Updated: 2020-08-16 07:34:13 PDT

Original created 2020-05-03

NOTE:

THis page is no longer current. PLease see Regional Covid Statistics

Intro


The spread of the SARS-COV-19 viral disease defies description in terms of a single statistic. To be informed about personal risk we need to know more than how many people have been sick at a national level, we need information about how many people are currently sick and how the number of sick people is changing at a state and even local county level.

This analysis seeks to fill partially that gap. It includes:
1. Several national pictures of disease trends to enable a “large pattern” view of how disease has and is evolving a on country-wide scale.
2. A per capita analysis of disease spread.
3. A more granular analysis of regions, states, and counties to shed light on local disease pattern evolution.
4. Details of the time evolution of growth statistics.


This computed document is constantly evolving, so please “refresh” for the latest updates. If you have suggestions or comments please reach out on twitter @WinstonOnData or facebook.

National Maps

There are plenty of online maps. I’ve deprecated a few of the ones I’ve computer since they are no longer relevant to the analysis of disease trends. They are published:
- here.

Cases and Deaths per Capita

This chart reveals a more interesting pattern of disease spread. I haven’t foudn one of these online.
Groups of cities (e.g. Chicago, Indianapolis, and Detroit) and paths between connected communities are clearly visible.

Contained and Uncontained Disease

A key indicator of mitigation is capping infection. Uncontained disease growth threatens epidemic conditions.

This visualization shows places where current disease levels are below their peak levels (’contained“) and where current disease levels are at an all time high (”uncontained").

Reproduction and Control

\(R_e\) is a measure of disease growth. For recovery to begin disease growth must turn from positive to negative (i.e. from log_2(R_e) > 0 to log_2(R_e) < 0).

After achieving negative growth growth, the next phase of recovery is maintaining consistently lower levels of disease. Control can be measured as a ratio of current disease levels to maximum disease levels. If disease levels are currently at a maximum, control is 0 %.

\[ control = 100 \times (1 - \frac{active \space disease}{max(active \space disease)} ) \% \]

state R_e cases daily_cases
Montana 1.23 5716 146
North Dakota 1.16 8458 157
Kansas 1.15 34292 493
Vermont 1.15 1499 6
Kentucky 1.13 40820 754
Delaware 1.12 15998 108
West Virginia 1.12 8488 142
California 1.11 620721 9024
Idaho 1.11 27916 527
Illinois 1.10 205457 1921
Missouri 1.10 59585 1134
Indiana 1.09 81661 1012
Iowa 1.09 51894 519
Nebraska 1.08 30157 302
Rhode Island 1.08 18588 105
South Dakota 1.08 9971 97
Georgia 1.07 217236 3487
Michigan 1.07 101324 782
Texas 1.06 555908 8112
Virginia 1.06 84538 886
Arkansas 1.05 51802 755
Ohio 1.04 108071 1209
Pennsylvania 1.04 128651 843
Wisconsin 1.04 65562 859
Minnesota 1.03 64590 700
New Jersey 1.03 188345 388
Tennessee 1.02 130094 1885
Washington 1.02 69608 732
Maine 1.01 4148 15
New York 1.01 429555 660
Oklahoma 1.01 48256 810
Oregon 1.01 22987 302
Florida 1.00 572544 6887
New Hampshire 1.00 6994 27
North Carolina 1.00 144702 1500
Maryland 0.99 100565 774
Nevada 0.99 61138 845
Utah 0.99 46541 406
Wyoming 0.99 3236 33
Alabama 0.97 109065 1364
Colorado 0.96 53210 410
Mississippi 0.96 72546 917
New Mexico 0.96 23462 188
South Carolina 0.95 106830 1119
Louisiana 0.93 138605 1351
Connecticut 0.91 50770 84
Arizona 0.85 194128 1144
Massachusetts 0.85 122103 271

National Statistics

Total & Active Cases, and Deaths

These trend charts show the national disease statistics. They’re plotted against linear scales. While this hides some important details, the plots are more intuitively interpretable for most people.

## Warning: Removed 1 row(s) containing missing values (geom_path).

Mortality Trend

National Reproduction Rates \(R_e\)

There is also large variation in the distribution of \(R_e\) values. This shows how that distribution has changed over the last three weeks. As a reminder, for disease reduction, \(R_e\) needs to be sustained below 1.0.

Trend

Distribution of \(R_e\) Values

Regional Snapshots

Regional snapshots reveal the highly nuanced behavior of disease spread. Each snaphot includes multiple states and selected counties.

How to read the charts

There are four components:
1. State Maps show the number of active cases and with the Reproduction rate encoded as color.
2. State Graphs State-wide trend graphs.
3. Severity Ranking These is a table of counties where the highest number of new cases are expected. Severity is a compounded function \(f(R, cases(t))\). This is useful for finding new (often unexpected) “hot spots.” Added per capita rates.
4. County Graphs encode the R-value in the active number of cases. R is the Reproduction Rate.

