median : 9.7   Median :79   Median :7.0  
##  Mean   : 42   Mean   :185   Mean   : 9.9   Mean   :78   Mean   :7.2  
##  3rd Qu.: 62   3rd Qu.:256   3rd Qu.:11.5   3rd Qu.:84   3rd Qu.:9.0  
##  Max.   :168   Max.   :334   Max.   :20.7   Max.   :97   Max.   :9.0  
##       Day      
##  Min.   : 1.0  
##  1st Qu.: 9.0  
##  Median :16.0  
##  Mean   :15.9  
##  3rd Qu.:22.5  
##  Max.   :31.0
##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 7    23     299  8.6   65     5   7
## 8    19      99 13.8   59     5   8
##      Ozone        Solar.R         Wind           Temp        Month    
##  Min.   :  1   Min.   :  7   Min.   : 2.3   Min.   :57   Min.   :5.0  
##  1st Qu.: 18   1st Qu.:114   1st Qu.: 7.4   1st Qu.:71   1st Qu.:6.0  
##  Median : 31   Median :207   Median : 9.7   Median :79   Median :7.0  
##  Mean   : 42   Mean   :185   Mean   : 9.9   Mean   :78   Mean   :7.2  
##  3rd Qu.: 62   3rd Qu.:256   3rd Qu.:11.5   3rd Qu.:84   3rd Qu.:9.0  
##  Max.   :168   Max.   :334   Max.   :20.7   Max.   :97   Max.   :9.0  
##       Day      
##  Min.   : 1.0  
##  1st Qu.: 9.0  
##  Median :16.0  
##  Mean   :15.9  
##  3rd Qu.:22.5  
##  Max.   :31.0
##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5     0       0 14.3   56     5   5
## 6    28       0 14.9   66     5   6
##      Ozone        Solar.R         Wind           Temp        Month  
##  Min.   :  0   Min.   :  0   Min.   : 1.7   Min.   :56   Min.   :5  
##  1st Qu.:  4   1st Qu.: 95   1st Qu.: 7.4   1st Qu.:72   1st Qu.:6  
##  Median : 21   Median :194   Median : 9.7   Median :79   Median :7  
##  Mean   : 32   Mean   :177   Mean   :10.0   Mean   :78   Mean   :7  
##  3rd Qu.: 46   3rd Qu.:256   3rd Qu.:11.5   3rd Qu.:85   3rd Qu.:8  
##  Max.   :168   Max.   :334   Max.   :20.7   Max.   :97   Max.   :9  
##       Day      
##  Min.   : 1.0  
##  1st Qu.: 8.0  
##  Median :16.0  
##  Mean   :15.8  
##  3rd Qu.:23.0  
##  Max.   :31.0
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1      21      42      42      46     168

##     Wind Temp Month Day Solar.R Ozone   
## 111    1    1     1   1       1     1  0
## 35     1    1     1   1       1     0  1
## 5      1    1     1   1       0     1  1
## 2      1    1     1   1       0     0  2
##        0    0     0   0       7    37 44

