Dissertation Analyses

load(file="/Users/meganwilliams/Desktop/Dissertation Research /DATA Analysis/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation Research /DATA Analysis/Allvars.rdata")

Trail Making Test Part A - Psychological Aggression

Model 1

TMTAlog1 <- glm(PsychAggress ~ TrailsA, data=Allvars,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.0373652   0.5193847   0.5246390   0.5314622   1.1140222  
## 
## Coefficients:
##                 Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)  1.996695213  0.131880498 15.14019  < 2e-16
## TrailsA     -0.003076260  0.001335536 -2.30339 0.021257
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 500.77544  on 639  degrees of freedom
## AIC: 504.77544
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAlog1)
##                       2.5 %           97.5 %
## (Intercept)  1.743910321967  2.2617752778868
## TrailsA     -0.005757579576 -0.0003006257254
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                       OR        2.5 %       97.5 %
## (Intercept) 7.3646771511 5.7196654846 9.6001169231
## TrailsA     0.9969284669 0.9942589635 0.9996994195

Model 2

TMTAlog2 <- glm(PsychAggress ~ TrailsA + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog2)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3447862   0.4176990   0.4970925   0.5688854   1.0547868  
## 
## Coefficients:
##                  Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)   2.121290670  0.937377654  2.26301 0.023635
## TrailsA      -0.002674780  0.001362399 -1.96329 0.049613
## Age          -0.020128697  0.013105822 -1.53586 0.124573
## SexMen       -0.421401937  0.237184804 -1.77668 0.075621
## PovStatBelow  0.282190784  0.272291838  1.03635 0.300037
## WRATtotal     0.022125675  0.014632810  1.51206 0.130519
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 491.14329  on 635  degrees of freedom
## AIC: 503.14329
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog2)
##                        2.5 %          97.5 %
## (Intercept)   0.308141477824 3.9903558959663
## TrailsA      -0.005366489292 0.0001985874588
## Age          -0.046021888477 0.0054691447531
## SexMen       -0.891816154758 0.0406676919104
## PovStatBelow -0.238167337912 0.8337512536937
## WRATtotal    -0.007104779862 0.0504394740797
exp(cbind(OR = coef(TMTAlog2), confint(TMTAlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  8.3418971819 1.3608935116 54.074130704
## TrailsA      0.9973287937 0.9946478846  1.000198607
## Age          0.9800725324 0.9550210580  1.005484128
## SexMen       0.6561263269 0.4099106152  1.041505947
## PovStatBelow 1.3260316821 0.7880708059  2.301937717
## WRATtotal    1.0223722635 0.9929203994  1.051733204

Model 3

TMTAlog3 <- glm(PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsA + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3162026   0.4125179   0.4876138   0.5679440   0.9071982  
## 
## Coefficients:
##                                  Estimate    Std. Error  z value Pr(>|z|)
## (Intercept)                  2.2237514530  0.9456124818  2.35165 0.018690
## TrailsA                     -0.0021023141  0.0021776789 -0.96539 0.334348
## SexMen                      -0.5399009704  0.3159591140 -1.70877 0.087494
## PovStatBelow                -0.2511691275  0.9094668724 -0.27617 0.782416
## Age                         -0.0226030780  0.0133531387 -1.69272 0.090509
## WRATtotal                    0.0233698662  0.0147431083  1.58514 0.112935
## TrailsA:SexMen               0.0002271136  0.0030406953  0.07469 0.940460
## TrailsA:PovStatBelow         0.0099771801  0.0260926868  0.38237 0.702184
## SexMen:PovStatBelow          1.0344839352  1.0218745757  1.01234 0.311376
## TrailsA:SexMen:PovStatBelow -0.0163108083  0.0268205899 -0.60815 0.543091
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 488.50205  on 631  degrees of freedom
## AIC: 508.50205
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog3)
##                                       2.5 %         97.5 %
## (Intercept)                  0.395752060828 4.110089059633
## TrailsA                     -0.006312819470 0.003161140710
## SexMen                      -1.169725338434 0.073937162644
## PovStatBelow                -2.178462364394 1.413792744920
## Age                         -0.048994349766 0.003467751984
## WRATtotal                   -0.006044195016 0.051931961784
## TrailsA:SexMen              -0.006202763749 0.006523213303
## TrailsA:PovStatBelow        -0.032068567851 0.071742155241
## SexMen:PovStatBelow         -0.852081276485 3.192161797973
## TrailsA:SexMen:PovStatBelow -0.079483750964 0.027234359286
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                                       OR        2.5 %       97.5 %
## (Intercept)                 9.2419366055 1.4855009580 60.952145704
## TrailsA                     0.9978998942 0.9937070645  1.003166142
## SexMen                      0.5828059645 0.3104521988  1.076739144
## PovStatBelow                0.7778907977 0.1132154810  4.111519815
## Age                         0.9776504578 0.9521865098  1.003473772
## WRATtotal                   1.0236450813 0.9939740344  1.053304075
## TrailsA:SexMen              1.0002271393 0.9938164337  1.006544536
## TrailsA:PovStatBelow        1.0100271181 0.9684401759  1.074378286
## SexMen:PovStatBelow         2.8136538332 0.4265262884 24.340990912
## TrailsA:SexMen:PovStatBelow 0.9838214927 0.9235930273  1.027608604

Model 4 (Two-Way Interaction w/Sex instead)

TMTAlog4 <- glm(PsychAggress ~ TrailsA + Age + Sex + PovStat + WRATtotal + TrailsA*Sex, data = Allvars, family = "binomial")
summary(TMTAlog4)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + Age + Sex + PovStat + 
##     WRATtotal + TrailsA * Sex, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3484505   0.4182709   0.4971779   0.5668706   1.1726912  
## 
## Coefficients:
##                    Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)     2.127892078  0.938048959  2.26842 0.023303
## TrailsA        -0.001958748  0.002174199 -0.90091 0.367639
## Age            -0.020922844  0.013226751 -1.58186 0.113682
## SexMen         -0.363313892  0.271595073 -1.33770 0.180993
## PovStatBelow    0.285564577  0.272492837  1.04797 0.294652
## WRATtotal       0.022078814  0.014639264  1.50819 0.131506
## TrailsA:SexMen -0.001229688  0.002825404 -0.43523 0.663399
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 490.95025  on 634  degrees of freedom
## AIC: 504.95025
## 
## Number of Fisher Scoring iterations: 4
vif(TMTAlog4)
##     TrailsA         Age         Sex     PovStat   WRATtotal TrailsA:Sex 
## 2.503776008 1.053107983 1.316065404 1.050026240 1.025072176 2.833546976

Model 4 (Two-Way Interaction w/PovStat instead)

TMTAlog4 <- glm(PsychAggress ~ TrailsA + Age + Sex + PovStat + WRATtotal + TrailsA*PovStat, data = Allvars, family = "binomial")
summary(TMTAlog4)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + Age + Sex + PovStat + 
##     WRATtotal + TrailsA * PovStat, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3591855   0.4121920   0.4959751   0.5686124   0.9096723  
## 
## Coefficients:
##                          Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)           2.141296082  0.938394740  2.28187 0.022497
## TrailsA              -0.001995172  0.001519228 -1.31328 0.189089
## Age                  -0.021535139  0.013192540 -1.63237 0.102601
## SexMen               -0.400504718  0.237912385 -1.68341 0.092295
## PovStatBelow          0.490855723  0.338614071  1.44960 0.147169
## WRATtotal             0.022219137  0.014639709  1.51773 0.129082
## TrailsA:PovStatBelow -0.004941184  0.004905011 -1.00737 0.313755
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 489.74861  on 634  degrees of freedom
## AIC: 503.74861
## 
## Number of Fisher Scoring iterations: 5
vif(TMTAlog4)
##         TrailsA             Age             Sex         PovStat       WRATtotal TrailsA:PovStat 
##     1.121180185     1.037126222     1.007260768     1.592627717     1.026903352     1.650915199

Model 4 (Two-Way Interaction w/Age instead)

TMTAlog4 <- glm(PsychAggress ~ TrailsA + Age + Sex + PovStat + WRATtotal + TrailsA*Age, data = Allvars, family = "binomial")
summary(TMTAlog4)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + Age + Sex + PovStat + 
##     WRATtotal + TrailsA * Age, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3447948   0.4176953   0.4970797   0.5688922   1.0548183  
## 
## Coefficients:
##                   Estimate    Std. Error  z value Pr(>|z|)
## (Intercept)   2.121526e+00  9.801700e-01  2.16445 0.030430
## TrailsA      -2.679776e-03  6.228199e-03 -0.43027 0.667003
## Age          -2.013402e-02  1.461542e-02 -1.37759 0.168331
## SexMen       -4.213784e-01  2.389017e-01 -1.76381 0.077763
## PovStatBelow  2.822027e-01  2.726807e-01  1.03492 0.300706
## WRATtotal     2.212582e-02  1.463379e-02  1.51197 0.130542
## TrailsA:Age   1.004140e-07  1.221483e-04  0.00082 0.999344
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 491.14329  on 634  degrees of freedom
## AIC: 505.14329
## 
## Number of Fisher Scoring iterations: 5
vif(TMTAlog4)
##      TrailsA          Age          Sex      PovStat    WRATtotal  TrailsA:Age 
## 21.079575532  1.286587355  1.017576242  1.052545295  1.025245722 21.676103491

Trail Making Test Part A - Physical Assault

Model 1

TMTAlog1 <- glm(PhysAssault ~ TrailsA, data=Allvars,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.5608951  -0.5372888  -0.5190227  -0.4883552   2.2263059  
## 
## Coefficients:
##                 Estimate   Std. Error  z value   Pr(>|z|)
## (Intercept) -1.640211931  0.304566153 -5.38540 7.2282e-08
## TrailsA     -0.009264020  0.008948915 -1.03521    0.30057
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 479.73415  on 639  degrees of freedom
## AIC: 483.73415
## 
## Number of Fisher Scoring iterations: 7
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                       OR        2.5 %       97.5 %
## (Intercept) 0.1939389362 0.1244338612 0.3673428443
## TrailsA     0.9907787590 0.9713986802 1.0007161339

Model 2

TMTAlog2 <- glm(PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog2)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8272530  -0.5522101  -0.4745035  -0.3959299   2.4047282  
## 
## Coefficients:
##                  Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)  -1.145135462  1.048088627 -1.09259 0.274572
## TrailsA      -0.004516216  0.005776681 -0.78180 0.434332
## Age          -0.031615701  0.013958875 -2.26492 0.023518
## SexMen       -0.134524446  0.244944505 -0.54920 0.582866
## PovStatBelow  0.494295327  0.253357740  1.95098 0.051060
## WRATtotal     0.015313867  0.017314465  0.88446 0.376451
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 468.09957  on 635  degrees of freedom
## AIC: 480.09957
## 
## Number of Fisher Scoring iterations: 6
confint(TMTAlog2)
##                        2.5 %          97.5 %
## (Intercept)  -3.227477573792  0.899615309574
## TrailsA      -0.022715454116  0.001843390865
## Age          -0.059337811062 -0.004450463585
## SexMen       -0.619092649700  0.344071504168
## PovStatBelow -0.007335472836  0.988746756401
## WRATtotal    -0.017925325967  0.050237206634
exp(cbind(OR = coef(TMTAlog2), confint(TMTAlog2)))
##                        OR         2.5 %       97.5 %
## (Intercept)  0.3181808135 0.03965740561 2.4586571074
## TrailsA      0.9954939672 0.97754059936 1.0018450910
## Age          0.9688788496 0.94238836617 0.9955594251
## SexMen       0.8741315097 0.53843276315 1.4106795014
## PovStatBelow 1.6393426319 0.99269136608 2.6878638125
## WRATtotal    1.0154317246 0.98223437702 1.0515204944

