Introduction

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Goal

The basic goal of this assignment is to explore the NOAA Storm Database and answer some basic questions about severe weather events.

  1. Across the United States, which types of events are most harmful with respect to population health?

  2. Across the United States, which types of events have the greatest economic consequences?

Synopsis

This report invloves the analysis of NOAA Storm Database which includes details about occurance of Fatal events like Natutal Calamaties. It depicts the top 10 Event causing most Fatalities and Injuries as well as CropDMG and PropDMG.

Data Description

Downloading Data and Data Information File

if(!file.exists("StormData.csv.bz2")) {
    download.file(url = "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2",destfile = "StormData.csv.bz2")
}

if(!file.exists("StormDataDocumentation.pdf")) {
    download.file(url = "https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2Fpd01016005curr.pdf", destfile = "StormDataDocumentation.pdf")
}

Information About Session:

sessionInfo()
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.4
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] compiler_3.6.1  magrittr_1.5    tools_3.6.1     htmltools_0.4.0
##  [5] yaml_2.2.1      Rcpp_1.0.4.6    stringi_1.4.6   rmarkdown_2.1  
##  [9] knitr_1.28      stringr_1.4.0   xfun_0.13       digest_0.6.25  
## [13] rlang_0.4.6     evaluate_0.14

Reading the Data File:

library(utils)
require(utils)
data_raw <- read.csv("StormData.csv.bz2")
library(base)
require(base)
dim(data_raw)
## [1] 902297     37

Structure of Dataset:

str(data_raw)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels ""," Christiansburg",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels ""," CANTON"," TULIA",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","%SD",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","\t","\t\t",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...

Glimpse of Dataset:

head(data_raw, n = 10)
##    STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1        1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2        1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3        1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4        1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5        1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6        1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
## 7        1 11/16/1951 0:00:00     0100       CST      9     BLOUNT    AL
## 8        1  1/22/1952 0:00:00     0900       CST    123 TALLAPOOSA    AL
## 9        1  2/13/1952 0:00:00     2000       CST    125 TUSCALOOSA    AL
## 10       1  2/13/1952 0:00:00     2000       CST     57    FAYETTE    AL
##     EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END COUNTYENDN
## 1  TORNADO         0                                               0         NA
## 2  TORNADO         0                                               0         NA
## 3  TORNADO         0                                               0         NA
## 4  TORNADO         0                                               0         NA
## 5  TORNADO         0                                               0         NA
## 6  TORNADO         0                                               0         NA
## 7  TORNADO         0                                               0         NA
## 8  TORNADO         0                                               0         NA
## 9  TORNADO         0                                               0         NA
## 10 TORNADO         0                                               0         NA
##    END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1          0                      14.0   100 3   0          0       15    25.0
## 2          0                       2.0   150 2   0          0        0     2.5
## 3          0                       0.1   123 2   0          0        2    25.0
## 4          0                       0.0   100 2   0          0        2     2.5
## 5          0                       0.0   150 2   0          0        2     2.5
## 6          0                       1.5   177 2   0          0        6     2.5
## 7          0                       1.5    33 2   0          0        1     2.5
## 8          0                       0.0    33 1   0          0        0     2.5
## 9          0                       3.3   100 3   0          1       14    25.0
## 10         0                       2.3   100 3   0          0        0    25.0
##    PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1           K       0                                         3040      8812
## 2           K       0                                         3042      8755
## 3           K       0                                         3340      8742
## 4           K       0                                         3458      8626
## 5           K       0                                         3412      8642
## 6           K       0                                         3450      8748
## 7           K       0                                         3405      8631
## 8           K       0                                         3255      8558
## 9           K       0                                         3334      8740
## 10          K       0                                         3336      8738
##    LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1        3051       8806              1
## 2           0          0              2
## 3           0          0              3
## 4           0          0              4
## 5           0          0              5
## 6           0          0              6
## 7           0          0              7
## 8           0          0              8
## 9        3336       8738              9
## 10       3337       8737             10

Column Names of Dataset:

names(data_raw)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"

Summary of Dataset:

summary(data_raw)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   568   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588295