## 
##  Variables sorted by number of missings: 
##  Variable Count
##     Ozone 0.242
##   Solar.R 0.046
##      Wind 0.000
##      Temp 0.000
##     Month 0.000
##       Day 0.000
## 
##  iter imp variable
##   1   1  Ozone  Solar.R
##   1   2  Ozone  Solar.R
##   1   3  Ozone  Solar.R
##   1   4  Ozone  Solar.R
##   1   5  Ozone  Solar.R
##   2   1  Ozone  Solar.R
##   2   2  Ozone  Solar.R
##   2   3  Ozone  Solar.R
##   2   4  Ozone  Solar.R
##   2   5  Ozone  Solar.R
##   3   1  Ozone  Solar.R
##   3   2  Ozone  Solar.R
##   3   3  Ozone  Solar.R
##   3   4  Ozone  Solar.R
##   3   5  Ozone  Solar.R
##   4   1  Ozone  Solar.R
##   4   2  Ozone  Solar.R
##   4   3  Ozone  Solar.R
##   4   4  Ozone  Solar.R
##   4   5  Ozone  Solar.R
##   5   1  Ozone  Solar.R
##   5   2  Ozone  Solar.R
##   5   3  Ozone  Solar.R
##   5   4  Ozone  Solar.R
##   5   5  Ozone  Solar.R
##   6   1  Ozone  Solar.R
##   6   2  Ozone  Solar.R
##   6   3  Ozone  Solar.R
##   6   4  Ozone  Solar.R
##   6   5  Ozone  Solar.R
##   7   1  Ozone  Solar.R
##   7   2  Ozone  Solar.R
##   7   3  Ozone  Solar.R
##   7   4  Ozone  Solar.R
##   7   5  Ozone  Solar.R
##   8   1  Ozone  Solar.R
##   8   2  Ozone  Solar.R
##   8   3  Ozone  Solar.R
##   8   4  Ozone  Solar.R
##   8   5  Ozone  Solar.R
##   9   1  Ozone  Solar.R
##   9   2  Ozone  Solar.R
##   9   3  Ozone  Solar.R
##   9   4  Ozone  Solar.R
##   9   5  Ozone  Solar.R
##   10   1  Ozone  Solar.R
##   10   2  Ozone  Solar.R
##   10   3  Ozone  Solar.R
##   10   4  Ozone  Solar.R
##   10   5  Ozone  Solar.R
##   11   1  Ozone  Solar.R
##   11   2  Ozone  Solar.R
##   11   3  Ozone  Solar.R
##   11   4  Ozone  Solar.R
##   11   5  Ozone  Solar.R
##   12   1  Ozone  Solar.R
##   12   2  Ozone  Solar.R
##   12   3  Ozone  Solar.R
##   12   4  Ozone  Solar.R
##   12   5  Ozone  Solar.R
##   13   1  Ozone  Solar.R
##   13   2  Ozone  Solar.R
##   13   3  Ozone  Solar.R
##   13   4  Ozone  Solar.R
##   13   5  Ozone  Solar.R
##   14   1  Ozone  Solar.R
##   14   2  Ozone  Solar.R
##   14   3  Ozone  Solar.R
##   14   4  Ozone  Solar.R
##   14   5  Ozone  Solar.R
##   15   1  Ozone  Solar.R
##   15   2  Ozone  Solar.R
##   15   3  Ozone  Solar.R
##   15   4  Ozone  Solar.R
##   15   5  Ozone  Solar.R
##   16   1  Ozone  Solar.R
##   16   2  Ozone  Solar.R
##   16   3  Ozone  Solar.R
##   16   4  Ozone  Solar.R
##   16   5  Ozone  Solar.R
##   17   1  Ozone  Solar.R
##   17   2  Ozone  Solar.R
##   17   3  Ozone  Solar.R
##   17   4  Ozone  Solar.R
##   17   5  Ozone  Solar.R
##   18   1  Ozone  Solar.R
##   18   2  Ozone  Solar.R
##   18   3  Ozone  Solar.R
##   18   4  Ozone  Solar.R
##   18   5  Ozone  Solar.R
##   19   1  Ozone  Solar.R
##   19   2  Ozone  Solar.R
##   19   3  Ozone  Solar.R
##   19   4  Ozone  Solar.R
##   19   5  Ozone  Solar.R
##   20   1  Ozone  Solar.R
##   20   2  Ozone  Solar.R
##   20   3  Ozone  Solar.R
##   20   4  Ozone  Solar.R
##   20   5  Ozone  Solar.R
##   21   1  Ozone  Solar.R
##   21   2  Ozone  Solar.R
##   21   3  Ozone  Solar.R
##   21   4  Ozone  Solar.R
##   21   5  Ozone  Solar.R
##   22   1  Ozone  Solar.R
##   22   2  Ozone  Solar.R
##   22   3  Ozone  Solar.R
##   22   4  Ozone  Solar.R
##   22   5  Ozone  Solar.R
##   23   1  Ozone  Solar.R
##   23   2  Ozone  Solar.R
##   23   3  Ozone  Solar.R
##   23   4  Ozone  Solar.R
##   23   5  Ozone  Solar.R
##   24   1  Ozone  Solar.R
##   24   2  Ozone  Solar.R
##   24   3  Ozone  Solar.R
##   24   4  Ozone  Solar.R
##   24   5  Ozone  Solar.R
##   25   1  Ozone  Solar.R
##   25   2  Ozone  Solar.R
##   25   3  Ozone  Solar.R
##   25   4  Ozone  Solar.R
##   25   5  Ozone  Solar.R
##   26   1  Ozone  Solar.R
##   26   2  Ozone  Solar.R
##   26   3  Ozone  Solar.R
##   26   4  Ozone  Solar.R
##   26   5  Ozone  Solar.R
##   27   1  Ozone  Solar.R
##   27   2  Ozone  Solar.R
##   27   3  Ozone  Solar.R
##   27   4  Ozone  Solar.R
##   27   5  Ozone  Solar.R
##   28   1  Ozone  Solar.R
##   28   2  Ozone  Solar.R
##   28   3  Ozone  Solar.R
##   28   4  Ozone  Solar.R
##   28   5  Ozone  Solar.R
##   29   1  Ozone  Solar.R
##   29   2  Ozone  Solar.R
##   29   3  Ozone  Solar.R
##   29   4  Ozone  Solar.R
##   29   5  Ozone  Solar.R
##   30   1  Ozone  Solar.R
##   30   2  Ozone  Solar.R
##   30   3  Ozone  Solar.R
##   30   4  Ozone  Solar.R
##   30   5  Ozone  Solar.R
##   31   1  Ozone  Solar.R
##   31   