Model 3

TMTAlog3 <- glm(PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsA + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.9894222  -0.5443506  -0.4699886  -0.3921826   2.4262481  
## 
## Coefficients:
##                                 Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)                 -1.331294496  1.044866094 -1.27413 0.202618
## TrailsA                     -0.001252700  0.004948351 -0.25315 0.800148
## SexMen                      -0.021008881  0.534448767 -0.03931 0.968644
## PovStatBelow                 1.618462413  0.880724791  1.83765 0.066114
## Age                         -0.029361037  0.014053284 -2.08927 0.036684
## WRATtotal                    0.015345518  0.017366002  0.88365 0.376884
## TrailsA:SexMen              -0.004939713  0.013812181 -0.35763 0.720617
## TrailsA:PovStatBelow        -0.039750254  0.029074749 -1.36717 0.171571
## SexMen:PovStatBelow         -1.133556613  1.100886161 -1.02968 0.303162
## TrailsA:SexMen:PovStatBelow  0.041847970  0.033500105  1.24919 0.211596
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 465.71973  on 631  degrees of freedom
## AIC: 485.71973
## 
## Number of Fisher Scoring iterations: 7
confint(TMTAlog3)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
##                                        2.5 %          97.5 %
## (Intercept)                 -3.4137478670839  0.698829624157
## TrailsA                     -0.0220489361591  0.004786185956
## SexMen                      -0.9481968749937  1.312400912817
## PovStatBelow                -0.0003686128361  3.448137617000
## Age                         -0.0573005753812 -0.002062199720
## WRATtotal                   -0.0179867671432  0.050352342555
## TrailsA:SexMen              -0.0459696862796  0.019386310305
## TrailsA:PovStatBelow        -0.1039308689203  0.010005756841
## SexMen:PovStatBelow         -3.4509513002666  1.159887824131
## TrailsA:SexMen:PovStatBelow -0.0251526118408  0.116801661448
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
##                                       OR         2.5 %        97.5 %
## (Intercept)                 0.2641351180 0.03291759812  2.0113972386
## TrailsA                     0.9987480845 0.97819236490  1.0047976580
## SexMen                      0.9792102677 0.38743899494  3.7150826026
## PovStatBelow                5.0453267214 0.99963145509 31.4417811088
## Age                         0.9710658102 0.94431019031  0.9979399252
## WRATtotal                   1.0154638646 0.98217402924  1.0516415692
## TrailsA:SexMen              0.9950724671 0.95507091350  1.0195754451
## TrailsA:PovStatBelow        0.9610294220 0.90128760225  1.0100559818
## SexMen:PovStatBelow         0.3218863928 0.03171545111  3.1895754626
## TrailsA:SexMen:PovStatBelow 1.0427359398 0.97516107954  1.1238964956

Trail Making Test Part B - Psychological Aggression

Model 1

TMTBlog1 <- glm(PsychAggress ~ TrailsB, data=Allvars,family = "binomial")
summary(TMTBlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsB, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.0179429   0.5297853   0.5317403   0.5352407   0.5783476  
## 
## Coefficients:
##                  Estimate    Std. Error  z value Pr(>|z|)
## (Intercept)  1.9095514753  0.1585262803 12.04565  < 2e-16
## TrailsB     -0.0003433842  0.0008115642 -0.42311  0.67221
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 505.22752  on 639  degrees of freedom
## AIC: 509.22752
## 
## Number of Fisher Scoring iterations: 4
confint(TMTBlog1)
##                       2.5 %         97.5 %
## (Intercept)  1.603528690005 2.226283495151
## TrailsB     -0.001843453174 0.001370329363
exp(cbind(OR = coef(TMTBlog1), confint(TMTBlog1)))
##                       OR        2.5 %      97.5 %
## (Intercept) 6.7500605506 4.9705410134 9.265367229
## TrailsB     0.9996566747 0.9981582449 1.001371269

Model 2

TMTBlog2 <- glm(PsychAggress ~ TrailsB + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog2)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsB + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3619201   0.4150226   0.5003701   0.5759826   0.8584249  
## 
## Coefficients:
##                   Estimate    Std. Error  z value Pr(>|z|)
## (Intercept)   1.8020518007  0.9778048130  1.84296 0.065335
## TrailsB       0.0006771207  0.0009539781  0.70979 0.477837
## Age          -0.0237146195  0.0133421780 -1.77742 0.075500
## SexMen       -0.4354462923  0.2367388629 -1.83935 0.065863
## PovStatBelow  0.3039214092  0.2721369360  1.11680 0.264082
## WRATtotal     0.0287736507  0.0161637462  1.78014 0.075054
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 493.99091  on 635  degrees of freedom
## AIC: 505.99091
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog2)
##                        2.5 %         97.5 %
## (Intercept)  -0.095930604996 3.744570374303
## TrailsB      -0.001082010488 0.002691321510
## Age          -0.050095753808 0.002318790196
## SexMen       -0.905052949857 0.025652999036
## PovStatBelow -0.215831013739 0.855443932277
## WRATtotal    -0.003227790918 0.060312930158
exp(cbind(OR = coef(TMTBlog2), confint(TMTBlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  6.0620728779 0.9085270611 42.290834086
## TrailsB      1.0006773500 0.9989185747  1.002694946
## Age          0.9765643625 0.9511383450  1.002321481
## SexMen       0.6469758623 0.4045204652  1.025984869
## PovStatBelow 1.3551625487 0.8058714716  2.352418463
## WRATtotal    1.0291916113 0.9967774128  1.062168879

Model 3

TMTBlog3 <- glm(PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsB + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3117180   0.4143321   0.4919177   0.5758064   0.9089105  
## 
## Coefficients:
##                                  Estimate    Std. Error  z value Pr(>|z|)
## (Intercept)                  1.8470930729  1.0170851298  1.81607 0.069360
## TrailsB                      0.0009530415  0.0016848834  0.56564 0.571637
## SexMen                      -0.3776448395  0.3832676444 -0.98533 0.324462
## PovStatBelow                 0.1350920168  0.5644040131  0.23935 0.810832
## Age                         -0.0247057097  0.0134045297 -1.84309 0.065316
## WRATtotal                    0.0293986503  0.0166197474  1.76890 0.076911
## TrailsB:SexMen              -0.0011459927  0.0019778146 -0.57942 0.562303
## TrailsB:PovStatBelow        -0.0002674949  0.0033940544 -0.07881 0.937182
## SexMen:PovStatBelow         -0.4577983756  0.8724901955 -0.52470 0.599790
## TrailsB:SexMen:PovStatBelow  0.0068832353  0.0064133721  1.07326 0.283153
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 490.68327  on 631  degrees of freedom
## AIC: 510.68327
## 
## Number of Fisher Scoring iterations: 6
confint(TMTBlog3)
##                                       2.5 %         97.5 %
## (Intercept)                 -0.130044656883 3.866276278586
## TrailsB                     -0.001972185116 0.004876943445
## SexMen                      -1.136178955393 0.373151204892
## PovStatBelow                -0.995653315165 1.257161817210
## Age                         -0.051214434188 0.001446409501
## WRATtotal                   -0.003491844780 0.061838894212
## TrailsB:SexMen              -0.005444410412 0.002553614571
## TrailsB:PovStatBelow        -0.006344026114 0.008143077348
## SexMen:PovStatBelow         -2.277018711242 1.194936380911
## TrailsB:SexMen:PovStatBelow -0.004563295552 0.022491682612
exp(cbind(OR = coef(TMTBlog3), confint(TMTBlog3)))
##                                       OR        2.5 %       97.5 %
## (Intercept)                 6.3413588358 0.8780562188 47.764193966
## TrailsB                     1.0009534958 0.9980297584  1.004888855
## SexMen                      0.6854739107 0.3210434023  1.452303919
## PovStatBelow                1.1446421059 0.3694819775  3.515429882
## Age                         0.9755969786 0.9500749201  1.001447456
## WRATtotal                   1.0298350567 0.9965142446  1.063790948
## TrailsB:SexMen              0.9988546637 0.9945703835  1.002556878
## TrailsB:PovStatBelow        0.9997325409 0.9936760547  1.008176322
## SexMen:PovStatBelow         0.6326750261 0.1025896005  3.303347608
## TrailsB:SexMen:PovStatBelow 1.0069069792 0.9954471005  1.022746528

Trail Making Test Part B - Physical Assault

Model 1

TMTBlog1 <- glm(PhysAssault ~ TrailsB, data=Allvars,family = "binomial")
summary(TMTBlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsB, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.5179902  -0.5163131  -0.5161637  -0.5160838   2.0407011  
## 
## Coefficients:
##                  Estimate    Std. Error   z value Pr(>|z|)
## (Intercept) -1.949543e+00  1.640463e-01 -11.88410  < 2e-16
## TrailsB      1.437601e-05  8.734048e-04   0.01646  0.98687
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 482.53238  on 639  degrees of freedom
## AIC: 486.53238
## 
## Number of Fisher Scoring iterations: 4
confint(TMTBlog1)
##                      2.5 %          97.5 %
## (Intercept) -2.27705346305 -1.632336504412
## TrailsB     -0.00185338485  0.001610947636
exp(cbind(OR = coef(TMTBlog1), confint(TMTBlog1)))
##                       OR        2.5 %       97.5 %
## (Intercept) 0.1423391726 0.1025860354 0.1954723182
## TrailsB     1.0000143761 0.9981483316 1.0016122459

Model 2

TMTBlog2 <- glm(PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog2)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsB + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8296252  -0.5502548  -0.4702835  -0.3852792   2.4149812  
## 
## Coefficients:
##                   Estimate    Std. Error  z value Pr(>|z|)
## (Intercept)  -1.5644450813  1.0563771828 -1.48095 0.138619
## TrailsB       0.0009793906  0.0009424128  1.03924 0.298694
## Age          -0.0361937961  0.0140596627 -2.57430 0.010044
## SexMen       -0.1672178649  0.2444699199 -0.68400 0.493974
## PovStatBelow  0.4877010257  0.2524718526  1.93170 0.053396
## WRATtotal     0.0236622246  0.0180503672  1.31090 0.189892
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 468.41667  on 635  degrees of freedom
## AIC: 480.41667
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog2)
##                        2.5 %          97.5 %
## (Intercept)  -3.672079914651  0.479179127932
## TrailsB      -0.001004125849  0.002734022888
## Age          -0.064203068212 -0.008963590412
## SexMen       -0.651102760992  0.310192286678
## PovStatBelow -0.012396682288  0.980167579083
## WRATtotal    -0.010869929017  0.060084244206
exp(cbind(OR = coef(TMTBlog2), confint(TMTBlog2)))
##                        OR         2.5 %       97.5 %
## (Intercept)  0.2092040722 0.02542353613 1.6147483562
## TrailsB      1.0009798704 0.99899637812 1.0027377637
## Age          0.9644533681 0.93781453987 0.9910764628
## SexMen       0.8460152742 0.52147040235 1.3636873078
## PovStatBelow 1.6285678773 0.98767984004 2.6649027865
## WRATtotal    1.0239443963 0.98918893518 1.0619260039

Model 3

TMTBlog3 <- glm(PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(TMTBlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsB + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8516227  -0.5472787  -0.4694062  -0.3835559   2.4223542  
## 
## Coefficients:
##                                  Estimate    Std. Error  z value Pr(>|z|)
## (Intercept)                 -1.5047592688  1.0909002395 -1.37937 0.167780
## TrailsB                      0.0006868601  0.0016674226  0.41193 0.680391
## SexMen                      -0.2700782573  0.4201320509 -0.64284 0.520327
## PovStatBelow                 0.3317966058  0.4541254889  0.73063 0.465007
## Age                         -0.0359140055  0.0140777207 -2.55112 0.010738
## WRATtotal                    0.0231490066  0.0183290360  1.26297 0.206600
## TrailsB:SexMen               0.0005718268  0.0021795065  0.26237 0.793040
## TrailsB:PovStatBelow         0.0009890884  0.0024708400  0.40030 0.688932
## SexMen:PovStatBelow          0.3715339090  0.6866325064  0.54110 0.588442
## TrailsB:SexMen:PovStatBelow -0.0022662872  0.0036875071 -0.61459 0.538829
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 467.98506  on 631  degrees of freedom
## AIC: 487.98506
## 
## Number of Fisher Scoring iterations: 5
confint(TMTBlog3)
##                                       2.5 %          97.5 %
## (Intercept)                 -3.678000065177  0.610271056575
## TrailsB                     -0.003187690537  0.003605598626
## SexMen                      -1.104549024141  0.551216412191
## PovStatBelow                -0.569590397778  1.219846577596
## Age                         -0.063961083343 -0.008649269520
## WRATtotal                   -0.011949379169  0.060101997998
## TrailsB:SexMen              -0.003782969485  0.005106246076
## TrailsB:PovStatBelow        -0.004013429847  0.006037226265
## SexMen:PovStatBelow         -0.976968870741  1.726534192337
## TrailsB:SexMen:PovStatBelow -0.010127718785  0.004822559580
exp(cbind(OR = coef(TMTBlog3), confint(TMTBlog3)))
##                                       OR         2.5 %       97.5 %
## (Intercept)                 0.2220707468 0.02527346962 1.8409303274
## TrailsB                     1.0006870961 0.99681738475 1.0036121066
## SexMen                      0.7633197567 0.33136028404 1.7353626508
## PovStatBelow                1.3934693960 0.56575712662 3.3866681030
## Age                         0.9647232508 0.93804150426 0.9913880278
## WRATtotal                   1.0234190243 0.98812173114 1.0619448573
## TrailsB:SexMen              1.0005719904 0.99622417693 1.0051193052
## TrailsB:PovStatBelow        1.0009895777 0.99599461320 1.0060554870
## SexMen:PovStatBelow         1.4499570118 0.37645044118 5.6211383251
## TrailsB:SexMen:PovStatBelow 0.9977362789 0.98992339386 1.0048342068