(NOTE: R < 1 implies a shrinking number of active cases, R > 1 implies a growing number of active cases. For R = 1, active cases are stable. ).


Washington and Oregon

WA
county ST case rank severity R_e cases cases/100k daily cases
King WA 1 1 1.0 17548 810 160
Spokane WA 5 2 1.0 4825 970 79
Grant WA 9 3 1.2 1782 1880 40
Pierce WA 3 4 1.0 6762 790 94
Snohomish WA 4 5 1.0 6528 830 55
Yakima WA 2 6 1.0 11227 4500 50
Chelan WA 10 7 1.1 1505 1990 32
Clark WA 8 8 1.0 2248 480 32
Franklin WA 7 10 1.0 3803 4190 27
Benton WA 6 16 0.8 4034 2080 23
OR
county ST case rank severity R_e cases cases/100k daily cases
Multnomah OR 1 1 1.0 5258 660 63
Marion OR 3 2 1.0 3121 930 37
Washington OR 2 3 1.0 3311 570 39
Malheur OR 6 4 1.1 885 2910 18
Jackson OR 9 5 1.1 549 260 14
Clackamas OR 5 6 1.0 1648 410 19
Umatilla OR 4 7 0.9 2452 3190 29
Lane OR 8 13 0.9 630 170 8
Deschutes OR 7 15 0.8 645 360 8
## Warning: Removed 1 rows containing missing values (geom_col).

California

CA
county ST case rank severity R_e cases cases/100k daily cases
Los Angeles CA 1 1 1.0 221599 2190 2299
Riverside CA 2 2 1.2 45946 1930 701
Stanislaus CA 13 3 1.3 12013 2230 296
Sacramento CA 11 4 1.3 13481 890 337
Merced CA 20 5 1.3 6844 2540 250
San Bernardino CA 4 6 1.1 39927 1870 605
Contra Costa CA 14 7 1.3 10842 960 271
San Joaquin CA 9 8 1.3 14661 2000 277
Orange CA 3 9 1.1 43160 1360 506
Alameda CA 8 11 1.2 14753 900 288
Fresno CA 7 13 1.1 19643 2010 364
Kern CA 6 15 1.0 26693 3020 473
San Diego CA 5 17 1.0 34659 1050 358

Four Corners

AZ
county ST case rank severity R_e cases cases/100k daily cases
Pima AZ 2 1 1.1 19326 1900 236
Maricopa AZ 1 2 0.8 130106 3060 669
Yuma AZ 3 3 0.8 11909 5730 55
Cochise AZ 11 4 1.0 1784 1410 20
Pinal AZ 4 5 0.9 8715 2080 41
Mohave AZ 6 6 0.9 3372 1640 26
Yavapai AZ 10 7 0.9 2156 960 25
Coconino AZ 8 9 0.9 3176 2270 14
Apache AZ 7 10 0.8 3258 4560 14
Navajo AZ 5 11 0.8 5464 5030 14
Santa Cruz AZ 9 13 0.8 2710 5820 7
CO
county ST case rank severity R_e cases cases/100k daily cases
El Paso CO 4 1 1.0 5514 800 64
Adams CO 3 2 1.0 6813 1370 57
Denver CO 1 3 0.9 10574 1520 59
Jefferson CO 5 4 1.0 4406 770 36
Arapahoe CO 2 5 0.9 7574 1190 43
Larimer CO 9 6 1.0 1678 500 22
Mesa CO 16 7 1.2 365 240 9
Weld CO 6 8 0.9 3825 1300 20
Boulder CO 7 10 0.9 2170 680 17
Douglas CO 8 11 0.9 1820 550 13
UT
county ST case rank severity R_e cases cases/100k daily cases
Salt Lake UT 1 1 1.0 21716 1940 175
Utah UT 2 2 1.0 9340 1580 108
Weber UT 4 3 1.0 2952 1190 28
Davis UT 3 4 0.9 3400 1000 30
Washington UT 5 5 0.9 2612 1630 19
Cache UT 6 6 0.9 1985 1620 11
Wasatch UT 10 7 1.0 593 1940 5
Tooele UT 9 9 0.9 612 940 5
Summit UT 7 11 0.8 727 1790 2
San Juan UT 8 14 0.6 662 4330 2
NM
county ST case rank severity R_e cases cases/100k daily cases
Lea NM 7 1 1.1 922 1310 23
Doña Ana NM 4 2 1.0 2652 1230 33
Eddy NM 13 3 1.2 360 630 10
Chaves NM 11 4 1.1 539 820 16
Bernalillo NM 1 5 0.9 5363 790 36
McKinley NM 2 6 0.9 4112 5640 9
Curry NM 10 7 0.9 605 1210 10
Santa Fe NM 9 10 0.9 696 470 8
San Juan NM 3 11 0.9 3092 2430 7
Sandoval NM 5 12 0.7 1166 830 5
Cibola NM 8 13 0.5 734 2720 7
Otero NM 6 18 0.5 1111 1690 1