2  Ozone  Solar.R
##   31   3  Ozone  Solar.R
##   31   4  Ozone  Solar.R
##   31   5  Ozone  Solar.R
##   32   1  Ozone  Solar.R
##   32   2  Ozone  Solar.R
##   32   3  Ozone  Solar.R
##   32   4  Ozone  Solar.R
##   32   5  Ozone  Solar.R
##   33   1  Ozone  Solar.R
##   33   2  Ozone  Solar.R
##   33   3  Ozone  Solar.R
##   33   4  Ozone  Solar.R
##   33   5  Ozone  Solar.R
##   34   1  Ozone  Solar.R
##   34   2  Ozone  Solar.R
##   34   3  Ozone  Solar.R
##   34   4  Ozone  Solar.R
##   34   5  Ozone  Solar.R
##   35   1  Ozone  Solar.R
##   35   2  Ozone  Solar.R
##   35   3  Ozone  Solar.R
##   35   4  Ozone  Solar.R
##   35   5  Ozone  Solar.R
##   36   1  Ozone  Solar.R
##   36   2  Ozone  Solar.R
##   36   3  Ozone  Solar.R
##   36   4  Ozone  Solar.R
##   36   5  Ozone  Solar.R
##   37   1  Ozone  Solar.R
##   37   2  Ozone  Solar.R
##   37   3  Ozone  Solar.R
##   37   4  Ozone  Solar.R
##   37   5  Ozone  Solar.R
##   38   1  Ozone  Solar.R
##   38   2  Ozone  Solar.R
##   38   3  Ozone  Solar.R
##   38   4  Ozone  Solar.R
##   38   5  Ozone  Solar.R
##   39   1  Ozone  Solar.R
##   39   2  Ozone  Solar.R
##   39   3  Ozone  Solar.R
##   39   4  Ozone  Solar.R
##   39   5  Ozone  Solar.R
##   40   1  Ozone  Solar.R
##   40   2  Ozone  Solar.R
##   40   3  Ozone  Solar.R
##   40   4  Ozone  Solar.R
##   40   5  Ozone  Solar.R
##   41   1  Ozone  Solar.R
##   41   2  Ozone  Solar.R
##   41   3  Ozone  Solar.R
##   41   4  Ozone  Solar.R
##   41   5  Ozone  Solar.R
##   42   1  Ozone  Solar.R
##   42   2  Ozone  Solar.R
##   42   3  Ozone  Solar.R
##   42   4  Ozone  Solar.R
##   42   5  Ozone  Solar.R
##   43   1  Ozone  Solar.R
##   43   2  Ozone  Solar.R
##   43   3  Ozone  Solar.R
##   43   4  Ozone  Solar.R
##   43   5  Ozone  Solar.R
##   44   1  Ozone  Solar.R
##   44   2  Ozone  Solar.R
##   44   3  Ozone  Solar.R
##   44   4  Ozone  Solar.R
##   44   5  Ozone  Solar.R
##   45   1  Ozone  Solar.R
##   45   2  Ozone  Solar.R
##   45   3  Ozone  Solar.R
##   45   4  Ozone  Solar.R
##   45   5  Ozone  Solar.R
##   46   1  Ozone  Solar.R
##   46   2  Ozone  Solar.R
##   46   3  Ozone  Solar.R
##   46   4  Ozone  Solar.R
##   46   5  Ozone  Solar.R
##   47   1  Ozone  Solar.R
##   47   2  Ozone  Solar.R
##   47   3  Ozone  Solar.R
##   47   4  Ozone  Solar.R
##   47   5  Ozone  Solar.R
##   48   1  Ozone  Solar.R
##   48   2  Ozone  Solar.R
##   48   3  Ozone  Solar.R
##   48   4  Ozone  Solar.R
##   48   5  Ozone  Solar.R
##   49   1  Ozone  Solar.R
##   49   2  Ozone  Solar.R
##   49   3  Ozone  Solar.R
##   49   4  Ozone  Solar.R
##   49   5  Ozone  Solar.R
##   50   1  Ozone  Solar.R
##   50   2  Ozone  Solar.R
##   50   3  Ozone  Solar.R
##   50   4  Ozone  Solar.R
##   50   5  Ozone  Solar.R
## Class: mids
## Number of multiple imputations:  5 
## Imputation methods:
##   Ozone Solar.R    Wind    Temp   Month     Day 
##   "pmm"   "pmm"      ""      ""      ""      "" 
## PredictorMatrix:
##         Ozone Solar.R Wind Temp Month Day
## Ozone       0       1    1    1     1   1
## Solar.R     1       0    1    1     1   1
## Wind        1       1    0    1     1   1
## Temp        1       1    1    0     1   1
## Month       1       1    1    1     0   1
## Day         1       1    1    1     1   0
##       1  2   3   4   5
## 5     6 32  14  18   6
## 10   12 23  27  21  41
## 25    8 19   6  14  19
## 26   32  9  28  19  28
## 27   18 22  37  18   9
## 32   59 47  44  45  52
## 33   16 16  20  11  18
## 34    1 13  13  37  13
## 35   44 71  40  40  71
## 36   35 64  89  35  39
## 37   14 13  30  30  44
## 39  115 91 135 168  82
## 42   64 77 168  66  76
## 43   61 91 135  82  91
## 45   23 29  45  44  59
## 46   45 63  29  45  32
## 52   16 71  47  52  52
## 53   20 64  35  23  49
## 54   45 37  40  52  35
## 55   20 39  23  20   7
## 56   13 40  45  36  45
## 57   36 35  52  46  44
## 58   32 16  21  23  23
## 59   16 52  31  39  28
## 60   23 14  13  44  24
## 61   40 85  48  71  48
## 65   23 16  23  28  59
## 72   59 47  29  52  35
## 75   35 89  59  59 108
## 83   32 23  23  44  35
## 84   28 47  35   7  35
## 102 115 85  80 168  91
## 103  16 39  16  32  47
## 107  12 22  41  22  23
## 115  24 22  16  21  36
## 119  64 78  82  61  78
## 150  12 32  12  21  16
##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5     6     115 14.3   56     5   5
## 6    28     274 14.9   66     5   6