Digit Span Forward - Psychological Aggression

Model 1

DSFlog1 <- glm(PsychAggress ~ DigitSpanFwd, data=Allvars,family = "binomial")
summary(DSFlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.2372322   0.4749479   0.5204598   0.5697073   0.6798854  
## 
## Coefficients:
##                Estimate Std. Error z value  Pr(>|z|)
## (Intercept)  1.15244832 0.39762516 2.89833 0.0037516
## DigitSpanFwd 0.09728752 0.05324606 1.82713 0.0676801
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 501.92974  on 639  degrees of freedom
## AIC: 505.92974
## 
## Number of Fisher Scoring iterations: 4
confint(DSFlog1)
##                        2.5 %       97.5 %
## (Intercept)   0.374377408189 1.9358468923
## DigitSpanFwd -0.004952947684 0.2041858048
exp(cbind(OR = coef(DSFlog1), confint(DSFlog1)))
##                       OR        2.5 %      97.5 %
## (Intercept)  3.165934647 1.4540858308 6.929910459
## DigitSpanFwd 1.102177230 0.9950592979 1.226526027

Model 2

DSFlog2 <- glm(PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog2)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanFwd + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3744128   0.4081614   0.4996690   0.5857642   0.8451478  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)   1.78186681  0.95031940  1.87502 0.060790
## DigitSpanFwd  0.07980024  0.06020625  1.32545 0.185023
## Age          -0.02014341  0.01315337 -1.53143 0.125664
## SexMen       -0.44464385  0.23712349 -1.87516 0.060771
## PovStatBelow  0.31763163  0.27195854  1.16794 0.242830
## WRATtotal     0.01382260  0.01643467  0.84106 0.400312
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 492.71471  on 635  degrees of freedom
## AIC: 504.71471
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog2)
##                       2.5 %         97.5 %
## (Intercept)  -0.05975027523 3.672887542870
## DigitSpanFwd -0.03597106027 0.200534414414
## Age          -0.04613506996 0.005539275927
## SexMen       -0.91505007325 0.017156077690
## PovStatBelow -0.20190211803 0.868656505971
## WRATtotal    -0.01900185525 0.045600638797
exp(cbind(OR = coef(DSFlog2), confint(DSFlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  5.9409366622 0.9419997449 39.365411218
## DigitSpanFwd 1.0830706896 0.9646682103  1.222055668
## Age          0.9800581122 0.9549129734  1.005554646
## SexMen       0.6410525438 0.4004965714  1.017304088
## PovStatBelow 1.3738700750 0.8171749107  2.383706206
## WRATtotal    1.0139185723 0.9811775419  1.046656334

Model 3

DSFlog3 <- glm(PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanFwd + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.2630008   0.4174068   0.4863972   0.5671236   0.8935774  
## 
## Coefficients:
##                                     Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)                       2.05209182  1.11256614  1.84447 0.065115
## DigitSpanFwd                      0.04840210  0.09789249  0.49444 0.620995
## SexMen                           -0.95692387  0.94535760 -1.01223 0.311426
## PovStatBelow                      0.19631268  1.31459869  0.14933 0.881291
## Age                              -0.02016174  0.01320093 -1.52730 0.126687
## WRATtotal                         0.01412286  0.01656662  0.85249 0.393943
## DigitSpanFwd:SexMen               0.05684389  0.12434437  0.45715 0.647564
## DigitSpanFwd:PovStatBelow        -0.01233986  0.17920093 -0.06886 0.945101
## SexMen:PovStatBelow               0.20818361  1.84272356  0.11298 0.910050
## DigitSpanFwd:SexMen:PovStatBelow  0.02780642  0.25559331  0.10879 0.913368
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 491.87867  on 631  degrees of freedom
## AIC: 511.87867
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog3)
##                                           2.5 %         97.5 %
## (Intercept)                      -0.09264103587 4.279188872301
## DigitSpanFwd                     -0.13709893733 0.248989556080
## SexMen                           -2.82517597018 0.891305947020
## PovStatBelow                     -2.37156875814 2.815163307488
## Age                              -0.04624725628 0.005614340697
## WRATtotal                        -0.01894721632 0.046169635037
## DigitSpanFwd:SexMen              -0.18968590728 0.299953466512
## DigitSpanFwd:PovStatBelow        -0.35703284673 0.351928833638
## SexMen:PovStatBelow              -3.43757513188 3.815705043739
## DigitSpanFwd:SexMen:PovStatBelow -0.47184254317 0.537277577280
exp(cbind(OR = coef(DSFlog3), confint(DSFlog3)))
##                                            OR         2.5 %       97.5 %
## (Intercept)                      7.7841671746 0.91152064479 72.181867544
## DigitSpanFwd                     1.0495926099 0.87188395999  1.282728636
## SexMen                           0.3840725283 0.05929822119  2.438311879
## PovStatBelow                     1.2169073431 0.09333419260 16.695902124
## Age                              0.9800401451 0.95480585126  1.005630131
## WRATtotal                        1.0142230561 0.98123115387  1.047252047
## DigitSpanFwd:SexMen              1.0584905589 0.82721891659  1.349795995
## DigitSpanFwd:PovStatBelow        0.9877359661 0.69974951287  1.421807335
## SexMen:PovStatBelow              1.2314392517 0.03214253231 45.408760262
## DigitSpanFwd:SexMen:PovStatBelow 1.0281966296 0.62385173490  1.711341520

Digit Span Forward - Physical Assault

Model 1

DSFlog1 <- glm(PhysAssault ~ DigitSpanFwd, data=Allvars,family = "binomial")
summary(DSFlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanFwd, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.5494205  -0.5236506  -0.5136389  -0.5037942   2.0889323  
## 
## Coefficients:
##                 Estimate  Std. Error  z value   Pr(>|z|)
## (Intercept)  -2.10335662  0.40909469 -5.14149 2.7257e-07
## DigitSpanFwd  0.02063155  0.05157483  0.40003    0.68913
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 482.37355  on 639  degrees of freedom
## AIC: 486.37355
## 
## Number of Fisher Scoring iterations: 4
confint(DSFlog1)
##                       2.5 %        97.5 %
## (Intercept)  -2.91625120026 -1.3096826595
## DigitSpanFwd -0.08208485615  0.1205407414
exp(cbind(OR = coef(DSFlog1), confint(DSFlog1)))
##                        OR         2.5 %       97.5 %
## (Intercept)  0.1220460782 0.05413625335 0.2699056948
## DigitSpanFwd 1.0208458513 0.92119378642 1.1281067007

Model 2

DSFlog2 <- glm(PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog2)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanFwd + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8265004  -0.5482389  -0.4738375  -0.3939720   2.3907656  
## 
## Coefficients:
##                  Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)  -1.298524843  1.038991730 -1.24979 0.211375
## DigitSpanFwd -0.003763441  0.059056178 -0.06373 0.949188
## Age          -0.033411221  0.013805699 -2.42010 0.015516
## SexMen       -0.154817914  0.244319833 -0.63367 0.526297
## PovStatBelow  0.486848094  0.253371728  1.92148 0.054672
## WRATtotal     0.018102113  0.018831838  0.96125 0.336426
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 469.42166  on 635  degrees of freedom
## AIC: 481.42166
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog2)
##                       2.5 %          97.5 %
## (Intercept)  -3.37067738329  0.710740633509
## DigitSpanFwd -0.12148521302  0.110537824307
## Age          -0.06090493211 -0.006661779747
## SexMen       -0.63831368881  0.322397628627
## PovStatBelow -0.01492452321  0.981166641298
## WRATtotal    -0.01785195501  0.056119758928
exp(cbind(OR = coef(DSFlog2), confint(DSFlog2)))
##                        OR         2.5 %       97.5 %
## (Intercept)  0.2729341170 0.03436635027 2.0354982587
## DigitSpanFwd 0.9962436315 0.88560414867 1.1168785934
## Age          0.9671407691 0.94091268611 0.9933603607
## SexMen       0.8565711326 0.52818235330 1.3804335667
## PovStatBelow 1.6271794117 0.98518629550 2.6675665206
## WRATtotal    1.0182669492 0.98230644714 1.0577243481

Model 3

DSFlog3 <- glm(PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSFlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanFwd + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8189416  -0.5530261  -0.4756359  -0.3928898   2.4094491  
## 
## Coefficients:
##                                     Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)                      -1.19141039  1.18123439 -1.00861 0.313159
## DigitSpanFwd                     -0.01788098  0.09489921 -0.18842 0.850547
## SexMen                           -0.47145298  1.09257205 -0.43151 0.666099
## PovStatBelow                      0.30840246  1.14432983  0.26950 0.787541
## Age                              -0.03343420  0.01380823 -2.42132 0.015464
## WRATtotal                         0.01844323  0.01895623  0.97294 0.330584
## DigitSpanFwd:SexMen               0.03635870  0.13300570  0.27336 0.784575
## DigitSpanFwd:PovStatBelow         0.01955502  0.14871591  0.13149 0.895386
## SexMen:PovStatBelow               0.55778424  1.74829471  0.31904 0.749693
## DigitSpanFwd:SexMen:PovStatBelow -0.06335783  0.22404819 -0.28279 0.777340
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 469.29546  on 631  degrees of freedom
## AIC: 489.29546
## 
## Number of Fisher Scoring iterations: 5
confint(DSFlog3)
##                                           2.5 %          97.5 %
## (Intercept)                      -3.55771444654  1.082542539390
## DigitSpanFwd                     -0.21071775415  0.163745917874
## SexMen                           -2.63659094586  1.663594558824
## PovStatBelow                     -1.95436295090  2.551997385183
## Age                              -0.06093179996 -0.006678361512
## WRATtotal                        -0.01776097756  0.056701218367
## DigitSpanFwd:SexMen              -0.22512921830  0.298520849793
## DigitSpanFwd:PovStatBelow        -0.27523533431  0.311318252979
## SexMen:PovStatBelow              -2.87426109737  3.999016173664
## DigitSpanFwd:SexMen:PovStatBelow -0.50694634267  0.374844061673
exp(cbind(OR = coef(DSFlog3), confint(DSFlog3)))
##                                            OR         2.5 %        97.5 %
## (Intercept)                      0.3037924956 0.02850389750  2.9521760408
## DigitSpanFwd                     0.9822779381 0.81000265451  1.1779149899
## SexMen                           0.6240948123 0.07160495913  5.2782497648
## PovStatBelow                     1.3612487285 0.14165468895 12.8327100663
## Age                              0.9671185479 0.94088740615  0.9933438892
## WRATtotal                        1.0186143611 0.98239581894  1.0583395507
## DigitSpanFwd:SexMen              1.0370277652 0.79841304252  1.3478636396
## DigitSpanFwd:PovStatBelow        1.0197474749 0.75939339088  1.3652236385
## SexMen:PovStatBelow              1.7467977281 0.05645784094 54.5444613497
## DigitSpanFwd:SexMen:PovStatBelow 0.9386075471 0.60233208915  1.4547645434

Digit Span Backward - Psychological Aggression

Model 1

DSBlog1 <- glm(PsychAggress ~ DigitSpanBck, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanBck, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.1240523   0.5008340   0.5328424   0.5665973   0.6394971  
## 
## Coefficients:
##                Estimate Std. Error z value  Pr(>|z|)
## (Intercept)  1.48331289 0.32546747 4.55748 5.177e-06
## DigitSpanBck 0.06617895 0.05387261 1.22843   0.21928
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 503.84797  on 639  degrees of freedom
## AIC: 507.84797
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog1)
##                       2.5 %       97.5 %
## (Intercept)   0.84949262396 2.1271669670
## DigitSpanBck -0.03708871353 0.1744528619
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                       OR       2.5 %      97.5 %
## (Intercept)  4.407523139 2.338460072 8.391060953
## DigitSpanBck 1.068417896 0.963590648 1.190594619