Mid-Atlantic

NJ
county ST case rank severity R_e cases cases/100k daily cases
Bergen NJ 1 1 1.1 21311 2290 45
Passaic NJ 5 2 1.1 18009 3570 33
Union NJ 6 3 1.2 16998 3070 22
Hudson NJ 3 4 1.1 20005 2990 28
Camden NJ 9 5 1.0 8819 1740 33
Gloucester NJ 16 6 1.0 3396 1170 24
Essex NJ 2 7 1.0 20139 2540 29
Middlesex NJ 4 8 1.0 18278 2210 27
Monmouth NJ 8 9 0.9 10564 1690 27
Ocean NJ 7 11 0.9 10803 1830 22
PA
county ST case rank severity R_e cases cases/100k daily cases
Philadelphia PA 1 1 1.0 32141 2040 133
York PA 13 2 1.2 2820 640 45
Fayette PA 25 3 1.2 626 470 21
Allegheny PA 4 4 0.9 9404 770 87
Delaware PA 3 5 1.0 9667 1720 66
Lancaster PA 6 6 1.0 6187 1150 46
Union PA 39 7 1.2 303 670 13
Montgomery PA 2 10 1.0 10358 1260 41
Berks PA 7 11 1.0 5554 1330 29
Bucks PA 5 14 0.9 7386 1180 31
Chester PA 8 15 0.9 5323 1030 29
Lehigh PA 9 19 1.0 5069 1400 18
MD
county ST case rank severity R_e cases cases/100k daily cases
Baltimore city MD 4 1 1.0 13449 2190 151
Prince George’s MD 1 2 1.0 25053 2760 149
Montgomery MD 2 3 1.0 18980 1820 96
Baltimore MD 3 4 0.9 13987 1690 133
Anne Arundel MD 5 5 0.9 7682 1350 55
Howard MD 6 6 1.0 4058 1290 35
Harford MD 9 7 1.0 2125 850 26
Charles MD 8 8 1.0 2154 1370 22
Frederick MD 7 9 1.1 3183 1280 16
VA
county ST case rank severity R_e cases cases/100k daily cases
Floyd VA 72 1 1.8 119 760 11
Wise VA 50 2 1.6 220 560 16
Fairfax VA 1 3 1.1 16879 1480 86
Greensville VA 26 4 1.4 559 4790 14
Prince William VA 2 5 1.0 9845 2160 70
Pittsylvania VA 25 6 1.2 576 930 21
Virginia Beach city VA 4 7 0.9 5446 1210 83
Loudoun VA 3 8 1.1 5475 1420 35
Chesterfield VA 5 9 1.0 4614 1360 45
Norfolk city VA 7 10 0.9 4005 1630 52
Henrico VA 6 12 1.0 4090 1260 37
Arlington VA 8 18 1.0 3190 1380 21
Newport News city VA 9 23 0.9 1967 1090 23
WV
county ST case rank severity R_e cases cases/100k daily cases
Logan WV 5 1 1.4 328 970 20
Kanawha WV 1 2 1.1 1058 570 21
Raleigh WV 7 3 1.1 299 390 10
Cabell WV 4 4 1.1 453 480 10
Mercer WV 11 5 1.0 235 390 7
Berkeley WV 3 6 1.0 733 650 6
Wood WV 9 7 1.1 271 320 3
Monongalia WV 2 12 0.9 978 930 5
Jefferson WV 6 19 0.8 304 540 1
Ohio WV 8 22 0.6 280 660 2
DE
county ST case rank severity R_e cases cases/100k daily cases
Sussex DE 2 1 1.2 6075 2770 38
Kent DE 3 2 1.2 2430 1390 22
New Castle DE 1 3 1.0 7492 1350 47