Remove NAs- using “dplyr”

## Observations: 83
## Variables: 11
## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...
## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...
## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...
## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....
## $ sleep_cycle  <dbl> NA, NA, NA, 0.13, 0.67, 0.77, 0.38, NA, 0.33, NA,...
## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...
## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....
## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...
## # A tibble: 7 x 1
##   conservation
##   <chr>       
## 1 lc          
## 2 <NA>        
## 3 nt          
## 4 domesticated
## 5 vu          
## 6 en          
## 7 cd
## Observations: 20
## Variables: 11
## $ name         <chr> "Greater short-tailed shrew", "Cow", "Dog", "Guin...
## $ genus        <chr> "Blarina", "Bos", "Canis", "Cavis", "Chinchilla",...
## $ vore         <chr> "omni", "herbi", "carni", "herbi", "herbi", "omni...
## $ order        <chr> "Soricomorpha", "Artiodactyla", "Carnivora", "Rod...
## $ conservation <chr> "lc", "domesticated", "domesticated", "domesticat...
## $ sleep_total  <dbl> 14.9, 4.0, 10.1, 9.4, 12.5, 9.1, 17.4, 18.0, 19.7...
## $ sleep_rem    <dbl> 2.3, 0.7, 2.9, 0.8, 1.5, 1.4, 3.1, 4.9, 3.9, 0.6,...
## $ sleep_cycle  <dbl> 0.13, 0.67, 0.33, 0.22, 0.12, 0.15, 0.38, 0.33, 0...
## $ awake        <dbl> 9.1, 20.0, 13.9, 14.6, 11.5, 14.9, 6.6, 6.0, 4.3,...
## $ brainwt      <dbl> 0.00029, 0.42300, 0.07000, 0.00550, 0.00640, 0.00...
## $ bodywt       <dbl> 0.019, 600.000, 14.000, 0.728, 0.420, 0.005, 3.50...
## Observations: 20
## Variables: 11
## $ name         <chr> "Greater short-tailed shrew", "Cow", "Dog", "Guin...
## $ genus        <chr> "Blarina", "Bos", "Canis", "Cavis", "Chinchilla",...
## $ vore         <chr> "omni", "herbi", "carni", "herbi", "herbi", "omni...
## $ order        <chr> "Soricomorpha", "Artiodactyla", "Carnivora", "Rod...
## $ conservation <chr> "lc", "domesticated", "domesticated", "domesticat...
## $ sleep_total  <dbl> 14.9, 4.0, 10.1, 9.4, 12.5, 9.1, 17.4, 18.0, 19.7...
## $ sleep_rem    <dbl> 2.3, 0.7, 2.9, 0.8, 1.5, 1.4, 3.1, 4.9, 3.9, 0.6,...
## $ sleep_cycle  <dbl> 0.13, 0.67, 0.33, 0.22, 0.12, 0.15, 0.38, 0.33, 0...
## $ awake        <dbl> 9.1, 20.0, 13.9, 14.6, 11.5, 14.9, 6.6, 6.0, 4.3,...
## $ brainwt      <dbl> 0.00029, 0.42300, 0.07000, 0.00550, 0.00640, 0.00...
## $ bodywt       <dbl> 0.019, 600.000, 14.000, 0.728, 0.420, 0.005, 3.50...
## # A tibble: 7 x 1
##   conservation
##   <chr>       
## 1 lc          
## 2 <NA>        
## 3 nt          
## 4 domesticated
## 5 vu          
## 6 en          
## 7 cd
## # A tibble: 1 x 1
##   count
##   <int>
## 1    29
## Observations: 54
## Variables: 11
## $ name         <chr> "Cheetah", "Mountain beaver", "Greater short-tail...
## $ genus        <chr> "Acinonyx", "Aplodontia", "Blarina", "Bos", "Call...
## $ vore         <chr> "carni", "herbi", "omni", "herbi", "carni", "carn...
## $ order        <chr> "Carnivora", "Rodentia", "Soricomorpha", "Artioda...
## $ conservation <chr> "lc", "nt", "lc", "domesticated", "vu", "domestic...
## $ sleep_total  <dbl> 12.1, 14.4, 14.9, 4.0, 8.7, 10.1, 3.0, 5.3, 9.4, ...
## $ sleep_rem    <dbl> NA, 2.4, 2.3, 0.7, 1.4, 2.9, NA, 0.6, 0.8, 0.7, 1...
## $ sleep_cycle  <dbl> NA, NA, 0.13, 0.67, 0.38, 0.33, NA, NA, 0.22, NA,...
## $ awake        <dbl> 11.9, 9.6, 9.1, 20.0, 15.3, 13.9, 21.0, 18.7, 14....
## $ brainwt      <dbl> NA, NA, 0.00029, 0.42300, NA, 0.07000, 0.09820, 0...
## $ bodywt       <dbl> 50.000, 1.350, 0.019, 600.000, 20.490, 14.000, 14...
## Observations: 54
## Variables: 11
## $ name         <chr> "Cheetah", "Mountain beaver", "Greater short-tail...
## $ genus        <chr> "Acinonyx", "Aplodontia", "Blarina", "Bos", "Call...
## $ vore         <chr> "carni", "herbi", "omni", "herbi", "carni", "carn...
## $ order        <chr> "Carnivora", "Rodentia", "Soricomorpha", "Artioda...
## $ conservation <chr> "lc", "nt", "lc", "domesticated", "vu", "domestic...
## $ sleep_total  <dbl> 12.1, 14.4, 14.9, 4.0, 8.7, 10.1, 3.0, 5.3, 9.4, ...
## $ sleep_rem    <dbl> NA, 2.4, 2.3, 0.7, 1.4, 2.9, NA, 0.6, 0.8, 0.7, 1...
## $ sleep_cycle  <dbl> NA, NA, 0.13, 0.67, 0.38, 0.33, NA, NA, 0.22, NA,...
## $ awake        <dbl> 11.9, 9.6, 9.1, 20.0, 15.3, 13.9, 21.0, 18.7, 14....
## $ brainwt      <dbl> NA, NA, 0.00029, 0.42300, NA, 0.07000, 0.09820, 0...
## $ bodywt       <dbl> 50.000, 1.350, 0.019, 600.000, 20.490, 14.000, 14...