Model 2

DSBlog2 <- glm(PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog2)
## 
## Call:
## glm(formula = PsychAggress ~ DigitSpanBck + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3545317   0.4187843   0.4988313   0.5806451   0.8067070  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)   2.00096614  0.93370968  2.14303 0.032111
## DigitSpanBck  0.03632517  0.06182840  0.58752 0.556857
## Age          -0.02133343  0.01313077 -1.62469 0.104229
## SexMen       -0.43391381  0.23663042 -1.83372 0.066696
## PovStatBelow  0.30340071  0.27136385  1.11806 0.263542
## WRATtotal     0.01871284  0.01689828  1.10738 0.268129
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 494.17108  on 635  degrees of freedom
## AIC: 506.17108
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog2)
##                       2.5 %        97.5 %
## (Intercept)   0.19390854671 3.86170894232
## DigitSpanBck -0.08303012544 0.15984463056
## Age          -0.04727808738 0.00431379176
## SexMen       -0.90331488233 0.02703804271
## PovStatBelow -0.21507587601 0.85330506683
## WRATtotal    -0.01488367612 0.05154513504
exp(cbind(OR = coef(DSBlog2), confint(DSBlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  7.3961984350 1.2139852549 47.546536267
## DigitSpanBck 1.0369929958 0.9203234217  1.173328557
## Age          0.9788925150 0.9538221148  1.004323110
## SexMen       0.6479681032 0.4052241605  1.027406887
## PovStatBelow 1.3544570938 0.8064802454  2.347392334
## WRATtotal    1.0188890233 0.9852265383  1.052896708

Model 3

DSBlog3 <- glm(PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3575917   0.3941302   0.4862270   0.5675464   0.9101301  
## 
## Coefficients:
##                                     Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)                       1.86140021  1.04549342  1.78040 0.075010
## DigitSpanBck                      0.09322733  0.11540742  0.80781 0.419200
## SexMen                           -0.62912202  0.78860021 -0.79777 0.425004
## PovStatBelow                      1.65113122  1.19085432  1.38651 0.165591
## Age                              -0.02285358  0.01322837 -1.72762 0.084056
## WRATtotal                         0.01774683  0.01713537  1.03568 0.300350
## DigitSpanBck:SexMen               0.01376219  0.13381759  0.10284 0.918088
## DigitSpanBck:PovStatBelow        -0.27450735  0.19328529 -1.42022 0.155544
## SexMen:PovStatBelow               0.18041472  1.54836584  0.11652 0.907241
## DigitSpanBck:SexMen:PovStatBelow  0.03101892  0.24939724  0.12438 0.901018
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 489.28665  on 631  degrees of freedom
## AIC: 509.28665
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog3)
##                                           2.5 %         97.5 %
## (Intercept)                      -0.15637002152 3.952719490181
## DigitSpanBck                     -0.12406374042 0.329083867172
## SexMen                           -2.18681354208 0.911473493328
## PovStatBelow                     -0.63382657143 4.071847414250
## Age                              -0.04900141614 0.002971879691
## WRATtotal                        -0.01629414780 0.051059483301
## DigitSpanBck:SexMen              -0.25325179436 0.273077030932
## DigitSpanBck:PovStatBelow        -0.65478254122 0.109955684785
## SexMen:PovStatBelow              -2.88490444221 3.215516594545
## DigitSpanBck:SexMen:PovStatBelow -0.45930083238 0.523585571061
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                            OR         2.5 %       97.5 %
## (Intercept)                      6.4327376266 0.85524267362 52.076796776
## DigitSpanBck                     1.0977112508 0.88332353568  1.389694400
## SexMen                           0.5330596112 0.11227393541  2.487985864
## PovStatBelow                     5.2128734000 0.53055769475 58.665241546
## Age                              0.9774055832 0.95217978127  1.002976300
## WRATtotal                        1.0179052387 0.98383788374  1.052385491
## DigitSpanBck:SexMen              1.0138573286 0.77627239620  1.314001460
## DigitSpanBck:PovStatBelow        0.7599464161 0.51955503211  1.116228603
## SexMen:PovStatBelow              1.1977139809 0.05586012715 24.916160139
## DigitSpanBck:SexMen:PovStatBelow 1.0315050224 0.63172517292  1.688069505

Digit Span Backward - Physical Assault

Model 1

DSBlog1 <- glm(PhysAssault ~ DigitSpanBck, data=Allvars,family = "binomial")
summary(DSBlog1)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanBck, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.6460561  -0.5331854  -0.4994967  -0.4833622   2.2165849  
## 
## Coefficients:
##                 Estimate  Std. Error  z value   Pr(>|z|)
## (Intercept)  -2.36700173  0.33814611 -6.99994 2.5608e-12
## DigitSpanBck  0.06971369  0.05143053  1.35549    0.17526
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 480.73485  on 639  degrees of freedom
## AIC: 484.73485
## 
## Number of Fisher Scoring iterations: 4
confint(DSBlog1)
##                       2.5 %        97.5 %
## (Intercept)  -3.04161373984 -1.7138403142
## DigitSpanBck -0.03277604975  0.1693351775
exp(cbind(OR = coef(DSBlog1), confint(DSBlog1)))
##                         OR         2.5 %       97.5 %
## (Intercept)  0.09376142765 0.04775775868 0.1801725431
## DigitSpanBck 1.07220115258 0.96775526435 1.1845170958

Model 2

DSBlog2 <- glm(PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog2)
## 
## Call:
## glm(formula = PhysAssault ~ DigitSpanBck + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8504546  -0.5507446  -0.4663366  -0.3876885   2.4000426  
## 
## Coefficients:
##                  Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)  -1.345693616  1.024586010 -1.31340 0.189047
## DigitSpanBck  0.059014101  0.060632420  0.97331 0.330400
## Age          -0.031850990  0.013777263 -2.31185 0.020786
## SexMen       -0.170211925  0.244791244 -0.69534 0.486845
## PovStatBelow  0.502315329  0.253971356  1.97784 0.047946
## WRATtotal     0.008856137  0.019220067  0.46078 0.644960
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 468.48895  on 635  degrees of freedom
## AIC: 480.48895
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog2)
##                         2.5 %          97.5 %
## (Intercept)  -3.3916650371716  0.633726336713
## DigitSpanBck -0.0613206922680  0.176938898028
## Age          -0.0592997147084 -0.005165805139
## SexMen       -0.6548052358143  0.307756719751
## PovStatBelow -0.0004322829643  0.998046082708
## WRATtotal    -0.0279935568715  0.047521446254
exp(cbind(OR = coef(DSBlog2), confint(DSBlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  0.2603590561 0.0336525974 1.8846202406
## DigitSpanBck 1.0607901986 0.9405215734 1.1935581621
## Age          0.9686509096 0.9424242684 0.9948475147
## SexMen       0.8434860420 0.5195432412 1.3603699975
## PovStatBelow 1.6525430260 0.9995678105 2.7129757161
## WRATtotal    1.0088954682 0.9723946320 1.0486686909

Model 3

DSBlog3 <- glm(PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(DSBlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (DigitSpanBck + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8330370  -0.5503165  -0.4685234  -0.3883880   2.4253245  
## 
## Coefficients:
##                                      Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)                      -1.255613150  1.120610968 -1.12047 0.262513
## DigitSpanBck                      0.044520394  0.107314778  0.41486 0.678246
## SexMen                           -0.455390497  0.908307828 -0.50136 0.616117
## PovStatBelow                      0.408942227  1.027509466  0.39799 0.690635
## Age                              -0.031862010  0.013777818 -2.31256 0.020747
## WRATtotal                         0.009189051  0.019285385  0.47648 0.633734
## DigitSpanBck:SexMen               0.038519326  0.133091347  0.28942 0.772260
## DigitSpanBck:PovStatBelow         0.008995643  0.165177626  0.05446 0.956568
## SexMen:PovStatBelow               0.440726732  1.437950626  0.30650 0.759227
## DigitSpanBck:SexMen:PovStatBelow -0.056577865  0.225188727 -0.25125 0.801624
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 468.32410  on 631  degrees of freedom
## AIC: 488.3241
## 
## Number of Fisher Scoring iterations: 5
confint(DSBlog3)
##                                           2.5 %          97.5 %
## (Intercept)                      -3.50061722477  0.901710583281
## DigitSpanBck                     -0.17306221621  0.249958352967
## SexMen                           -2.25539641606  1.319990640181
## PovStatBelow                     -1.63003034907  2.417495429761
## Age                              -0.05931303802 -0.005176631857
## WRATtotal                        -0.02780733629  0.047973667806
## DigitSpanBck:SexMen              -0.22130481581  0.302664129855
## DigitSpanBck:PovStatBelow        -0.31741437663  0.334113806200
## SexMen:PovStatBelow              -2.38215259083  3.271157547582
## DigitSpanBck:SexMen:PovStatBelow -0.50186031831  0.384406407812
exp(cbind(OR = coef(DSBlog3), confint(DSBlog3)))
##                                            OR         2.5 %        97.5 %
## (Intercept)                      0.2849011074 0.03017875060  2.4638140677
## DigitSpanBck                     1.0455262988 0.84108528408  1.2839719420
## SexMen                           0.6342002665 0.10483197842  3.7433863397
## PovStatBelow                     1.5052247559 0.19592362794 11.2177285128
## Age                              0.9686402354 0.94241171228  0.9948367438
## WRATtotal                        1.0092314004 0.97257572880  1.0491430287
## DigitSpanBck:SexMen              1.0392708131 0.80147234161  1.3534598014
## DigitSpanBck:PovStatBelow        1.0090362256 0.72802901441  1.3967020879
## SexMen:PovStatBelow              1.5538360305 0.09235156826 26.3418136048
## DigitSpanBck:SexMen:PovStatBelow 0.9449928997 0.60540336851  1.4687422287

Animal Naming Test - Psychological Aggression

Model 1

ANlog1 <- glm(PsychAggress ~ FluencyWord, data=Allvars,family = "binomial")
summary(ANlog1)
## 
## Call:
## glm(formula = PsychAggress ~ FluencyWord, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.1216821   0.4953105   0.5325412   0.5586829   0.6214751  
## 
## Coefficients:
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 1.36583844 0.42838045 3.18838 0.0014307
## FluencyWord 0.02578806 0.02163196 1.19213 0.2332111
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 503.95315  on 639  degrees of freedom
## AIC: 507.95315
## 
## Number of Fisher Scoring iterations: 4
confint(ANlog1)
##                      2.5 %        97.5 %
## (Intercept)  0.53088097605 2.21242735437
## FluencyWord -0.01598520463 0.06893413678
exp(cbind(OR = coef(ANlog1), confint(ANlog1)))
##                      OR        2.5 %      97.5 %
## (Intercept) 3.919007526 1.7004296868 9.137870344
## FluencyWord 1.026123447 0.9841418807 1.071365643

Model 2

ANlog2 <- glm(PsychAggress ~ FluencyWord + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog2)
## 
## Call:
## glm(formula = PsychAggress ~ FluencyWord + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3875983   0.4129537   0.4957884   0.5797209   0.8605072  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)   1.76445161  0.96978420  1.81943 0.068846
## FluencyWord   0.02273074  0.02415879  0.94089 0.346762
## Age          -0.02054506  0.01317532 -1.55936 0.118911
## SexMen       -0.46955395  0.24091614 -1.94903 0.051291
## PovStatBelow  0.30850666  0.27181090  1.13500 0.256373
## WRATtotal     0.01839489  0.01565678  1.17488 0.240042
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 493.62446  on 635  degrees of freedom
## AIC: 505.62446
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog2)
##                       2.5 %           97.5 %
## (Intercept)  -0.11687211989  3.6921775663759
## FluencyWord  -0.02410872691  0.0707277786548
## Age          -0.04657233118  0.0051886613254
## SexMen       -0.94753111496 -0.0005008864751
## PovStatBelow -0.21071032706  0.8592819822309
## WRATtotal    -0.01283072064  0.0487244783733
exp(cbind(OR = coef(ANlog2), confint(ANlog2)))
##                        OR        2.5 %        97.5 %
## (Intercept)  5.8383697980 0.8896989607 40.1321422807
## FluencyWord  1.0229910538 0.9761795670  1.0732890139
## Age          0.9796645505 0.9544955183  1.0052021457
## SexMen       0.6252811112 0.3876970222  0.9994992389
## PovStatBelow 1.3613905824 0.8100086705  2.3614645114
## WRATtotal    1.0185651141 0.9872512421  1.0499310322