Data Processing

Checking for missing values:

data <- data_raw
any(is.na(data))
## [1] TRUE

Number of Missing Values:

sum(is.na(data))
## [1] 1745947

Missing values in each column:

sapply(data, FUN = function(x) (sum(is.na(x))))
##    STATE__   BGN_DATE   BGN_TIME  TIME_ZONE     COUNTY COUNTYNAME      STATE 
##          0          0          0          0          0          0          0 
##     EVTYPE  BGN_RANGE    BGN_AZI BGN_LOCATI   END_DATE   END_TIME COUNTY_END 
##          0          0          0          0          0          0          0 
## COUNTYENDN  END_RANGE    END_AZI END_LOCATI     LENGTH      WIDTH          F 
##     902297          0          0          0          0          0     843563 
##        MAG FATALITIES   INJURIES    PROPDMG PROPDMGEXP    CROPDMG CROPDMGEXP 
##          0          0          0          0          0          0          0 
##        WFO STATEOFFIC  ZONENAMES   LATITUDE  LONGITUDE LATITUDE_E LONGITUDE_ 
##          0          0          0         47          0         40          0 
##    REMARKS     REFNUM 
##          0          0

Percentage of Missing Values in each column:

sapply(data, FUN = function(x) round(mean(is.na(x))*100, 2))
##    STATE__   BGN_DATE   BGN_TIME  TIME_ZONE     COUNTY COUNTYNAME      STATE 
##       0.00       0.00       0.00       0.00       0.00       0.00       0.00 
##     EVTYPE  BGN_RANGE    BGN_AZI BGN_LOCATI   END_DATE   END_TIME COUNTY_END 
##       0.00       0.00       0.00       0.00       0.00       0.00       0.00 
## COUNTYENDN  END_RANGE    END_AZI END_LOCATI     LENGTH      WIDTH          F 
##     100.00       0.00       0.00       0.00       0.00       0.00      93.49 
##        MAG FATALITIES   INJURIES    PROPDMG PROPDMGEXP    CROPDMG CROPDMGEXP 
##       0.00       0.00       0.00       0.00       0.00       0.00       0.00 
##        WFO STATEOFFIC  ZONENAMES   LATITUDE  LONGITUDE LATITUDE_E LONGITUDE_ 
##       0.00       0.00       0.00       0.01       0.00       0.00       0.00 
##    REMARKS     REFNUM 
##       0.00       0.00

Dropping columns with more than 80% Null Values:

data <- data[, which(colMeans(!is.na(data)) > 0.8)]
dim(data)
## [1] 902297     35

1) Data to determine most Harmful Events with respect to Population

Creating Data Frames for Fatalities and Injuries

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
require(dplyr)

FatalitiesData <- data %>%
    group_by(EVTYPE) %>%
    summarise(COUNT = sum(FATALITIES)) %>%
    arrange(desc(COUNT))
names(FatalitiesData) <- c("Event", "Count")

InjuriesData <- data %>%
    group_by(EVTYPE) %>%
    summarise(COUNT = sum(INJURIES)) %>%
    arrange(desc(COUNT))
names(InjuriesData) <- c("Event", "Count")

Selecting Top 10 Event Type with maximum Injuries and Fatalities:

FatalitiesData <- as.data.frame(top_n(FatalitiesData, 10))
## Selecting by Count
FatalitiesData$Type <- "Fatalities"

InjuriesData <- as.data.frame(top_n(InjuriesData, 10))
## Selecting by Count
InjuriesData$Type <- "Injuries"

Merging Fatalities and Injuries DataFrame

data_1 <- rbind(FatalitiesData, InjuriesData)
arrange(data_1, desc(Count))
##                Event Count       Type
## 1            TORNADO 91346   Injuries
## 2          TSTM WIND  6957   Injuries
## 3              FLOOD  6789   Injuries
## 4     EXCESSIVE HEAT  6525   Injuries
## 5            TORNADO  5633 Fatalities
## 6          LIGHTNING  5230   Injuries
## 7               HEAT  2100   Injuries
## 8          ICE STORM  1975   Injuries
## 9     EXCESSIVE HEAT  1903 Fatalities
## 10       FLASH FLOOD  1777   Injuries
## 11 THUNDERSTORM WIND  1488   Injuries
## 12              HAIL  1361   Injuries
## 13       FLASH FLOOD   978 Fatalities
## 14              HEAT   937 Fatalities
## 15         LIGHTNING   816 Fatalities
## 16         TSTM WIND   504 Fatalities
## 17             FLOOD   470 Fatalities
## 18       RIP CURRENT   368 Fatalities
## 19         HIGH WIND   248 Fatalities
## 20         AVALANCHE   224 Fatalities