Data imputation with dplyr

## Observations: 83
## Variables: 11
## $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
## $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...
## $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi...
## $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...
## $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...
## $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....
## $ sleep_cycle  <dbl> NA, NA, NA, 0.13, 0.67, 0.77, 0.38, NA, 0.33, NA,...
## $ awake        <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...
## $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....
## $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...
## # A tibble: 1 x 1
##   count
##   <int>
## 1    22
## [1] 1.9

Data Visualisation and Explorations

Data Visualisation With dplyr and ggplot2

##   CPI.2016.Rank     Country Country.Code                  Region
## 1             1 New Zealand          NZL            Asia Pacific
## 2             1     Denmark          DNK Europe and Central Asia
## 3             3     Finland          FIN Europe and Central Asia
## 4             4      Sweden          SWE Europe and Central Asia
## 5             5 Switzerland          CHE Europe and Central Asia
## 6             6      Norway          NOR Europe and Central Asia
##   CPI.2016.Score CPI.2015.Score CPI.2014.Score CPI.2013.Score
## 1             90             88             91             91
## 2             90             91             92             91
## 3             89             90             89             89
## 4             88             89             87             89
## 5             86             86             86             85
## 6             85             87             86             86
##   CPI.2012.Score
## 1             90
## 2             90
## 3             90
## 4             88
## 5             86
## 6             85
##   CPI.2016.Rank     Country Country.Code                  Region
## 1             1 New Zealand          NZL            Asia Pacific
## 2             1     Denmark          DNK Europe and Central Asia
## 3             3     Finland          FIN Europe and Central Asia
## 4             4      Sweden          SWE Europe and Central Asia
## 5             5 Switzerland          CHE Europe and Central Asia
## 6             6      Norway          NOR Europe and Central Asia
##             year cpi
## 1 CPI.2012.Score  90
## 2 CPI.2012.Score  90
## 3 CPI.2012.Score  90
## 4 CPI.2012.Score  88
## 5 CPI.2012.Score  86
## 6 CPI.2012.Score  85
##   CPI.2016.Rank     Country Country.Code                  Region
## 1             1 New Zealand          NZL            Asia Pacific
## 2             1     Denmark          DNK Europe and Central Asia
## 3             3     Finland          FIN Europe and Central Asia
## 4             4      Sweden          SWE Europe and Central Asia
## 5             5 Switzerland          CHE Europe and Central Asia
## 6             6      Norway          NOR Europe and Central Asia
##             year cpi rnk
## 1 CPI.2016.Score  90 top
## 2 CPI.2016.Score  90 top
## 3 CPI.2016.Score  89 top
## 4 CPI.2016.Score  88 top
## 5 CPI.2016.Score  86 top
## 6 CPI.2016.Score  85 top
##    CPI.2016.Rank       Country Country.Code                       Region
## 29           170         Yemen          YEM Middle East and North Africa
## 30           170         Sudan          SDN           Sub-Saharan Africa
## 31           173         Syria          SYR Middle East and North Africa
## 32           174 Korea (North)          PRK                 Asia Pacific
## 33           175   South Sudan          SSD           Sub-Saharan Africa
## 34           176       Somalia          SOM           Sub-Saharan Africa
##              year cpi rnk
## 29 CPI.2016.Score  14 bot
## 30 CPI.2016.Score  14 bot
## 31 CPI.2016.Score  13 bot
## 32 CPI.2016.Score  12 bot
## 33 CPI.2016.Score  11 bot
## 34 CPI.2016.Score  10 bot