Model 3

ANlog3 <- glm(PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (FluencyWord + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3284371   0.4143278   0.4834821   0.5638555   1.0061477  
## 
## Coefficients:
##                                     Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)                      2.008377358  1.153265820  1.74147 0.081601
## FluencyWord                      0.011819924  0.038971311  0.30330 0.761663
## SexMen                          -1.424780780  1.027353089 -1.38685 0.165489
## PovStatBelow                    -0.019326011  1.426950587 -0.01354 0.989194
## Age                             -0.020952952  0.013261269 -1.58001 0.114104
## WRATtotal                        0.019146126  0.015830367  1.20946 0.226488
## FluencyWord:SexMen               0.043940403  0.052092261  0.84351 0.398943
## FluencyWord:PovStatBelow         0.007168668  0.077333771  0.09270 0.926144
## SexMen:PovStatBelow              2.731875803  2.084764361  1.31040 0.190060
## FluencyWord:SexMen:PovStatBelow -0.119742146  0.105977707 -1.12988 0.258527
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 490.61310  on 631  degrees of freedom
## AIC: 510.6131
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog3)
##                                          2.5 %         97.5 %
## (Intercept)                     -0.23228008085 4.298218844366
## FluencyWord                     -0.06215661083 0.091173976273
## SexMen                          -3.44849509561 0.586633606389
## PovStatBelow                    -2.81316385460 2.808538918628
## Age                             -0.04715221023 0.004947069751
## WRATtotal                       -0.01238725087 0.049844768936
## FluencyWord:SexMen              -0.05919917560 0.145632770882
## FluencyWord:PovStatBelow        -0.14070102107 0.164603075661
## SexMen:PovStatBelow             -1.31542020248 6.892736638041
## FluencyWord:SexMen:PovStatBelow -0.33129449730 0.085873067677
exp(cbind(OR = coef(ANlog3), confint(ANlog3)))
##                                            OR         2.5 %        97.5 %
## (Intercept)                      7.4512168733 0.79272406538  73.568639734
## FluencyWord                      1.0118900549 0.93973570248   1.095459573
## SexMen                           0.2405611932 0.03179344649   1.797925691
## PovStatBelow                     0.9808595387 0.06001481356  16.585667497
## Age                              0.9792650362 0.95394218678   1.004959327
## WRATtotal                        1.0193305881 0.98768915531   1.051107919
## FluencyWord:SexMen               1.0449200791 0.94251902367   1.156771310
## FluencyWord:PovStatBelow         1.0071944244 0.86874901052   1.178925082
## SexMen:PovStatBelow             15.3616754843 0.26836153336 985.093576360
## FluencyWord:SexMen:PovStatBelow  0.8871491626 0.71799369070   1.089668005

Animal Naming Test - Physical Assault

Model 1

ANlog1 <- glm(PhysAssault ~ FluencyWord, data=Allvars,family = "binomial")
summary(ANlog1)
## 
## Call:
## glm(formula = PhysAssault ~ FluencyWord, family = "binomial", 
##     data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.5533511  -0.5264666  -0.5148843  -0.4979271   2.1386293  
## 
## Coefficients:
##                Estimate  Std. Error  z value   Pr(>|z|)
## (Intercept) -1.71589063  0.44187101 -3.88324 0.00010307
## FluencyWord -0.01189371  0.02197746 -0.54118 0.58838520
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 482.23740  on 639  degrees of freedom
## AIC: 486.2374
## 
## Number of Fisher Scoring iterations: 4
confint(ANlog1)
##                      2.5 %         97.5 %
## (Intercept) -2.59122387187 -0.85664979393
## FluencyWord -0.05568066658  0.03060648696
exp(cbind(OR = coef(ANlog1), confint(ANlog1)))
##                       OR         2.5 %       97.5 %
## (Intercept) 0.1798035109 0.07492828133 0.4245821399
## FluencyWord 0.9881767416 0.94584112635 1.0310796807

Model 2

ANlog2 <- glm(PhysAssault ~ FluencyWord + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog2)
## 
## Call:
## glm(formula = PhysAssault ~ FluencyWord + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8546205  -0.5507375  -0.4755007  -0.3869497   2.4487942  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)  -1.04609337  1.06197791 -0.98504 0.324603
## FluencyWord  -0.02459797  0.02437307 -1.00923 0.312866
## Age          -0.03520998  0.01391092 -2.53110 0.011370
## SexMen       -0.11481253  0.24751137 -0.46387 0.642743
## PovStatBelow  0.47094678  0.25357575  1.85722 0.063279
## WRATtotal     0.02420255  0.01833262  1.32019 0.186771
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 468.39410  on 635  degrees of freedom
## AIC: 480.3941
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog2)
##                       2.5 %          97.5 %
## (Intercept)  -3.16048184809  1.011381104822
## FluencyWord  -0.07308123930  0.022627659472
## Age          -0.06293818393 -0.008280836338
## SexMen       -0.60420415115  0.368987111755
## PovStatBelow -0.03137322672  0.965505520224
## WRATtotal    -0.01073216937  0.061288898671
exp(cbind(OR = coef(ANlog2), confint(ANlog2)))
##                        OR         2.5 %       97.5 %
## (Intercept)  0.3513074990 0.04240530324 2.7493955976
## FluencyWord  0.9757020972 0.92952531297 1.0228856069
## Age          0.9654026749 0.93900151728 0.9917533553
## SexMen       0.8915332619 0.54650919233 1.4462689637
## PovStatBelow 1.6015097478 0.96911380640 2.6261148752
## WRATtotal    1.0244978074 0.98932521489 1.0632060286

Model 3

ANlog3 <- glm(PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(ANlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (FluencyWord + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8524626  -0.5493344  -0.4680542  -0.3800857   2.5157463  
## 
## Coefficients:
##                                     Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)                     -1.600446122  1.212630710 -1.31981 0.186897
## FluencyWord                      0.003623519  0.036623808  0.09894 0.921187
## SexMen                           0.975862761  1.161915414  0.83987 0.400979
## PovStatBelow                     1.495935503  1.229963696  1.21624 0.223892
## Age                             -0.034896957  0.013936941 -2.50392 0.012283
## WRATtotal                        0.024425870  0.018370850  1.32960 0.183650
## FluencyWord:SexMen              -0.056565304  0.056060986 -1.00900 0.312977
## FluencyWord:PovStatBelow        -0.057080798  0.064744182 -0.88164 0.377974
## SexMen:PovStatBelow             -1.816965339  1.938738767 -0.93719 0.348661
## FluencyWord:SexMen:PovStatBelow  0.098700237  0.097334923  1.01403 0.310570
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 466.96663  on 631  degrees of freedom
## AIC: 486.96663
## 
## Number of Fisher Scoring iterations: 5
confint(ANlog3)
##                                          2.5 %          97.5 %
## (Intercept)                     -4.01506723107  0.747960668721
## FluencyWord                     -0.06998105611  0.074381636056
## SexMen                          -1.31267722001  3.255391216162
## PovStatBelow                    -0.90815520953  3.931751771500
## Age                             -0.06267744800 -0.007917640949
## WRATtotal                       -0.01061634267  0.061555508928
## FluencyWord:SexMen              -0.16772931438  0.052793528479
## FluencyWord:PovStatBelow        -0.18772678495  0.067587070147
## SexMen:PovStatBelow             -5.66030107622  1.961694248319
## FluencyWord:SexMen:PovStatBelow -0.09128824614  0.291518236523
exp(cbind(OR = coef(ANlog3), confint(ANlog3)))
##                                           OR          2.5 %       97.5 %
## (Intercept)                     0.2018064676 0.018041741544  2.112687151
## FluencyWord                     1.0036300917 0.932411483242  1.077217832
## SexMen                          2.6534555209 0.269098654836 25.929756690
## PovStatBelow                    4.4635102282 0.403267482254 50.996233217
## Age                             0.9657049204 0.939246380636  0.992113621
## WRATtotal                       1.0247266255 0.989439811800  1.063489528
## FluencyWord:SexMen              0.9450047695 0.845582690783  1.054211958
## FluencyWord:PovStatBelow        0.9445177510 0.828841128174  1.069923414
## SexMen:PovStatBelow             0.1625181909 0.003481468553  7.111365283
## FluencyWord:SexMen:PovStatBelow 1.1037353907 0.912754574995  1.338458042

Stroop Color-Word Test - Psychological Aggression

Model 1

SCWTlog1 <- glm(PsychAggress ~ StroopMixed, data=StroopMixed,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed, family = "binomial", 
##     data = StroopMixed)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3247904   0.4332109   0.5120195   0.5922912   0.8944092  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.55268246 0.38541196 1.43400 0.151571
## StroopMixed 0.03924981 0.01221460 3.21335 0.001312
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.03956  on 547  degrees of freedom
## Residual deviance: 441.35555  on 546  degrees of freedom
## AIC: 445.35555
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                      2.5 %        97.5 %
## (Intercept) -0.19647466130 1.31824277010
## StroopMixed  0.01558200695 0.06356160915
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                      OR        2.5 %      97.5 %
## (Intercept) 1.737908637 0.8216221499 3.736849101
## StroopMixed 1.040030257 1.0157040394 1.065625136

Model 2

SCWTlog2 <- glm(PsychAggress ~ StroopMixed + Age + Sex + PovStat + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3955975   0.4029892   0.5068707   0.5948066   0.9438007  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)   0.99698150  1.12673566  0.88484 0.376243
## StroopMixed   0.02973078  0.01418808  2.09548 0.036129
## Age          -0.01788863  0.01502404 -1.19067 0.233784
## SexMen       -0.32165183  0.24817679 -1.29606 0.194955
## PovStatBelow  0.28469513  0.28845607  0.98696 0.323661
## WRATtotal     0.01799801  0.01818214  0.98987 0.322236
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.03956  on 547  degrees of freedom
## Residual deviance: 435.88526  on 542  degrees of freedom
## AIC: 447.88526
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog2)
##                        2.5 %        97.5 %
## (Intercept)  -1.202319724087 3.22403984948
## StroopMixed   0.002045792217 0.05778364820
## Age          -0.047571215322 0.01146232261
## SexMen       -0.811751656288 0.16397947805
## PovStatBelow -0.267438077077 0.86796108777
## WRATtotal    -0.018211854756 0.05328156080
exp(cbind(OR = coef(SCWTlog2), confint(SCWTlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  2.7100890651 0.3004963342 25.129434529
## StroopMixed  1.0301771476 1.0020478863  1.059485749
## Age          0.9822704262 0.9535425639  1.011528267
## SexMen       0.7249505541 0.4440795099  1.178190136
## PovStatBelow 1.3293566890 0.7653377211  2.382049110
## WRATtotal    1.0181609529 0.9819529789  1.054726573