Deep South

AL
county ST case rank severity R_e cases cases/100k daily cases
Clarke AL 34 1 1.4 925 3790 44
Mobile AL 2 2 1.0 11329 2730 205
Jefferson AL 1 3 1.0 14371 2180 187
Montgomery AL 3 4 1.0 7297 3220 78
Washington AL 47 5 1.3 491 2950 17
Jackson AL 28 6 1.1 1179 2260 30
Baldwin AL 6 7 0.9 3960 1900 54
Tuscaloosa AL 5 8 1.0 4596 2230 46
Madison AL 4 9 0.9 5843 1630 58
Shelby AL 7 10 0.9 3731 1770 42
Lee AL 9 13 1.0 3022 1900 30
Marshall AL 8 19 0.8 3379 3550 27
MS
county ST case rank severity R_e cases cases/100k daily cases
Lee MS 10 1 1.1 1699 2000 43
Union MS 37 2 1.2 766 2700 23
Harrison MS 3 3 1.0 2803 1380 53
DeSoto MS 2 4 0.9 3939 2240 51
Stone MS 74 5 1.2 247 1340 9
Tippah MS 55 6 1.2 433 1970 12
Washington MS 9 7 1.0 1815 3850 26
Hinds MS 1 8 0.8 5958 2460 51
Jackson MS 5 9 0.9 2518 1770 39
Forrest MS 8 14 0.9 1932 2560 23
Madison MS 4 21 0.9 2555 2470 19
Rankin MS 6 22 0.8 2418 1600 20
Jones MS 7 24 0.9 2002 2920 18
LA
county ST case rank severity R_e cases cases/100k daily cases
East Baton Rouge LA 2 1 0.9 12933 2910 135
Lafayette LA 4 2 0.9 8151 3390 107
Jefferson LA 1 3 0.9 15854 3640 100
St. Tammany LA 7 4 1.0 5557 2200 62
Tangipahoa LA 9 5 1.0 3715 2850 43
Ouachita LA 8 6 0.9 5132 3290 48
St. Landry LA 15 7 0.9 2978 3570 51
Orleans LA 3 9 0.9 11001 2820 46
Caddo LA 6 13 0.9 6973 2810 50
Calcasieu LA 5 26 0.7 7130 3560 46

FL and GA

FL
county ST case rank severity R_e cases cases/100k daily cases
Lafayette FL 59 1 3.6 573 6550 110
Suwannee FL 34 2 1.7 2130 4850 118
Baker FL 46 3 1.6 1216 4380 94
Miami-Dade FL 1 4 1.0 144634 5330 1840
Union FL 64 5 1.6 494 3240 30
Broward FL 2 6 0.9 66601 3490 678
Escambia FL 11 7 1.1 10409 3340 192
Palm Beach FL 3 8 0.9 39213 2710 374
Hillsborough FL 4 9 0.9 34280 2490 308
Orange FL 5 10 0.9 33259 2520 264
Polk FL 9 11 1.0 15406 2300 191
Duval FL 6 12 1.0 24675 2670 224
Lee FL 8 15 1.0 17310 2410 124
Pinellas FL 7 16 0.9 18730 1960 148
GA
county ST case rank severity R_e cases cases/100k daily cases
Gwinnett GA 2 1 1.0 21616 2400 319
Cobb GA 3 2 1.1 15055 2020 274
Fulton GA 1 3 1.0 22077 2160 314
DeKalb GA 4 4 1.0 15045 2020 204
Cherokee GA 11 5 1.2 3972 1640 97
Richmond GA 9 6 1.1 4998 2480 115
Floyd GA 27 7 1.2 1782 1840 48
Chatham GA 6 11 1.0 6292 2190 99
Clayton GA 7 14 1.1 5467 1960 77
Hall GA 5 17 1.0 6541 3340 81
Muscogee GA 8 21 1.0 5066 2580 59

Texas & Oklahoma

TX
county ST case rank severity R_e cases cases/100k daily cases
Collin TX 13 1 1.4 9285 980 290
Fort Bend TX 10 2 1.3 11771 1590 409
Harris TX 1 3 1.0 92881 2020 1286
Nueces TX 9 4 1.2 17104 4740 398
Bee TX 45 5 1.4 1517 4640 98
Tarrant TX 4 6 1.0 36870 1830 592
Williamson TX 16 7 1.3 7545 1430 165
Dallas TX 2 9 1.0 57822 2240 534
El Paso TX 8 10 1.1 17945 2140 274
Hidalgo TX 6 12 1.1 21806 2570 335
Cameron TX 7 14 0.9 19242 4560 482
Travis TX 5 16 1.0 24124 2010 221
Bexar TX 3 39 0.8 44385 2300 203
OK
county ST case rank severity R_e cases cases/100k daily cases
Tulsa OK 2 1 1.0 11484 1790 183
Oklahoma OK 1 2 1.0 11590 1480 176
Pittsburg OK 25 3 1.3 461 1040 26
Hughes OK 42 4 1.5 173 1290 7
Garfield OK 14 5 1.2 570 920 20
Osage OK 20 6 1.3 490 1040 13
Lincoln OK 37 7 1.3 223 640 10
Rogers OK 5 9 1.0 1123 1240 26
Wagoner OK 7 10 1.0 970 1250 20
Cleveland OK 3 12 0.8 3253 1180 42
Canadian OK 4 17 0.9 1334 980 21
Comanche OK 9 22 1.0 885 720 10
McCurtain OK 8 35 0.9 889 2700 5
Texas OK 6 37 1.0 1075 5090 3