2) Data to determine most Harmful Event with respect to Economy

Creating Data Frames for CropDMP and PropDMP

library(dplyr)
require(dplyr)

CropData <- data %>%
    group_by(EVTYPE) %>%
    summarise(COUNT = sum(CROPDMG)/1000000) %>%
    arrange(desc(COUNT))
names(CropData) <- c("Event", "Damage")

PropData <- data %>%
    group_by(EVTYPE) %>%
    summarise(COUNT = sum(PROPDMG)/1000000) %>%
    arrange(desc(COUNT))
names(PropData) <- c("Event", "Damage")

Selecting Top 10 Event Type with maximum Damage CropDMP and PropDMP:

CropData <- as.data.frame(top_n(CropData, 10))
## Selecting by Damage
CropData$Type <- "CropDMG"

PropData <- as.data.frame(top_n(PropData, 10))
## Selecting by Damage
PropData$Type <- "PropDMG"

Merging Fatalities and Injuries DataFrame

data_2 <- rbind(CropData, PropData)
data_2$Damage <- round(data_2$Damage,2)
arrange(data_2, desc(Damage))
##                 Event Damage    Type
## 1             TORNADO   3.21 PropDMG
## 2         FLASH FLOOD   1.42 PropDMG
## 3           TSTM WIND   1.34 PropDMG
## 4               FLOOD   0.90 PropDMG
## 5   THUNDERSTORM WIND   0.88 PropDMG
## 6                HAIL   0.69 PropDMG
## 7           LIGHTNING   0.60 PropDMG
## 8                HAIL   0.58 CropDMG
## 9  THUNDERSTORM WINDS   0.45 PropDMG
## 10          HIGH WIND   0.32 PropDMG
## 11        FLASH FLOOD   0.18 CropDMG
## 12              FLOOD   0.17 CropDMG
## 13       WINTER STORM   0.13 PropDMG
## 14          TSTM WIND   0.11 CropDMG
## 15            TORNADO   0.10 CropDMG
## 16  THUNDERSTORM WIND   0.07 CropDMG
## 17            DROUGHT   0.03 CropDMG
## 18 THUNDERSTORM WINDS   0.02 CropDMG
## 19          HIGH WIND   0.02 CropDMG
## 20         HEAVY RAIN   0.01 CropDMG

Results

  1. The Types of Events that are Most Harmful with respect to Population Health:
library(ggplot2)
ggplot(data = data_1, aes(x = Event, y = Count, fill = Type)) +
    geom_bar(stat = "identity", position = "dodge" ) +
    labs(x = "Event", y = "Count") +
    labs(title = "Top 10 harmful events by type of harmful") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0)) +
    scale_fill_manual(values=c("#6b5b95", "#feb236"))

  1. The Types of Events that are Most Harmful with respect to Economic Consequences:
library(ggplot2)
ggplot(data = data_2, aes(x = Event, y = Damage, fill = Type)) +
    geom_bar(stat = "identity", position = "dodge" ) +
    labs(x = "Event", y = "Damage (Million USD)") +
    labs(title = "Top 10 Economic Consequnces by Event") +
    theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0)) +
    scale_fill_manual(values=c("#379683", "#4056A1"))

Conclusion

  1. From Analysis we can conclude that most destruction was occurred during Tornado followed by Flash Floods and TSTM Wind.
  2. Tornado cause was resposible for damage of approx 3.21M USD and claming 91000+ injuries and 5500+ fatalities which is more than doubled the damage caused by Flash Floods i.e. 1.42M USD.