Mining and Visualising Information About the Olympic Games

## [1] "C:/Users/HP/Desktop/TidyDataUpdatedData Processing_tidyrdplyrinR_MinervaSingh_Udemy/rfiles"
##   ID                     Name Sex Age Height Weight           Team NOC
## 1  1                A Dijiang   M  24    180     80          China CHN
## 2  2                 A Lamusi   M  23    170     60          China CHN
## 3  3      Gunnar Nielsen Aaby   M  24     NA     NA        Denmark DEN
## 4  4     Edgar Lindenau Aabye   M  34     NA     NA Denmark/Sweden DEN
## 5  5 Christine Jacoba Aaftink   F  21    185     82    Netherlands NED
## 6  5 Christine Jacoba Aaftink   F  21    185     82    Netherlands NED
##         Games Year Season      City         Sport
## 1 1992 Summer 1992 Summer Barcelona    Basketball
## 2 2012 Summer 2012 Summer    London          Judo
## 3 1920 Summer 1920 Summer Antwerpen      Football
## 4 1900 Summer 1900 Summer     Paris    Tug-Of-War
## 5 1988 Winter 1988 Winter   Calgary Speed Skating
## 6 1988 Winter 1988 Winter   Calgary Speed Skating
##                                Event Medal
## 1        Basketball Men's Basketball  <NA>
## 2       Judo Men's Extra-Lightweight  <NA>
## 3            Football Men's Football  <NA>
## 4        Tug-Of-War Men's Tug-Of-War  Gold
## 5   Speed Skating Women's 500 metres  <NA>
## 6 Speed Skating Women's 1,000 metres  <NA>
##   ID                     Name Sex Age Height Weight           Team NOC
## 1  4     Edgar Lindenau Aabye   M  34     NA     NA Denmark/Sweden DEN
## 2 15     Arvo Ossian Aaltonen   M  30     NA     NA        Finland FIN
## 3 15     Arvo Ossian Aaltonen   M  30     NA     NA        Finland FIN
## 4 16 Juhamatti Tapio Aaltonen   M  28    184     85        Finland FIN
## 5 17  Paavo Johannes Aaltonen   M  28    175     64        Finland FIN
## 6 17  Paavo Johannes Aaltonen   M  28    175     64        Finland FIN
##         Games Year Season      City      Sport
## 1 1900 Summer 1900 Summer     Paris Tug-Of-War
## 2 1920 Summer 1920 Summer Antwerpen   Swimming
## 3 1920 Summer 1920 Summer Antwerpen   Swimming
## 4 2014 Winter 2014 Winter     Sochi Ice Hockey
## 5 1948 Summer 1948 Summer    London Gymnastics
## 6 1948 Summer 1948 Summer    London Gymnastics
##                                    Event  Medal
## 1            Tug-Of-War Men's Tug-Of-War   Gold
## 2 Swimming Men's 200 metres Breaststroke Bronze
## 3 Swimming Men's 400 metres Breaststroke Bronze
## 4            Ice Hockey Men's Ice Hockey Bronze
## 5 Gymnastics Men's Individual All-Around Bronze
## 6       Gymnastics Men's Team All-Around   Gold
## [1] "integer"
##        ID         Name Sex Age Height Weight  Team NOC       Games Year
## 702  3610    An Yulong   M  19    173     70 China CHN 1998 Winter 1998
## 703  3610    An Yulong   M  19    173     70 China CHN 1998 Winter 1998
## 704  3610    An Yulong   M  23    173     70 China CHN 2002 Winter 2002
## 705  3611  An Zhongxin   F  23    170     65 China CHN 1996 Summer 1996
## 1453 6381       Ba Yan   F  21    183     78 China CHN 1984 Summer 1984
## 1760 7597 Bao Yingying   F  24    172     67 China CHN 2008 Summer 2008
##      Season           City                     Sport
## 702  Winter         Nagano Short Track Speed Skating
## 703  Winter         Nagano Short Track Speed Skating
## 704  Winter Salt Lake City Short Track Speed Skating
## 705  Summer        Atlanta                  Softball
## 1453 Summer    Los Angeles                Basketball
## 1760 Summer        Beijing                   Fencing
##                                                   Event  Medal
## 702          Short Track Speed Skating Men's 500 metres Silver
## 703  Short Track Speed Skating Men's 5,000 metres Relay Bronze
## 704  Short Track Speed Skating Men's 5,000 metres Relay Bronze
## 705                           Softball Women's Softball Silver
## 1453                      Basketball Women's Basketball Bronze
## 1760                        Fencing Women's Sabre, Team Silver
## # A tibble: 6 x 2
##   Team          Medal_Tally
##   <chr>               <int>
## 1 United States        5219
## 2 Soviet Union         2451
## 3 Germany              1984
## 4 Great Britain        1673
## 5 France               1550
## 6 Italy                1527

## # A tibble: 6 x 3
## # Groups:   Team [3]
##   Team                  Year  Total
##   <chr>                 <fct> <int>
## 1 A North American Team 1900      4
## 2 Afghanistan           2008      1
## 3 Afghanistan           2012      1
## 4 Algeria               1984      2
## 5 Algeria               1992      2
## 6 Algeria               1996      3
## # A tibble: 6 x 3
## # Groups:   Team [1]
##   Team  Year  Total
##   <chr> <fct> <int>
## 1 China 1984     74
## 2 China 1988     50
## 3 China 1992     73
## 4 China 1994      3
## 5 China 1996     94
## 6 China 1998     14