Michigan & Wisconsin

MI
county ST case rank severity R_e cases cases/100k daily cases
Muskegon MI 13 1 1.6 1466 850 39
Macomb MI 3 2 1.1 11444 1320 133
Oakland MI 2 3 1.1 16305 1300 130
Wayne MI 1 4 1.0 29029 1650 137
Saginaw MI 8 5 1.1 2163 1120 26
Bay MI 21 6 1.2 701 670 13
Kent MI 4 7 0.9 7785 1210 44
Washtenaw MI 6 9 1.0 3173 870 20
Ottawa MI 9 13 1.0 1923 680 14
Genesee MI 5 17 0.8 3752 920 17
Jackson MI 7 37 0.7 2466 1550 4
WI
county ST case rank severity R_e cases cases/100k daily cases
Milwaukee WI 1 1 1.0 22134 2320 183
Waukesha WI 3 2 1.1 4758 1190 93
Sawyer WI 48 3 1.5 102 620 7
Oneida WI 40 4 1.3 179 510 10
Dane WI 2 5 1.0 4792 900 48
Fond du Lac WI 16 6 1.2 751 730 18
Washington WI 11 7 1.1 1235 920 30
Brown WI 4 9 1.0 4472 1720 37
Outagamie WI 9 14 1.0 1383 750 23
Racine WI 5 18 0.9 3704 1900 36
Walworth WI 8 20 1.0 1454 1410 20
Kenosha WI 6 27 0.9 2794 1660 22
Rock WI 7 38 0.9 1618 1000 9

Minnesota, North Dakota, and South Dakota

MN
county ST case rank severity R_e cases cases/100k daily cases
Hennepin MN 1 1 1.0 20364 1650 199
Watonwan MN 22 2 1.6 367 3340 8
McLeod MN 29 3 1.4 246 690 12
Ramsey MN 2 4 1.0 8048 1490 92
Dakota MN 3 5 1.0 4776 1140 68
Anoka MN 4 6 1.0 3962 1140 51
St. Louis MN 18 7 1.2 665 330 23
Washington MN 6 8 1.0 2306 910 34
Scott MN 9 9 1.0 1707 1190 28
Olmsted MN 7 10 1.0 1830 1200 17
Stearns MN 5 15 0.9 2953 1880 10
Nobles MN 8 24 0.9 1783 8160 3
SD
county ST case rank severity R_e cases cases/100k daily cases
Minnehaha SD 1 1 1.0 4588 2460 30
Lincoln SD 3 2 1.0 701 1280 11
Yankton SD 10 3 1.3 135 590 3
Pennington SD 2 4 1.0 934 850 8
Codington SD 7 5 1.1 153 550 3
Brown SD 5 6 1.0 469 1210 5
Brookings SD 8 7 1.0 150 440 3
Clay SD 9 8 0.9 139 1000 2
Union SD 6 9 0.8 226 1490 2
Beadle SD 4 16 0.8 598 3250 1
ND
county ST case rank severity R_e cases cases/100k daily cases
Stark ND 5 1 1.4 368 1190 19
McLean ND 14 2 1.5 99 1030 7
Burleigh ND 2 3 1.1 1368 1460 34
Morton ND 4 4 1.2 453 1480 16
Rolette ND 13 5 1.3 101 690 7
Grand Forks ND 3 6 1.2 748 1060 11
Cass ND 1 7 0.9 3123 1790 15
Ward ND 7 8 1.1 264 380 7
Williams ND 6 9 1.0 304 890 6
Mountrail ND 9 11 1.0 151 1490 3
Benson ND 8 12 0.9 166 2410 5

Connecticut, Massachusetts, and Rhode Island

CT
county ST case rank severity R_e cases cases/100k daily cases
New Haven CT 2 1 1.0 13316 1550 21
Fairfield CT 1 2 0.9 18191 1930 28
Hartford CT 3 3 0.8 12902 1440 17
New London CT 5 4 1.0 1483 550 6
Windham CT 8 5 0.9 761 650 5
Middlesex CT 6 6 0.9 1416 870 2
Litchfield CT 4 7 0.8 1632 890 3
Tolland CT 7 8 0.5 1068 710 2
MA
county ST case rank severity R_e cases cases/100k daily cases
Suffolk MA 2 1 0.9 22148 2800 56
Middlesex MA 1 2 0.9 26709 1670 58
Essex MA 3 3 0.9 18049 2310 46
Norfolk MA 5 4 0.8 10768 1540 28
Worcester MA 4 5 0.8 13755 1670 24
Bristol MA 6 6 0.8 9469 1690 22
Plymouth MA 7 7 0.8 9322 1820 14
Hampden MA 8 8 0.8 7678 1640 14
Barnstable MA 9 10 0.6 1817 850 3
RI
county ST case rank severity R_e cases cases/100k daily cases
Providence RI 1 1 1.1 15675 2470 90
Kent RI 2 2 0.9 1555 950 9
Washington RI 3 3 0.9 624 490 2
Newport RI 4 4 0.8 408 490 2
Bristol RI 5 5 0.7 325 660 1

