h1: close proximity

h2: greater travel

h3: socioeconomic status

h4: race

other controls

case6 <- read.csv("~/Dropbox (ASU)/Papers/Neighborhood COVID/Data/FullData.csv")
case6$CancerPC <- case6$CaseCount/(case6$Pop*1000)

cntyhealth <- read.csv("~/Dropbox (ASU)/Papers/Neighborhood COVID/Data/CntyHealth.csv")
case6 <- merge(case6, cntyhealth, by.x="county", by.y="FIPS")
## reading in shapefile
tractLA <- shapefile('~/Dropbox (ASU)/Papers/Neighborhood COVID/Data/tl_2019_22_tract/tl_2019_22_tract.shp')


tractLA2 <- merge(tractLA, case6, by.x="GEOID",  by.y="Tract.ID")

f1 <- cpcln~ log(popdens)+pubtransit+ outsidecounty+tourismemp+collegepct+povpct+noinsurance+blackpct+hisppct+asianpct+otherracepct+DiversityIndex+over70pct+male+mle

summary(ols <-lm(f1, data=tractLA2@data))
## 
## Call:
## lm(formula = f1, data = tractLA2@data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.51437 -0.36249 -0.00913  0.33518  1.82779 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.85586    0.84125   2.206  0.02759 *  
## log(popdens)    0.09855    0.01232   7.997 3.34e-15 ***
## pubtransit      4.09586    0.45898   8.924  < 2e-16 ***
## outsidecounty   1.31021    0.10028  13.066  < 2e-16 ***
## tourismemp      0.54584    0.31377   1.740  0.08222 .  
## collegepct      0.14424    0.13778   1.047  0.29542    
## povpct         -1.02739    0.19499  -5.269 1.67e-07 ***
## noinsurance    -1.02912    0.41157  -2.500  0.01255 *  
## blackpct        1.38029    0.09110  15.151  < 2e-16 ***
## hisppct         3.19890    0.36887   8.672  < 2e-16 ***
## asianpct        2.10964    0.52012   4.056 5.36e-05 ***
## otherracepct    2.00231    0.68890   2.907  0.00373 ** 
## DiversityIndex -0.19189    0.11863  -1.618  0.10606    
## over70pct       3.18687    0.43684   7.295 5.88e-13 ***
## male            0.22315    0.37579   0.594  0.55276    
## mle            -0.03076    0.01107  -2.779  0.00555 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5128 on 1047 degrees of freedom
##   (85 observations deleted due to missingness)
## Multiple R-squared:  0.5478, Adjusted R-squared:  0.5413 
## F-statistic: 84.54 on 15 and 1047 DF,  p-value: < 2.2e-16
covid_nbq <- poly2nb(tractLA)  #Queenโ€™s neighborhood
covid_nbq_w <- nb2listw(covid_nbq, style="W")

## Spatial Lag Model

summary(covid_LAG <- lagsarlm(f1, data = tractLA2@data, covid_nbq_w, zero.policy = T))
## Warning: Function lagsarlm moved to the spatialreg package
## 
## Call:spatialreg::lagsarlm(formula = formula, data = data, listw = listw, 
##     na.action = na.action, Durbin = Durbin, type = type, method = method, 
##     quiet = quiet, zero.policy = zero.policy, interval = interval, 
##     tol.solve = tol.solve, trs = trs, control = control)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.205872 -0.233053 -0.022222  0.196545  1.869021 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##                  Estimate Std. Error z value  Pr(>|z|)
## (Intercept)     0.2646335  0.5875851  0.4504 0.6524403
## log(popdens)    0.0332319  0.0086558  3.8392 0.0001234
## pubtransit      0.9888728  0.3240213  3.0519 0.0022742
## outsidecounty   0.4514090  0.0711070  6.3483 2.177e-10
## tourismemp      0.1753277  0.2163075  0.8105 0.4176251
## collegepct     -0.0384949  0.0949947 -0.4052 0.6853073
## povpct         -0.5114520  0.1356359 -3.7708 0.0001627
## noinsurance     0.0208207  0.2842164  0.0733 0.9416021
## blackpct        0.7514712  0.0674960 11.1336 < 2.2e-16
## hisppct         1.1087421  0.2591434  4.2785 1.882e-05
## asianpct        0.4319181  0.3608990  1.1968 0.2313908
## otherracepct    0.7671376  0.4749403  1.6152 0.1062610
## DiversityIndex -0.0106457  0.0819582 -0.1299 0.8966518
## over70pct       2.1625369  0.3020527  7.1595 8.098e-13
## male            0.2540599  0.2589791  0.9810 0.3265900
## mle            -0.0100747  0.0077218 -1.3047 0.1919934
## 
## Rho: 0.69116, LR test value: 656.04, p-value: < 2.22e-16
## Asymptotic standard error: 0.022483
##     z-value: 30.741, p-value: < 2.22e-16
## Wald statistic: 945, p-value: < 2.22e-16
## 
## Log likelihood: -462.2106 for lag model
## ML residual variance (sigma squared): 0.12484, (sigma: 0.35333)
## Number of observations: 1063 
## Number of parameters estimated: 18 
## AIC: 960.42, (AIC for lm: 1614.5)
## LM test for residual autocorrelation
## test value: 43.382, p-value: 4.504e-11
## Spatial Error Model


summary(covid_error <- errorsarlm(f1, data = tractLA2@data, covid_nbq_w, zero.policy = T))
## Warning: Function errorsarlm moved to the spatialreg package
## 
## Call:
## spatialreg::errorsarlm(formula = formula, data = data, listw = listw, 
##     na.action = na.action, Durbin = Durbin, etype = etype, method = method, 
##     quiet = quiet, zero.policy = zero.policy, interval = interval, 
##     tol.solve = tol.solve, trs = trs, control = control)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.077680 -0.230002 -0.012376  0.209799  1.979168 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##                 Estimate Std. Error z value  Pr(>|z|)
## (Intercept)     4.545041   1.379964  3.2936 0.0009892
## log(popdens)    0.016441   0.011584  1.4193 0.1558060
## pubtransit      0.383689   0.397596  0.9650 0.3345338
## outsidecounty   0.110414   0.100818  1.0952 0.2734358
## tourismemp      0.049042   0.215659  0.2274 0.8201081
## collegepct     -0.302469   0.134086 -2.2558 0.0240843
## povpct         -0.490904   0.149012 -3.2944 0.0009864
## noinsurance     0.121547   0.279368  0.4351 0.6635046
## blackpct        0.957661   0.077757 12.3160 < 2.2e-16
## hisppct         0.682580   0.293702  2.3241 0.0201227
## asianpct        0.409007   0.475545  0.8601 0.3897442
## otherracepct    0.251461   0.518605  0.4849 0.6277621
## DiversityIndex -0.063919   0.091642 -0.6975 0.4854994
## over70pct       2.113638   0.315290  6.7038 2.031e-11
## male            0.380884   0.235592  1.6167 0.1059410
## mle            -0.051093   0.019059 -2.6807 0.0073460
## 
## Lambda: 0.82906, LR test value: 623.66, p-value: < 2.22e-16
## Asymptotic standard error: 0.018923
##     z-value: 43.811, p-value: < 2.22e-16
## Wald statistic: 1919.4, p-value: < 2.22e-16
## 
## Log likelihood: -478.3972 for error model
## ML residual variance (sigma squared): 0.11974, (sigma: 0.34604)
## Number of observations: 1063 
## Number of parameters estimated: 18 
## AIC: 992.79, (AIC for lm: 1614.5)