Model 3

SCWTlog3 <- glm(PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (StroopMixed + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3827496   0.3928600   0.5067206   0.6023454   0.9832938  
## 
## Coefficients:
##                                    Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)                      0.51878063  1.25468058  0.41348 0.679258
## StroopMixed                      0.04567790  0.02265326  2.01639 0.043759
## SexMen                           0.36679095  0.92213851  0.39776 0.690806
## PovStatBelow                     0.47414614  1.32993836  0.35652 0.721453
## Age                             -0.01746358  0.01506189 -1.15945 0.246271
## WRATtotal                        0.01894128  0.01835879  1.03173 0.302200
## StroopMixed:SexMen              -0.02634958  0.02887660 -0.91249 0.361511
## StroopMixed:PovStatBelow        -0.01308719  0.04322584 -0.30276 0.762070
## SexMen:PovStatBelow             -0.12799566  1.76637272 -0.07246 0.942234
## StroopMixed:SexMen:PovStatBelow  0.01669747  0.05833408  0.28624 0.774695
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 452.03956  on 547  degrees of freedom
## Residual deviance: 434.45099  on 538  degrees of freedom
## AIC: 454.45099
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                                           2.5 %        97.5 %
## (Intercept)                     -1.933308023460 2.99882242367
## StroopMixed                      0.002187171733 0.09153844610
## SexMen                          -1.446357086521 2.18326043599
## PovStatBelow                    -2.110003806914 3.15042319088
## Age                             -0.047217544575 0.01196513381
## WRATtotal                       -0.017581383972 0.05460430761
## StroopMixed:SexMen              -0.083643506742 0.02999360088
## StroopMixed:PovStatBelow        -0.096984596868 0.07394835759
## SexMen:PovStatBelow             -3.603769498763 3.36101186498
## StroopMixed:SexMen:PovStatBelow -0.098817960598 0.13091968462
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                                           OR         2.5 %       97.5 %
## (Intercept)                     1.6799778869 0.14466883814 20.061898591
## StroopMixed                     1.0467371989 1.00218956534  1.095858907
## SexMen                          1.4430962027 0.23542636572  8.875196145
## PovStatBelow                    1.6066417667 0.12123750489 23.345942281
## Age                             0.9826880221 0.95387986363  1.012037002
## WRATtotal                       1.0191218006 0.98257226678  1.056122632
## StroopMixed:SexMen              0.9739945380 0.91975908557  1.030447940
## StroopMixed:PovStatBelow        0.9869980721 0.90756998545  1.076751198
## SexMen:PovStatBelow             0.8798572017 0.02722091959 28.818336396
## StroopMixed:SexMen:PovStatBelow 1.0168376491 0.90590760389  1.139876228

Stroop Color-Word Test - Physical Assault

Model 1

SCWTlog1 <- glm(PhysAssault ~ StroopMixed, data=StroopMixed,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed, family = "binomial", 
##     data = StroopMixed)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.5817233  -0.5062837  -0.4888048  -0.4694833   2.1973758  
## 
## Coefficients:
##                Estimate  Std. Error  z value   Pr(>|z|)
## (Intercept) -2.39524495  0.45602129 -5.25248 1.5006e-07
## StroopMixed  0.01067228  0.01296188  0.82336     0.4103
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.01831  on 547  degrees of freedom
## Residual deviance: 390.34029  on 546  degrees of freedom
## AIC: 394.34029
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                      2.5 %       97.5 %
## (Intercept) -3.31626203628 -1.525836593
## StroopMixed -0.01475071005  0.036146176
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                        OR         2.5 %       97.5 %
## (Intercept) 0.09115034935 0.03628822261 0.2174390728
## StroopMixed 1.01072942912 0.98535754872 1.0368073918

Model 2

SCWTlog2 <- glm(PhysAssault ~ StroopMixed + Age + Sex + PovStat + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed + Age + Sex + PovStat + 
##     WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8575227  -0.5252132  -0.4386811  -0.3595507   2.4818343  
## 
## Coefficients:
##                  Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)  -1.923474630  1.308108704 -1.47042 0.141447
## StroopMixed  -0.002239192  0.015750902 -0.14216 0.886951
## Age          -0.030718242  0.016569900 -1.85386 0.063759
## SexMen       -0.340829462  0.279464016 -1.21958 0.222623
## PovStatBelow  0.670720379  0.289539404  2.31651 0.020531
## WRATtotal     0.028232998  0.022555026  1.25174 0.210665
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.01831  on 547  degrees of freedom
## Residual deviance: 376.77391  on 542  degrees of freedom
## AIC: 388.77391
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog2)
##                       2.5 %         97.5 %
## (Intercept)  -4.52828769402 0.613429347591
## StroopMixed  -0.03313449993 0.028730581884
## Age          -0.06373627558 0.001399405771
## SexMen       -0.89963957447 0.200617506776
## PovStatBelow  0.09865658575 1.237696041307
## WRATtotal    -0.01471822033 0.073934790692
exp(cbind(OR = coef(SCWTlog2), confint(SCWTlog2)))
##                        OR        2.5 %      97.5 %
## (Intercept)  0.1460984411 0.0107991517 1.846753712
## StroopMixed  0.9977633134 0.9674084345 1.029147286
## Age          0.9697487689 0.9382524070 1.001400385
## SexMen       0.7111801812 0.4067162242 1.222157216
## PovStatBelow 1.9556456191 1.1036872126 3.447661039
## WRATtotal    1.0286353264 0.9853895632 1.076736590

Model 3

SCWTlog3 <- glm(PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + Age + WRATtotal, data = StroopMixed, family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (StroopMixed + Sex + PovStat)^3 + 
##     Age + WRATtotal, family = "binomial", data = StroopMixed)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8173694  -0.5563736  -0.4236083  -0.3231578   2.5110847  
## 
## Coefficients:
##                                    Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)                     -2.78652460  1.43745275 -1.93852 0.052560
## StroopMixed                      0.02098870  0.02256839  0.93000 0.352369
## SexMen                           1.84015015  1.24297147  1.48044 0.138755
## PovStatBelow                     1.24603986  1.35126388  0.92213 0.356461
## Age                             -0.02923893  0.01666756 -1.75424 0.079389
## WRATtotal                        0.02940014  0.02237084  1.31422 0.188773
## StroopMixed:SexMen              -0.07247627  0.03616851 -2.00385 0.045086
## StroopMixed:PovStatBelow        -0.02214878  0.03822761 -0.57939 0.562325
## SexMen:PovStatBelow             -2.03682950  1.95253406 -1.04317 0.296868
## StroopMixed:SexMen:PovStatBelow  0.07915210  0.05825065  1.35882 0.174204
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 391.01831  on 547  degrees of freedom
## Residual deviance: 371.46540  on 538  degrees of freedom
## AIC: 391.4654
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                                          2.5 %          97.5 %
## (Intercept)                     -5.66663487145 -0.016991477639
## StroopMixed                     -0.02299516918  0.065885642183
## SexMen                          -0.63428161853  4.271705151018
## PovStatBelow                    -1.46094827835  3.874539035875
## Age                             -0.06242360679  0.003099514199
## WRATtotal                       -0.01319397304  0.074756969610
## StroopMixed:SexMen              -0.14463656846 -0.002266139709
## StroopMixed:PovStatBelow        -0.09735843033  0.053418320310
## SexMen:PovStatBelow             -5.89405066129  1.798465501597
## StroopMixed:SexMen:PovStatBelow -0.03451700485  0.194549934874
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                                            OR          2.5 %        97.5 %
## (Intercept)                     0.06163504843 0.003459487330  0.9831520634
## StroopMixed                     1.02121051054 0.977267204759  1.0681045641
## SexMen                          6.29748377662 0.530316320927 71.6436948441
## PovStatBelow                    3.47654803065 0.232016154483 48.1604929141
## Age                             0.97118439243 0.939484830335  1.0031043227
## WRATtotal                       1.02983658962 0.986892685875  1.0776222241
## StroopMixed:SexMen              0.93008781971 0.865336726632  0.9977364260
## StroopMixed:PovStatBelow        0.97809470109 0.907230768824  1.0548708267
## SexMen:PovStatBelow             0.13044162062 0.002755791281  6.0403714089
## StroopMixed:SexMen:PovStatBelow 1.08236893586 0.966071911637  1.2147641405

California Verbal Learning Test (Total Correct Trial A) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLtca, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLtca, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.2397259   0.4638957   0.5138944   0.5604258   0.7019255  
## 
## Coefficients:
##               Estimate Std. Error z value   Pr(>|z|)
## (Intercept) 1.27530094 0.28686158  4.4457 8.7606e-06
## CVLtca      0.03102604 0.01435262  2.1617   0.030641
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 500.72672  on 639  degrees of freedom
## AIC: 504.72672
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                      2.5 %        97.5 %
## (Intercept) 0.726387844575 1.85354798148
## CVLtca      0.002905057604 0.05927112174
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                      OR       2.5 %      97.5 %
## (Intercept) 3.579778559 2.067598615 6.382424121
## CVLtca      1.031512363 1.002909281 1.061062879

Model 2

CVLTlog2 <- glm(PsychAggress ~ CVLtca + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ CVLtca + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.4012837   0.4155605   0.4937615   0.5809894   0.8756141  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)   1.69988103  0.96538268  1.76084 0.078266
## CVLtca        0.01946184  0.01610695  1.20829 0.226936
## Age          -0.01841877  0.01339162 -1.37540 0.169009
## SexMen       -0.37454937  0.24039349 -1.55807 0.119217
## PovStatBelow  0.33198602  0.27314680  1.21541 0.224209
## WRATtotal     0.01786747  0.01537027  1.16247 0.245045
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 493.07048  on 635  degrees of freedom
## AIC: 505.07048
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                       2.5 %         97.5 %
## (Intercept)  -0.17016237008 3.622026456787
## CVLtca       -0.01231725862 0.050931166004
## Age          -0.04485799931 0.007752946445
## SexMen       -0.85096655099 0.094038698909
## PovStatBelow -0.18985492063 0.885330955413
## WRATtotal    -0.01277706871 0.047655994449
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  5.4732961850 0.8435278418 37.413307505
## CVLtca       1.0196524523 0.9877582883  1.052250460
## Age          0.9817498197 0.9561332438  1.007783078
## SexMen       0.6875990618 0.4270020132  1.098602260
## PovStatBelow 1.3937333672 0.8270791174  2.423786424
## WRATtotal    1.0180280502 0.9873042115  1.048809797

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLtca + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLtca + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3337143   0.4129433   0.4814082   0.5690541   0.9980326  
## 
## Coefficients:
##                                Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)                 1.507921293  1.041508943  1.44782  0.14767
## CVLtca                      0.032916962  0.027323093  1.20473  0.22831
## SexMen                     -0.490834712  0.717735451 -0.68387  0.49406
## PovStatBelow                1.064530628  1.054751143  1.00927  0.31284
## Age                        -0.018731017  0.013524879 -1.38493  0.16607
## WRATtotal                   0.017975760  0.015500834  1.15966  0.24619
## CVLtca:SexMen               0.002083142  0.035675962  0.05839  0.95344
## CVLtca:PovStatBelow        -0.047365862  0.048002417 -0.98674  0.32377
## SexMen:PovStatBelow         0.365349265  1.389996792  0.26284  0.79267
## CVLtca:SexMen:PovStatBelow -0.009220450  0.068860863 -0.13390  0.89348
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 490.17679  on 631  degrees of freedom
## AIC: 510.17679
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                     2.5 %         97.5 %
## (Intercept)                -0.49988121076 3.595142572027
## CVLtca                     -0.02103624718 0.086641646843
## SexMen                     -1.93022741877 0.897900681030
## PovStatBelow               -0.91709632477 3.263924014249
## Age                        -0.04543933840 0.007698432371
## WRATtotal                  -0.01291089144 0.048037701710
## CVLtca:SexMen              -0.06781451916 0.072447799611
## CVLtca:PovStatBelow        -0.14316688865 0.046005025572
## SexMen:PovStatBelow        -2.39711923176 3.102579238154
## CVLtca:SexMen:PovStatBelow -0.14502772106 0.125832049476
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                      OR         2.5 %       97.5 %
## (Intercept)                4.5173308195 0.60660271331 36.420892218
## CVLtca                     1.0334647188 0.97918347129  1.090505823
## SexMen                     0.6121152411 0.14511519281  2.454445036
## PovStatBelow               2.8994777297 0.39967789260 26.151956714
## Age                        0.9814433180 0.95557756768  1.007728141
## WRATtotal                  1.0181382965 0.98717209659  1.049210212
## CVLtca:SexMen              1.0020853132 0.93443377707  1.075136682
## CVLtca:PovStatBelow        0.9537383968 0.86660942955  1.047079673
## SexMen:PovStatBelow        1.4410172169 0.09097966748 22.255278983
## CVLtca:SexMen:PovStatBelow 0.9908219276 0.86499831411  1.134091681

California Verbal Learning Test (Total Correct Trial A) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLtca, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLtca, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.6067031  -0.5308979  -0.5087078  -0.4873320   2.1694554  
## 
## Coefficients:
##                Estimate  Std. Error  z value   Pr(>|z|)
## (Intercept) -2.25338404  0.33030215 -6.82219 8.9663e-12
## CVLtca       0.01521485  0.01505192  1.01082     0.3121
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 481.50242  on 639  degrees of freedom
## AIC: 485.50242
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                      2.5 %         97.5 %
## (Intercept) -2.92543924566 -1.62855333958
## CVLtca      -0.01407327415  0.04501824839
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                      OR         2.5 %       97.5 %
## (Intercept) 0.105043152 0.05364112511 0.1962132228
## CVLtca      1.015331186 0.98602529145 1.0460469484