New York

NY
county ST case rank severity R_e cases cases/100k daily cases
New York City NY 1 1 1.0 234449 2780 319
Suffolk NY 2 2 1.0 44126 2970 58
Monroe NY 8 3 1.1 5136 690 30
Erie NY 7 4 1.0 9129 990 42
Westchester NY 4 5 1.0 36421 3760 34
Nassau NY 3 6 0.9 43904 3240 43
Onondaga NY 10 7 1.0 3658 790 13
Orange NY 6 8 1.0 11243 2970 11
Rockland NY 5 9 1.0 13991 4320 8
Dutchess NY 9 10 0.9 4671 1590 11

Vermont, New Hampshire, and Maine

VT
county ST case rank severity R_e cases cases/100k daily cases
Chittenden VT 1 1 1.0 746 460 2
Rutland VT 4 2 0.7 104 180 1
Bennington VT 5 3 0.7 93 260 1
Windham VT 3 4 0.5 106 250 0
Franklin VT 2 5 0.3 120 240 0
Addison VT 6 6 0.3 76 210 0
ME
county ST case rank severity R_e cases cases/100k daily cases
Cumberland ME 1 1 0.9 2118 730 5
Androscoggin ME 3 2 0.9 576 540 2
Penobscot ME 5 3 1.0 163 110 2
York ME 2 4 0.7 688 340 2
Kennebec ME 4 5 0.4 174 140 0
NH
county ST case rank severity R_e cases cases/100k daily cases
Hillsborough NH 1 1 1.0 3925 950 13
Rockingham NH 2 2 0.9 1727 570 7
Strafford NH 4 3 0.9 372 290 3
Cheshire NH 6 4 0.8 107 140 1
Merrimack NH 3 5 0.8 473 320 1
Belknap NH 5 6 0.7 122 200 1
Carroll NH 8 7 0.4 98 200 0
Grafton NH 7 8 0.5 107 120 0

Carolinas

SC
county ST case rank severity R_e cases cases/100k daily cases
Richland SC 3 1 1.0 9396 2300 108
Charleston SC 1 2 0.9 12865 3260 92
Spartanburg SC 8 3 1.0 4378 1450 50
Aiken SC 15 4 1.0 2122 1270 44
Florence SC 10 5 1.0 3767 2720 59
Anderson SC 13 6 1.0 2598 1330 44
Greenville SC 2 7 0.9 11337 2270 77
Berkeley SC 6 9 1.0 4437 2120 43
Beaufort SC 7 11 0.9 4424 2420 58
York SC 9 12 0.9 3812 1470 45
Horry SC 4 13 0.9 8901 2770 55
Lexington SC 5 15 0.9 5202 1820 40
NC
county ST case rank severity R_e cases cases/100k daily cases
Mecklenburg NC 1 1 0.9 23248 2210 173
Wake NC 2 2 1.0 12746 1220 119
Stanly NC 36 3 1.2 1218 1990 28
Cumberland NC 8 4 1.0 3396 1020 54
Pitt NC 18 5 1.1 2247 1270 42
Union NC 9 6 1.0 3351 1480 44
Forsyth NC 5 7 1.0 5531 1490 48
Guilford NC 4 8 1.0 5948 1140 56
Gaston NC 6 10 1.0 3546 1640 40
Durham NC 3 11 1.0 6411 2090 41
Johnston NC 7 32 0.9 3486 1820 32