## [1] "C:/Users/HP/Desktop/TidyDataUpdatedData Processing_tidyrdplyrinR_MinervaSingh_Udemy/rfiles"
##   ID                     Name Sex Age Height Weight           Team NOC
## 1  1                A Dijiang   M  24    180     80          China CHN
## 2  2                 A Lamusi   M  23    170     60          China CHN
## 3  3      Gunnar Nielsen Aaby   M  24     NA     NA        Denmark DEN
## 4  4     Edgar Lindenau Aabye   M  34     NA     NA Denmark/Sweden DEN
## 5  5 Christine Jacoba Aaftink   F  21    185     82    Netherlands NED
## 6  5 Christine Jacoba Aaftink   F  21    185     82    Netherlands NED
##         Games Year Season      City         Sport
## 1 1992 Summer 1992 Summer Barcelona    Basketball
## 2 2012 Summer 2012 Summer    London          Judo
## 3 1920 Summer 1920 Summer Antwerpen      Football
## 4 1900 Summer 1900 Summer     Paris    Tug-Of-War
## 5 1988 Winter 1988 Winter   Calgary Speed Skating
## 6 1988 Winter 1988 Winter   Calgary Speed Skating
##                                Event Medal
## 1        Basketball Men's Basketball  <NA>
## 2       Judo Men's Extra-Lightweight  <NA>
## 3            Football Men's Football  <NA>
## 4        Tug-Of-War Men's Tug-Of-War  Gold
## 5   Speed Skating Women's 500 metres  <NA>
## 6 Speed Skating Women's 1,000 metres  <NA>
##   ID                     Name Sex Age Height Weight           Team NOC
## 1  4     Edgar Lindenau Aabye   M  34     NA     NA Denmark/Sweden DEN
## 2 15     Arvo Ossian Aaltonen   M  30     NA     NA        Finland FIN
## 3 15     Arvo Ossian Aaltonen   M  30     NA     NA        Finland FIN
## 4 16 Juhamatti Tapio Aaltonen   M  28    184     85        Finland FIN
## 5 17  Paavo Johannes Aaltonen   M  28    175     64        Finland FIN
## 6 17  Paavo Johannes Aaltonen   M  28    175     64        Finland FIN
##         Games Year Season      City      Sport
## 1 1900 Summer 1900 Summer     Paris Tug-Of-War
## 2 1920 Summer 1920 Summer Antwerpen   Swimming
## 3 1920 Summer 1920 Summer Antwerpen   Swimming
## 4 2014 Winter 2014 Winter     Sochi Ice Hockey
## 5 1948 Summer 1948 Summer    London Gymnastics
## 6 1948 Summer 1948 Summer    London Gymnastics
##                                    Event  Medal
## 1            Tug-Of-War Men's Tug-Of-War   Gold
## 2 Swimming Men's 200 metres Breaststroke Bronze
## 3 Swimming Men's 400 metres Breaststroke Bronze
## 4            Ice Hockey Men's Ice Hockey Bronze
## 5 Gymnastics Men's Individual All-Around Bronze
## 6       Gymnastics Men's Team All-Around   Gold
## [1] "integer"
##        ID         Name Sex Age Height Weight  Team NOC       Games Year
## 702  3610    An Yulong   M  19    173     70 China CHN 1998 Winter 1998
## 703  3610    An Yulong   M  19    173     70 China CHN 1998 Winter 1998
## 704  3610    An Yulong   M  23    173     70 China CHN 2002 Winter 2002
## 705  3611  An Zhongxin   F  23    170     65 China CHN 1996 Summer 1996
## 1453 6381       Ba Yan   F  21    183     78 China CHN 1984 Summer 1984
## 1760 7597 Bao Yingying   F  24    172     67 China CHN 2008 Summer 2008
##      Season           City                     Sport
## 702  Winter         Nagano Short Track Speed Skating
## 703  Winter         Nagano Short Track Speed Skating
## 704  Winter Salt Lake City Short Track Speed Skating
## 705  Summer        Atlanta                  Softball
## 1453 Summer    Los Angeles                Basketball
## 1760 Summer        Beijing                   Fencing
##                                                   Event  Medal
## 702          Short Track Speed Skating Men's 500 metres Silver
## 703  Short Track Speed Skating Men's 5,000 metres Relay Bronze
## 704  Short Track Speed Skating Men's 5,000 metres Relay Bronze
## 705                           Softball Women's Softball Silver
## 1453                      Basketball Women's Basketball Bronze
## 1760                        Fencing Women's Sabre, Team Silver
## # A tibble: 6 x 2
##   Team          Medal_Tally
##   <chr>               <int>
## 1 United States        5219
## 2 Soviet Union         2451
## 3 Germany              1984
## 4 Great Britain        1673
## 5 France               1550
## 6 Italy                1527
## # A tibble: 6 x 3
## # Groups:   Team [6]
##   Team          Season Medal_Tally
##   <chr>         <chr>        <int>
## 1 United States Summer        4686
## 2 Soviet Union  Summer        2061
## 3 Germany       Summer        1687
## 4 Great Britain Summer        1598
## 5 France        Summer        1408
## 6 Italy         Summer        1384
## # A tibble: 6 x 3
## # Groups:   Team [4]
##   Team    Season Medal_Tally
##   <chr>   <chr>        <int>
## 1 Germany Summer        1687
## 2 France  Summer        1408
## 3 Russia  Summer         894
## 4 China   Summer         831
## 5 Germany Winter         297
## 6 Russia  Winter         216

Mining and Visualising Information About the Olympic Games…contd.