Model 2

CVLTlog2 <- glm(PhysAssault ~ CVLtca + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ CVLtca + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8202860  -0.5516455  -0.4716284  -0.3931618   2.3908967  
## 
## Coefficients:
##                  Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)  -1.369387802  1.063371647 -1.28778 0.197823
## CVLtca        0.003692358  0.016614634  0.22224 0.824131
## Age          -0.032616369  0.014098367 -2.31349 0.020696
## SexMen       -0.143840415  0.249702346 -0.57605 0.564583
## PovStatBelow  0.494611203  0.254675391  1.94212 0.052122
## WRATtotal     0.016374809  0.017888096  0.91540 0.359980
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 469.37622  on 635  degrees of freedom
## AIC: 481.37622
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                        2.5 %          97.5 %
## (Intercept)  -3.491971077425  0.685248919335
## CVLtca       -0.028593810017  0.036641979335
## Age          -0.060680847024 -0.005287058702
## SexMen       -0.637616291710  0.344169066695
## PovStatBelow -0.009561474772  0.991649369562
## WRATtotal    -0.017785200011  0.052499541818
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  0.2542625709 0.0304408118 1.9842656962
## CVLtca       1.0036991836 0.9718111243 1.0373215718
## Age          0.9679098083 0.9411235542 0.9947268932
## SexMen       0.8660259417 0.5285508346 1.4108171375
## PovStatBelow 1.6398605427 0.9904840908 2.6956769752
## WRATtotal    1.0165096114 0.9823720232 1.0539020792

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLtca + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLtca + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8807150  -0.5520694  -0.4698589  -0.3868094   2.3691596  
## 
## Coefficients:
##                               Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)                -1.56944394  1.17684565 -1.33360 0.182334
## CVLtca                      0.01507351  0.02827328  0.53314 0.593939
## SexMen                      0.31859214  0.90423281  0.35233 0.724588
## PovStatBelow                1.19627951  0.93802275  1.27532 0.202196
## Age                        -0.03284666  0.01415330 -2.32078 0.020299
## WRATtotal                   0.01566060  0.01801605  0.86926 0.384706
## CVLtca:SexMen              -0.02337847  0.04019146 -0.58168 0.560784
## CVLtca:PovStatBelow        -0.03455877  0.04090742 -0.84480 0.398220
## SexMen:PovStatBelow        -1.59191293  1.38679936 -1.14790 0.251008
## CVLtca:SexMen:PovStatBelow  0.08675023  0.06569447  1.32051 0.186665
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 467.48473  on 631  degrees of freedom
## AIC: 487.48473
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                     2.5 %          97.5 %
## (Intercept)                -3.94186703434  0.682851593602
## CVLtca                     -0.03911155521  0.072130045296
## SexMen                     -1.45623020983  2.114702092404
## PovStatBelow               -0.64898891305  3.058400756279
## Age                        -0.06103090000 -0.005420144785
## WRATtotal                  -0.01877806919  0.052007523899
## CVLtca:SexMen              -0.10277124013  0.055227806485
## CVLtca:PovStatBelow        -0.11546732555  0.045572506357
## SexMen:PovStatBelow        -4.37034665690  1.095833308039
## CVLtca:SexMen:PovStatBelow -0.04073430332  0.217556779457
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                      OR         2.5 %        97.5 %
## (Intercept)                0.2081608997 0.01941193814  1.9795144624
## CVLtca                     1.0151876931 0.96164342683  1.0747951070
## SexMen                     1.3751903263 0.23311340902  8.2871166034
## PovStatBelow               3.3077874136 0.52257387737 21.2934764591
## Age                        0.9676869330 0.94079416878  0.9945945177
## WRATtotal                  1.0157838727 0.98139714034  1.0533836680
## CVLtca:SexMen              0.9768926876 0.90233336753  1.0567813289
## CVLtca:PovStatBelow        0.9660315676 0.89094968305  1.0466268890
## SexMen:PovStatBelow        0.2035358901 0.01264685569  2.9916746315
## CVLtca:SexMen:PovStatBelow 1.0906242410 0.96008418724  1.2430360064

California Verbal Learning Test (Long Delayed Free Recall) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLfrl, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrl, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.4382217   0.4087501   0.5131784   0.5736875   0.7124874  
## 
## Coefficients:
##               Estimate Std. Error z value   Pr(>|z|)
## (Intercept) 1.24154095 0.20845829 5.95582 2.5876e-09
## CVLfrl      0.11988490 0.03650983 3.28363  0.0010248
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 494.00990  on 639  degrees of freedom
## AIC: 498.0099
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog1)
##                     2.5 %       97.5 %
## (Intercept) 0.84167992958 1.6603765594
## CVLfrl      0.04955221742 0.1929285523
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                      OR       2.5 %      97.5 %
## (Intercept) 3.460942491 2.320261581 5.261291660
## CVLfrl      1.127367079 1.050800461 1.212796139

Model 2

CVLTlog2 <- glm(PsychAggress ~ CVLfrl + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrl + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.4603786   0.3884587   0.4866815   0.5876138   0.8771856  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)   1.48555397  0.95470336  1.55604 0.119699
## CVLfrl        0.09764001  0.03976352  2.45552 0.014068
## Age          -0.01359497  0.01351067 -1.00624 0.314300
## SexMen       -0.32574514  0.24040730 -1.35497 0.175426
## PovStatBelow  0.34544762  0.27275979  1.26649 0.205338
## WRATtotal     0.01366706  0.01512438  0.90364 0.366184
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 488.38073  on 635  degrees of freedom
## AIC: 500.38073
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                       2.5 %        97.5 %
## (Intercept)  -0.36542427085 3.38494072664
## CVLfrl        0.02029871535 0.17648431810
## Age          -0.04025045601 0.01282704691
## SexMen       -0.80195753589 0.14310288698
## PovStatBelow -0.17561150180 0.89805025014
## WRATtotal    -0.01652091101 0.04294845630
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  4.4174118474 0.6939021859 29.516243137
## CVLfrl       1.1025658052 1.0205061353  1.193015718
## Age          0.9864970210 0.9605488338  1.012909666
## SexMen       0.7219891676 0.4484502469  1.153848512
## PovStatBelow 1.4126220974 0.8389438482  2.454812172
## WRATtotal    1.0137608836 0.9836148108  1.043884088

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLfrl + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLfrl + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.4092127   0.3890613   0.4796106   0.5819100   0.9065641  
## 
## Coefficients:
##                                Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)                 1.594363723  0.995643748  1.60134  0.10930
## CVLfrl                      0.081954124  0.064864529  1.26347  0.20642
## SexMen                     -0.539601167  0.519371314 -1.03895  0.29883
## PovStatBelow                0.034576389  0.728639041  0.04745  0.96215
## Age                        -0.013555334  0.013552655 -1.00020  0.31721
## WRATtotal                   0.014484977  0.015216710  0.95191  0.34114
## CVLfrl:SexMen               0.020872420  0.087236895  0.23926  0.81090
## CVLfrl:PovStatBelow         0.019247162  0.118391029  0.16257  0.87085
## SexMen:PovStatBelow         0.403465918  0.951778351  0.42391  0.67163
## CVLfrl:SexMen:PovStatBelow  0.007242629  0.175255397  0.04133  0.96704
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 487.69940  on 631  degrees of freedom
## AIC: 507.6994
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                     2.5 %        97.5 %
## (Intercept)                -0.33012860190 3.58191680807
## CVLfrl                     -0.04333937278 0.21245834135
## SexMen                     -1.58108983304 0.46411695548
## PovStatBelow               -1.35788725547 1.53077967330
## Age                        -0.04029900194 0.01294495147
## WRATtotal                  -0.01586668780 0.04396448680
## CVLfrl:SexMen              -0.15057415018 0.19264864758
## CVLfrl:PovStatBelow        -0.21063952488 0.25722476736
## SexMen:PovStatBelow        -1.48466749805 2.27285706858
## CVLfrl:SexMen:PovStatBelow -0.33464295343 0.35634529753
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                      OR        2.5 %       97.5 %
## (Intercept)                4.9251942884 0.7188312844 35.942369484
## CVLfrl                     1.0854060141 0.9575863562  1.236714593
## SexMen                     0.5829807177 0.2057507420  1.590608990
## PovStatBelow               1.0351811014 0.2572036088  4.621778895
## Age                        0.9865361255 0.9605022042  1.013029100
## WRATtotal                  1.0145903926 0.9842585250  1.044945245
## CVLfrl:SexMen              1.0210917729 0.8602139426  1.212456719
## CVLfrl:PovStatBelow        1.0194335823 0.8100660229  1.293335794
## SexMen:PovStatBelow        1.4970042106 0.2265776657  9.707095069
## CVLfrl:SexMen:PovStatBelow 1.0072689206 0.7155935410  1.428100583

California Verbal Learning Test (Long Delayed Free Recall) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLfrl, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrl, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.6037338  -0.5267193  -0.5088354  -0.4830055   2.1318126  
## 
## Coefficients:
##                Estimate  Std. Error  z value Pr(>|z|)
## (Intercept) -2.16353104  0.24189383 -8.94414   <2e-16
## CVLfrl       0.03690981  0.03499808  1.05462   0.2916
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 481.42424  on 639  degrees of freedom
## AIC: 485.42424
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                      2.5 %        97.5 %
## (Intercept) -2.65528125160 -1.7053017484
## CVLfrl      -0.03197076535  0.1055069029
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                       OR         2.5 %       97.5 %
## (Intercept) 0.1149186221 0.07027906978 0.1817175449
## CVLfrl      1.0375994331 0.96853489645 1.1112737756

Model 2

CVLTlog2 <- glm(PhysAssault ~ CVLfrl + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrl + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8221971  -0.5504921  -0.4723514  -0.3947454   2.3860246  
## 
## Coefficients:
##                  Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)  -1.326022308  1.048692746 -1.26445 0.206068
## CVLfrl        0.003212396  0.038749967  0.08290 0.933931
## Age          -0.033009090  0.014255224 -2.31558 0.020581
## SexMen       -0.151689112  0.248635745 -0.61009 0.541805
## PovStatBelow  0.489546712  0.253615839  1.93027 0.053574
## WRATtotal     0.017180968  0.017742214  0.96837 0.332861
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 469.41885  on 635  degrees of freedom
## AIC: 481.41885
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                       2.5 %          97.5 %
## (Intercept)  -3.41939734084  0.700297484672
## CVLfrl       -0.07270854393  0.079504532952
## Age          -0.06136405887 -0.005354469107
## SexMen       -0.64344727848  0.334149873290
## PovStatBelow -0.01264032142  0.984415505947
## WRATtotal    -0.01669413496  0.053017532859
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                        OR         2.5 %       97.5 %
## (Intercept)  0.2655313655 0.03273215533 2.0143518571
## CVLfrl       1.0032175615 0.92987180732 1.0827504676
## Age          0.9675297649 0.94048078707 0.9946598405
## SexMen       0.8592553713 0.52547782972 1.3967524638
## PovStatBelow 1.6315764780 0.98743923190 2.6762471766
## WRATtotal    1.0173294095 0.98344443991 1.0544481324