North-Rockies

MT
county ST case rank severity R_e cases cases/100k daily cases
Phillips MT 10 1 2.5 112 2720 20
Yellowstone MT 1 2 1.2 1490 940 37
Big Horn MT 3 3 1.0 514 3840 15
Flathead MT 4 4 1.0 398 410 12
Missoula MT 5 5 1.0 379 330 9
Silver Bow MT 9 6 1.0 114 330 4
Gallatin MT 2 7 0.9 1006 960 9
Lewis and Clark MT 8 9 0.9 178 270 4
Cascade MT 7 10 0.7 183 220 2
Lake MT 6 12 0.6 190 640 1
WY
county ST case rank severity R_e cases cases/100k daily cases
Washakie WY 11 1 1.3 97 1190 5
Campbell WY 8 2 1.2 143 300 3
Carbon WY 9 3 1.0 118 760 3
Fremont WY 2 4 0.8 518 1290 3
Natrona WY 6 5 0.8 248 310 2
Laramie WY 1 6 0.7 520 530 3
Park WY 7 7 0.8 145 500 2
Sweetwater WY 5 8 0.8 275 620 2
Teton WY 3 10 0.5 390 1690 2
Uinta WY 4 11 0.6 284 1380 1
ID
county ST case rank severity R_e cases cases/100k daily cases
Shoshone ID 22 1 2.0 173 1380 15
Ada ID 1 2 1.1 9904 2220 151
Bonneville ID 5 3 1.3 1394 1240 62
Canyon ID 2 4 1.0 6423 3030 116
Kootenai ID 3 5 1.0 2011 1310 34
Bannock ID 9 6 1.2 521 610 14
Bingham ID 12 7 1.2 364 800 13
Twin Falls ID 4 8 1.0 1542 1840 25
Jerome ID 8 12 1.0 525 2240 8
Cassia ID 7 20 0.8 556 2350 5
Blaine ID 6 26 0.8 585 2660 1

Midwest

OH
county ST case rank severity R_e cases cases/100k daily cases
Madison OH 36 1 1.7 559 1270 30
Franklin OH 1 2 1.0 19490 1530 188
Cuyahoga OH 2 3 1.0 14282 1140 128
Hamilton OH 3 4 1.0 10095 1240 78
Montgomery OH 5 5 1.0 4674 880 53
Butler OH 7 6 1.0 3153 830 38
Lucas OH 4 7 0.9 5747 1330 68
Summit OH 6 8 1.0 3805 700 43
Mahoning OH 9 16 1.0 2685 1160 23
Marion OH 8 48 0.9 2965 4540 6
IL
county ST case rank severity R_e cases cases/100k daily cases
Cook IL 1 1 1.0 115299 2210 693
Morgan IL 30 2 1.6 379 1100 22
Logan IL 49 3 1.6 191 650 13
Madison IL 9 4 1.2 3018 1140 76
Greene IL 66 5 1.6 80 610 8
LaSalle IL 17 6 1.3 955 870 41
Will IL 5 7 1.1 9814 1430 99
DuPage IL 3 9 1.0 12829 1380 106
Lake IL 2 10 1.0 13242 1880 97
St. Clair IL 6 11 1.0 4812 1830 71
Kane IL 4 12 1.0 10252 1930 78
McHenry IL 8 25 1.0 3436 1120 37
Winnebago IL 7 44 0.8 3859 1350 13
IN
county ST case rank severity R_e cases cases/100k daily cases
Henry IN 37 1 1.5 470 970 12
Vigo IN 22 2 1.3 822 760 34
Marion IN 1 3 1.0 16807 1780 150
Sullivan IN 66 4 1.5 177 850 11
Lake IN 2 5 1.1 8054 1650 78
Hamilton IN 6 6 1.1 3091 980 52
Allen IN 4 7 1.1 4226 1140 53
St. Joseph IN 5 8 1.1 3824 1420 59
Elkhart IN 3 9 1.1 5176 2540 41
Vanderburgh IN 7 12 1.0 2176 1200 37
Hendricks IN 8 16 1.1 2031 1260 22
Johnson IN 9 25 1.0 1874 1240 15

Tennessee and Kentucky

TN
county ST case rank severity R_e cases cases/100k daily cases
Shelby TN 1 1 0.9 25076 2680 265
Weakley TN 40 2 1.3 617 1830 36
Davidson TN 2 3 1.0 24087 3520 192
Overton TN 68 4 1.4 261 1190 14
Hamilton TN 4 5 1.1 6690 1870 89
Knox TN 5 6 1.0 5499 1210 111
Madison TN 19 7 1.1 1344 1380 43
Rutherford TN 3 8 1.0 7005 2280 76
Williamson TN 6 11 1.0 3804 1740 45
Bradley TN 9 13 1.1 2142 2050 37
Wilson TN 8 16 1.0 2474 1860 32
Sumner TN 7 21 1.0 3627 2020 34
KY
county ST case rank severity R_e cases cases/100k daily cases
Jefferson KY 1 1 1.2 9591 1250 227
Fayette KY 2 2 1.1 4405 1380 93
Madison KY 12 3 1.3 639 710 25
Hardin KY 8 4 1.2 755 700 21
Clay KY 40 5 1.5 181 880 5
Johnson KY 77 6 1.4 82 360 5
Bullitt KY 17 7 1.2 439 550 12
Christian KY 9 8 1.1 735 1020 15
Warren KY 3 9 1.0 2787 2200 27
Kenton KY 4 11 1.0 1533 930 18
Shelby KY 7 18 1.0 815 1740 9
Daviess KY 6 19 1.0 823 820 9
Boone KY 5 24 0.9 1157 900 10