##   ID                     Name Sex Age Height Weight           Team NOC
## 1  1                A Dijiang   M  24    180     80          China CHN
## 2  2                 A Lamusi   M  23    170     60          China CHN
## 3  3      Gunnar Nielsen Aaby   M  24     NA     NA        Denmark DEN
## 4  4     Edgar Lindenau Aabye   M  34     NA     NA Denmark/Sweden DEN
## 5  5 Christine Jacoba Aaftink   F  21    185     82    Netherlands NED
## 6  5 Christine Jacoba Aaftink   F  21    185     82    Netherlands NED
##         Games Year Season      City         Sport
## 1 1992 Summer 1992 Summer Barcelona    Basketball
## 2 2012 Summer 2012 Summer    London          Judo
## 3 1920 Summer 1920 Summer Antwerpen      Football
## 4 1900 Summer 1900 Summer     Paris    Tug-Of-War
## 5 1988 Winter 1988 Winter   Calgary Speed Skating
## 6 1988 Winter 1988 Winter   Calgary Speed Skating
##                                Event Medal
## 1        Basketball Men's Basketball  <NA>
## 2       Judo Men's Extra-Lightweight  <NA>
## 3            Football Men's Football  <NA>
## 4        Tug-Of-War Men's Tug-Of-War  Gold
## 5   Speed Skating Women's 500 metres  <NA>
## 6 Speed Skating Women's 1,000 metres  <NA>
##   ID                     Name Sex Age Height Weight           Team NOC
## 1  4     Edgar Lindenau Aabye   M  34     NA     NA Denmark/Sweden DEN
## 2 15     Arvo Ossian Aaltonen   M  30     NA     NA        Finland FIN
## 3 15     Arvo Ossian Aaltonen   M  30     NA     NA        Finland FIN
## 4 16 Juhamatti Tapio Aaltonen   M  28    184     85        Finland FIN
## 5 17  Paavo Johannes Aaltonen   M  28    175     64        Finland FIN
## 6 17  Paavo Johannes Aaltonen   M  28    175     64        Finland FIN
##         Games Year Season      City      Sport
## 1 1900 Summer 1900 Summer     Paris Tug-Of-War
## 2 1920 Summer 1920 Summer Antwerpen   Swimming
## 3 1920 Summer 1920 Summer Antwerpen   Swimming
## 4 2014 Winter 2014 Winter     Sochi Ice Hockey
## 5 1948 Summer 1948 Summer    London Gymnastics
## 6 1948 Summer 1948 Summer    London Gymnastics
##                                    Event  Medal
## 1            Tug-Of-War Men's Tug-Of-War   Gold
## 2 Swimming Men's 200 metres Breaststroke Bronze
## 3 Swimming Men's 400 metres Breaststroke Bronze
## 4            Ice Hockey Men's Ice Hockey Bronze
## 5 Gymnastics Men's Individual All-Around Bronze
## 6       Gymnastics Men's Team All-Around   Gold
## [1] "integer"
## # A tibble: 6 x 3
## # Groups:   Year [4]
##   Year  Sex   Count
##   <fct> <chr> <int>
## 1 1896  M       143
## 2 1900  F        13
## 3 1900  M       591
## 4 1904  F        10
## 5 1904  M       476
## 6 1906  F         6

## # A tibble: 6 x 3
## # Groups:   NOC [4]
##   NOC   Medal  Count
##   <chr> <chr>  <int>
## 1 ARG   Gold       2
## 2 AUS   Bronze     5
## 3 AUS   Gold      20
## 4 AUS   Silver    14
## 5 AUT   Bronze     1
## 6 AZE   Bronze     3

## # A tibble: 6 x 1
##   NOC  
##   <chr>
## 1 AUT  
## 2 BAH  
## 3 BDI  
## 4 CIV  
## 5 FIN  
## 6 IRI

Implement OLS on Different Categories

## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # ... with 1,694 more rows
## 
## Call:
## lm(formula = lifeExp ~ gdpPercap, data = sing)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.994 -0.808  0.892  1.713  1.973 
## 
## Coefficients:
##               Estimate Std. Error t value         Pr(>|t|)    
## (Intercept) 64.4972134  1.0743344   60.03 0.00000000000004 ***
## gdpPercap    0.0003858  0.0000477    8.09 0.00001063766493 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.4 on 10 degrees of freedom
## Multiple R-squared:  0.868,  Adjusted R-squared:  0.854 
## F-statistic: 65.5 on 1 and 10 DF,  p-value: 0.0000106

## # A tibble: 5 x 14
##   continent data  fit   r.squared adj.r.squared sigma statistic  p.value
##   <fct>     <lis> <lis>     <dbl>         <dbl> <dbl>     <dbl>    <dbl>
## 1 Asia      <tib~ <lm>      0.146         0.144 11.0       67.3 3.29e-15
## 2 Europe    <tib~ <lm>      0.610         0.609  3.40     559.  4.05e-75
## 3 Africa    <tib~ <lm>      0.181         0.180  8.29     138.  7.60e-29
## 4 Americas  <tib~ <lm>      0.312         0.309  7.77     135.  5.45e-26
## 5 Oceania   <tib~ <lm>      0.915         0.911  1.13     236.  2.99e-13
## # ... with 6 more variables: df <int>, logLik <dbl>, AIC <dbl>, BIC <dbl>,
## #   deviance <dbl>, df.residual <int>

Dr. Nishant Upadhyay
Eco Dept., Univ. of Pune/Infosys-Analytics
nishantup@gmail.com

2020-05-24