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLfrl + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrl + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.9607832  -0.5455750  -0.4611073  -0.3756312   2.3879734  
## 
## Coefficients:
##                               Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)                -1.54115885  1.11091043 -1.38729 0.165352
## CVLfrl                      0.05846810  0.06310805  0.92648 0.354199
## SexMen                      0.16453283  0.66351677  0.24797 0.804157
## PovStatBelow                1.74986865  0.69445905  2.51976 0.011744
## Age                        -0.03334298  0.01429076 -2.33318 0.019638
## WRATtotal                   0.01402218  0.01794100  0.78157 0.434466
## CVLfrl:SexMen              -0.04767578  0.09092512 -0.52434 0.600041
## CVLfrl:PovStatBelow        -0.21185038  0.10025197 -2.11318 0.034585
## SexMen:PovStatBelow        -1.68383287  1.02210873 -1.64741 0.099474
## CVLfrl:SexMen:PovStatBelow  0.30139555  0.15435288  1.95264 0.050862
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 463.47961  on 631  degrees of freedom
## AIC: 483.47961
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                      2.5 %          97.5 %
## (Intercept)                -3.768138753587  0.596098026995
## CVLfrl                     -0.063914094158  0.184956138930
## SexMen                     -1.134460896519  1.487606632928
## PovStatBelow                0.394379811850  3.136825837922
## Age                        -0.061778689335 -0.005627172106
## WRATtotal                  -0.020308029830  0.050188402641
## CVLfrl:SexMen              -0.228410112243  0.129351706763
## CVLfrl:PovStatBelow        -0.412916522743 -0.018096869923
## SexMen:PovStatBelow        -3.734693588956  0.293286422948
## CVLfrl:SexMen:PovStatBelow  0.001638780937  0.608694441497
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog3)))
## Warning in cbind(OR = coef(CVLTlog2), confint(CVLTlog3)): number of rows of result is not a multiple of vector length
## (arg 1)
##                                      OR         2.5 %        97.5 %
## (Intercept)                0.2655313655 0.02309500881  1.8150227952
## CVLfrl                     1.0032175615 0.93808558310  1.2031656668
## SexMen                     0.9675297649 0.32159544784  4.4264886189
## PovStatBelow               0.8592553713 1.48346387885 23.0306477069
## Age                        1.6315764780 0.94009091592  0.9943886308
## WRATtotal                  1.0173294095 0.97989678937  1.0514691773
## CVLfrl:SexMen              0.2655313655 0.79579782647  1.1380903278
## CVLfrl:PovStatBelow        1.0032175615 0.66171751889  0.9820658951
## SexMen:PovStatBelow        0.9675297649 0.02388048719  1.3408267790
## CVLfrl:SexMen:PovStatBelow 0.8592553713 1.00164012447  1.8380301757

California Verbal Learning Test (Short Delayed Free Recall) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLfrs, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrs, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.3304536   0.4406188   0.5231567   0.5692655   0.6716823  
## 
## Coefficients:
##               Estimate Std. Error z value   Pr(>|z|)
## (Intercept) 1.37417808 0.21529691 6.38271 1.7398e-10
## CVLfrs      0.09091905 0.03594629 2.52930   0.011429
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 498.81117  on 639  degrees of freedom
## AIC: 502.81117
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                     2.5 %       97.5 %
## (Intercept) 0.96232300602 1.8079209989
## CVLfrs      0.02130091602 0.1624841878
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                      OR       2.5 %      97.5 %
## (Intercept) 3.951827287 2.617770512 6.097757002
## CVLfrs      1.095180344 1.021529400 1.176429716

Model 2

CVLTlog2 <- glm(PsychAggress ~ CVLfrs + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrs + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.4021833   0.4033347   0.4940124   0.5796325   0.8528028  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)   1.68964611  0.95005413  1.77847 0.075326
## CVLfrs        0.06416270  0.03918655  1.63737 0.101554
## Age          -0.01655299  0.01349068 -1.22699 0.219825
## SexMen       -0.37563476  0.23871864 -1.57355 0.115592
## PovStatBelow  0.32174455  0.27221934  1.18193 0.237233
## WRATtotal     0.01667966  0.01516767  1.09968 0.271469
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 491.82259  on 635  degrees of freedom
## AIC: 503.82259
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                       2.5 %         97.5 %
## (Intercept)  -0.15074294567 3.581577714600
## CVLfrs       -0.01239183729 0.141526009626
## Age          -0.04317354960 0.009825014526
## SexMen       -0.84877073791 0.089687004419
## PovStatBelow -0.19825756499 0.873317859342
## WRATtotal    -0.01356016632 0.046079221533
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                        OR        2.5 %       97.5 %
## (Intercept)  5.4175631646 0.8600687546 35.930183728
## CVLfrs       1.0662658662 0.9876846254  1.152030468
## Age          0.9835832608 0.9577451593  1.009873438
## SexMen       0.6868531565 0.4279406600  1.093831866
## PovStatBelow 1.3795323255 0.8201585818  2.394843440
## WRATtotal    1.0168195435 0.9865313586  1.047157365

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLfrs + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLfrs + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -2.4190888   0.4137243   0.4818654   0.5749832   0.8827030  
## 
## Coefficients:
##                                Estimate   Std. Error  z value Pr(>|z|)
## (Intercept)                 1.746422714  0.985750587  1.77167  0.07645
## CVLfrs                      0.061860896  0.064502469  0.95905  0.33754
## SexMen                     -0.521850136  0.526470105 -0.99122  0.32158
## PovStatBelow                0.451158891  0.777361976  0.58037  0.56166
## Age                        -0.016645088  0.013563235 -1.22722  0.21974
## WRATtotal                   0.017110231  0.015252038  1.12183  0.26193
## CVLfrs:SexMen               0.009236814  0.085199094  0.10841  0.91367
## CVLfrs:PovStatBelow        -0.058363553  0.117320841 -0.49747  0.61886
## SexMen:PovStatBelow        -0.178900362  1.012604119 -0.17667  0.85976
## CVLfrs:SexMen:PovStatBelow  0.114185917  0.174686238  0.65366  0.51333
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 505.40142  on 640  degrees of freedom
## Residual deviance: 490.65113  on 631  degrees of freedom
## AIC: 510.65113
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                     2.5 %         97.5 %
## (Intercept)                -0.15644107458 3.717405146660
## CVLfrs                     -0.06328044999 0.191168570057
## SexMen                     -1.57745879872 0.496345880517
## PovStatBelow               -1.01346250663 2.072883547379
## Age                        -0.04341787769 0.009867831129
## WRATtotal                  -0.01327224311 0.046698314106
## CVLfrs:SexMen              -0.15853627751 0.176616871533
## CVLfrs:PovStatBelow        -0.29008091709 0.173430402243
## SexMen:PovStatBelow        -2.20399825572 1.799787039752
## CVLfrs:SexMen:PovStatBelow -0.22596721257 0.462209001394
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                      OR        2.5 %       97.5 %
## (Intercept)                5.7340535948 0.8551819082 41.157457860
## CVLfrs                     1.0638143539 0.9386801839  1.210663516
## SexMen                     0.5934216208 0.2064991880  1.642707640
## PovStatBelow               1.5701307423 0.3629600497  7.947707699
## Age                        0.9834926762 0.9575111839  1.009916679
## WRATtotal                  1.0172574491 0.9868154447  1.047805853
## CVLfrs:SexMen              1.0092796052 0.8533920043  1.193173867
## CVLfrs:PovStatBelow        0.9433069426 0.7482030227  1.189377906
## SexMen:PovStatBelow        0.8361892112 0.1103610235  6.048359267
## CVLfrs:SexMen:PovStatBelow 1.1209605117 0.7977442572  1.587577074

California Verbal Learning Test (Short Delayed Free Recall) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLfrs, data=Allvars,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrs, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.5612899  -0.5278860  -0.5118361  -0.4962133   2.0950336  
## 
## Coefficients:
##                Estimate  Std. Error  z value Pr(>|z|)
## (Intercept) -2.07646923  0.24360711 -8.52384  < 2e-16
## CVLfrs       0.02200585  0.03570988  0.61624  0.53774
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 482.15339  on 639  degrees of freedom
## AIC: 486.15339
## 
## Number of Fisher Scoring iterations: 4
confint(CVLTlog1)
##                      2.5 %         97.5 %
## (Intercept) -2.57185248670 -1.61505511735
## CVLfrs      -0.04822673911  0.09204515396
exp(cbind(OR = coef(CVLTlog1), confint(CVLTlog1)))
##                       OR         2.5 %       97.5 %
## (Intercept) 0.1253720921 0.07639389559 0.1988797084
## CVLfrs      1.0222497643 0.95291769887 1.0964143284

Model 2

CVLTlog2 <- glm(PhysAssault ~ CVLfrs + Age + Sex + PovStat + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog2)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrs + Age + Sex + PovStat + WRATtotal, 
##     family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -0.8203658  -0.5498648  -0.4749316  -0.3933093   2.3918406  
## 
## Coefficients:
##                 Estimate  Std. Error  z value Pr(>|z|)
## (Intercept)  -1.24393413  1.04408203 -1.19141 0.233491
## CVLfrs       -0.01331674  0.03922543 -0.33949 0.734239
## Age          -0.03453968  0.01420637 -2.43128 0.015046
## SexMen       -0.16753684  0.24646838 -0.67975 0.496663
## PovStatBelow  0.48208316  0.25340451  1.90243 0.057116
## WRATtotal     0.01932986  0.01779397  1.08632 0.277340
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 469.31056  on 635  degrees of freedom
## AIC: 481.31056
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog2)
##                       2.5 %          97.5 %
## (Intercept)  -3.32802792245  0.773449567990
## CVLfrs       -0.09020011903  0.063887421165
## Age          -0.06282922262 -0.007012407373
## SexMen       -0.65525936751  0.313848029748
## PovStatBelow -0.01980691838  0.976408787020
## WRATtotal    -0.01464108180  0.055273014563
exp(cbind(OR = coef(CVLTlog2), confint(CVLTlog2)))
##                        OR         2.5 %       97.5 %
## (Intercept)  0.2882479797 0.03586376149 2.1672293792
## CVLfrs       0.9867715306 0.91374830855 1.0659723861
## Age          0.9660500049 0.93910383769 0.9930121222
## SexMen       0.8457454556 0.51930735366 1.3686817218
## PovStatBelow 1.6194444502 0.98038794992 2.6549047730
## WRATtotal    1.0195178889 0.98546557767 1.0568291050

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLfrs + Sex + PovStat)^3 + Age + WRATtotal, data = Allvars, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrs + Sex + PovStat)^3 + Age + 
##     WRATtotal, family = "binomial", data = Allvars)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -1.0298021  -0.5417614  -0.4575791  -0.3739349   2.5096221  
## 
## Coefficients:
##                               Estimate  Std. Error  z value  Pr(>|z|)
## (Intercept)                -1.75276000  1.12367677 -1.55984 0.1187969
## CVLfrs                      0.07310074  0.06395628  1.14298 0.2530470
## SexMen                      0.42284514  0.67236213  0.62889 0.5294178
## PovStatBelow                2.04484947  0.69989501  2.92165 0.0034818
## Age                        -0.03436550  0.01426933 -2.40835 0.0160249
## WRATtotal                   0.01753688  0.01813839  0.96684 0.3336254
## CVLfrs:SexMen              -0.09052511  0.09202949 -0.98365 0.3252860
## CVLfrs:PovStatBelow        -0.26602586  0.10347503 -2.57092 0.0101429
## SexMen:PovStatBelow        -1.90366889  1.03608084 -1.83737 0.0661546
## CVLfrs:SexMen:PovStatBelow  0.33769661  0.15903837  2.12337 0.0337232
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 482.53265  on 640  degrees of freedom
## Residual deviance: 461.85266  on 631  degrees of freedom
## AIC: 481.85266
## 
## Number of Fisher Scoring iterations: 5
confint(CVLTlog3)
##                                     2.5 %          97.5 %
## (Intercept)                -4.00877842469  0.404600037809
## CVLfrs                     -0.05036067455  0.201952058968
## SexMen                     -0.89138897002  1.767342468494
## PovStatBelow                0.68639106510  3.450202002130
## Age                        -0.06278524986 -0.006718410273
## WRATtotal                  -0.01713924073  0.054128889409
## CVLfrs:SexMen              -0.27352408788  0.088581673025
## CVLfrs:PovStatBelow        -0.47447559412 -0.066916161439
## SexMen:PovStatBelow        -3.98657185600  0.097029190385
## CVLfrs:SexMen:PovStatBelow  0.02909836791  0.654605762089
exp(cbind(OR = coef(CVLTlog3), confint(CVLTlog3)))
##                                      OR         2.5 %        97.5 %
## (Intercept)                0.1732949894 0.01815556008  1.4987029556
## CVLfrs                     1.0758389105 0.95088640212  1.2237893370
## SexMen                     1.5262979191 0.41008576016  5.8552720966
## PovStatBelow               7.7279951260 1.98653331156 31.5067560978
## Age                        0.9662182865 0.93914513359  0.9933041078
## WRATtotal                  1.0176915501 0.98300680052  1.0556206517
## CVLfrs:SexMen              0.9134513968 0.76069401263  1.0926234868
## CVLfrs:PovStatBelow        0.7664193102 0.62221126217  0.9352736100
## SexMen:PovStatBelow        0.1490208735 0.01856324263  1.1018925378
## CVLfrs:SexMen:PovStatBelow 1.4017151790 1.02952586180  1.9243837028