Missouri and Arkansas

MO
county ST case rank severity R_e cases cases/100k daily cases
St. Louis MO 1 1 1.0 16465 1650 260
Greene MO 6 2 1.2 1889 650 57
Washington MO 56 3 1.6 118 470 8
St. Francois MO 20 4 1.4 495 750 20
Jackson MO 4 5 1.0 4580 660 95
St. Charles MO 3 6 1.0 4606 1180 76
Polk MO 36 7 1.5 246 780 6
St. Louis city MO 2 9 1.0 5620 1810 76
Jefferson MO 5 10 1.1 2068 930 48
Boone MO 7 14 1.1 1576 890 29
Clay MO 9 27 1.0 1152 480 20
Jasper MO 8 28 1.1 1346 1130 12
AR
county ST case rank severity R_e cases cases/100k daily cases
Pulaski AR 2 1 1.0 6070 1540 93
Poinsett AR 31 2 1.3 357 1480 19
Saline AR 13 3 1.2 1225 1040 30
Logan AR 32 4 1.3 355 1630 18
Sebastian AR 4 5 1.0 2466 1930 53
Chicot AR 19 6 1.1 899 8300 32
Garland AR 14 7 1.1 1194 1210 29
Jefferson AR 5 8 1.0 1697 2410 28
Craighead AR 7 10 1.0 1507 1430 29
Hot Spring AR 6 11 1.2 1605 4790 13
Crittenden AR 8 17 1.0 1476 3010 20
Benton AR 3 18 0.9 4932 1900 28
Pope AR 9 19 1.0 1422 2230 17
Washington AR 1 25 0.8 6454 2820 28

Conclusions

It’s in control some places, but not all places. And many places are completely out-of-control.

Stay Safe!
Be Diligent!
…and PLEASE WEAR A MASK



Built with R Version 4.0.2
This document took 1152.5 seconds to compute.
2020-08-16 07:53:25

version history

Today is 2020-08-16.
88 days ago: Multiple states.
80 days ago: \(R_e\) computation.
77 days ago: created color coding for \(R_e\) plots.
72 days ago: Reduced \(t_d\) from 14 to 12 days. 14 was the upper range of what most people are using. Wanted slightly higher bandwidth.
72 days ago: “persistence” time evolution.
65 days ago: “In control” mapping.
65 days ago: “Severity” tables to county analysis. Severity is computed from the number of new cases expected at current \(R_e\) for 6 days in the future. It does not trend \(R_e\), which could be a future enhancement.
57 days ago: Added census API functionality to compute per capita infection rates. Reduced spline spar = 0.65.
52 days ago: Added Per Capita US Map.
50 days ago: Deprecated national map.
46 days ago: added state “Hot 10” analysis.
41 days ago: cleaned up county analysis to show cases and actual data. Moved “Hot 10” analysis to separate web page. Moved “Hot 10” here.
39 days ago: added per capita disease and mortaility to state-level analysis. 27 days ago: changed to county boundarieson national map for per capita disease. 22 days ago: corrected factor of two error in death trend data.

Appendix: Methods

Disease data are sourced from the NYTimes Github Repo. Population data are sourced from the US Census census.gov

Case growth is assumed to follow a linear-partial differential equation. This type of model is useful in populations where there is still very low immunity and high susceptibility.

\[\frac{\partial}{\partial t} cases(t, t_d) = a \times cases(t, t_d) \] \(cases(t)\) is the number of active cases at \(t\) dependent on recent history, \(t_d\). The constant \(a\) and has units of \(time^{-1}\) and is typically computed on a daily basis

Solution results are often expressed in terms of the Effective Reproduction Rate \(R_e\), where \[a \space = \space ln(R_e).\]

\(R_e\) has a simple interpretation; when \(R_e \space > \space 1\) the number of \(cases(t)\) increases (exponentially) while when \(R_e \space < \space 1\) the number of \(cases(t)\) decreases.

Practically, computing \(a\) can be extremely complicated, depending on how functionally it is related to history \(t_d\). And guessing functional forms can be as much art as science. To avoid that, let’s keep things simple…

Assuming a straight-forward flat time of latent infection \(t_d\) = 12 days, with \[f(t) = \int_{t - t_d}^{t}cases(t')\; dt' ,\] \(R_e\) reduces to a simple computation

\[R_e(t) = \frac{cases(t)}{\int_{t - t_d}^{t}cases(t')\; dt'} \times t_d .\]

Typical range of \(t_d\) range \(7 \geq t_d \geq 14\). The only other numerical treatment is, in order to reduce noise the data, I smooth case data with a reticulated spline to compute derivatives.


DISCLAIMER: Results are for entertainment purposes only. Please consult local authorities for official data and forecasts.