#https://github.com/EmilHvitfeldt/r-color-palettes
library(ggplot2)
library(RColorBrewer)
#library(colorRamps)
#getPalette <- colorRampPalette(brewer.pal(12, "Set3"))
gg_color_hue <- function(n) {
hues = seq(15, 375, length = n + 1)
hcl(h = hues, l = 65, c = 100)[1:n]
}
# library(scales)
# show_col(hue_pal()(30))
cor = gg_color_hue(9)
#cor <- getPalette(9)
#cor <-brewer.pal(12, "Set3")
# my.path <- dirname(rstudioapi::getActiveDocumentContext()$path)
# setwd(my.path)
pkg <- c("dplyr",
"car",
"agricolae",
"knitr",
"TukeyC",
"dae",
"showtext",
"readxl",
"tidyverse",
"magrittr")
# instale os pacotes abaixo
# install.packages(pkg)
# carregar pacotes
sapply(pkg,
library,
character.only = TRUE,
logical.return = TRUE)
## dplyr car agricolae knitr TukeyC dae showtext readxl
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## tidyverse magrittr
## TRUE TRUE
showtext_opts(dpi = 300)
options(knitr.table.format = "pandoc")
options(knitr.kable.NA = '')
# leitura de dados
Resultados
ANOVA
CE
model[["ANOVA"]] %>% kable(digits = 3)
| rep |
3 |
1643.269 |
547.756 |
19.038 |
0.000 |
| Lote |
4 |
8657.835 |
2164.459 |
75.227 |
0.000 |
| Ea |
12 |
345.269 |
28.772 |
|
|
| Sementes |
1 |
18954.324 |
18954.324 |
227.848 |
0.000 |
| Lote:Sementes |
4 |
630.321 |
157.580 |
1.894 |
0.164 |
| Eb |
15 |
1247.829 |
83.189 |
|
|
| Tempo |
6 |
899.703 |
149.950 |
61.167 |
0.000 |
| Tempo:Lote |
24 |
236.134 |
9.839 |
4.013 |
0.000 |
| Tempo:Sementes |
6 |
295.057 |
49.176 |
20.060 |
0.000 |
| Tempo:Lote:Sementes |
24 |
353.699 |
14.737 |
6.012 |
0.000 |
| Ec |
180 |
441.265 |
2.451 |
|
|
# Teste de Tukey
Teste de Tukey
par(mfrow = c(1, 3), cex = 0.6)
plot(
out1,
xlab = "Lote",
las = 1,
variation = "IQR",
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
main = "Grupos e Amplitude interquartil"
)
plot(
out2,
xlab = "Sementes",
variation = "IQR",
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
main = "Grupos e Amplitude interquartil"
)
plot(
out3,
xlab = "Tempo",
variation = "IQR",
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
main = "Grupos e Amplitude interquartil"
)

# Anova com pacote base para comparar com agricolae e fazer os gráficos de interação
Interação
par(mfrow = c(1, 1))
pss %>% with(
interaction.plot(
Lote,
Tempo,
CE,
xlab = 'Lote',
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
#col = c('red', "green", "blue", "pink", "black", "orange"),
col = cor,
lwd = 2
)
)

pss %>% with(
interaction.plot(
Sementes,
Tempo,
CE,
xlab = 'Sementes',
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
#col = c('red', "green", "blue", "pink", "black", "orange"),
col = cor,
lwd = 2
)
)

boxplot(
CE ~ Tempo,
data = pss,
col = cor,
xlab = "Tempo",
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)'
)

pss %>% with(
interaction.plot(
Lote,
Sementes,
CE,
xlab = 'Lote',
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
#col = c("red", "green", 'blue'),
col = cor,
lwd = 2
)
)

boxplot(
CE ~ Sementes,
data = pss,
col = cor,
xlab = "Sementes",
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)'
)

pss %>% with(
interaction.plot(
Tempo,
Sementes,
CE,
xlab = 'Tempo',
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
#col = c("red", "green", 'blue'),
col = cor,
lwd = 2
)
)

boxplot(
CE ~ Lote,
data = pss,
col = cor,
xlab = "Lote",
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)'
)

pss %>% with(
interaction.plot(
Sementes,
Lote,
CE,
xlab = 'Sementes',
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
#col = c('red', "green", "blue", "pink", "black", "orange", "cyan"),
col = cor,
lwd = 2
)
)

pss %>% with(
interaction.plot(
Tempo,
Lote,
CE,
xlab = 'Tempo',
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
col = cor,
lwd = 2
)
)

Gráfico de interação tripla
Interação Tripla
a<- interaction.ABC.plot(CE,
Tempo,
Lote,
Sementes,
title="",
ylab = 'Condutividade Elétrica (µS.cm-1 .g-1)',
data = pss) + theme_minimal()

a

# Observa-se efeito significativo de épocas, cultivares e interação.
Testes de comparação de médias
Efeitos principais
Lote
tkc <- AOV %>% TukeyC(which = 'Lote',
error = 'rep:Lote')
tkc[["out"]][["Result"]] %>% kable
| UNA1 |
35.32 |
a |
|
|
|
| UNA2 |
27.62 |
|
b |
|
|
| BUERAREMA |
24.40 |
|
|
c |
|
| ITAJUIPE |
21.60 |
|
|
c |
d |
| ITAMARACA |
21.11 |
|
|
|
d |
Sementes
tke <- AOV %>% TukeyC(which = 'Sementes',
error = 'rep:Lote:Sementes')
tke[["out"]][["Result"]] %>% kable
Tempo
tkd <- AOV %>% TukeyC(which = 'Tempo',
error = 'Within')
tkd[["out"]][["Result"]] %>% kable
| 19h |
28.05 |
a |
|
|
| 17h |
27.56 |
a |
b |
|
| 11h |
26.95 |
a |
b |
|
| 15h |
26.84 |
a |
b |
|
| 13h |
26.04 |
a |
b |
|
| 7h |
25.08 |
|
b |
|
| 9h |
22.46 |
|
|
c |
Lote dentro de Tempo
A/Tempo
tkq <- AOV %>% TukeyC(which = 'Lote:Tempo',
error = 'Within',
fl1 = 1)
tkq[["out"]][["Result"]] %>% kable
| UNA1/19h |
38.44 |
a |
|
| UNA1/17h |
37.64 |
a |
b |
| UNA1/15h |
36.76 |
a |
b |
| UNA1/13h |
35.98 |
a |
b |
| UNA1/7h |
34.46 |
a |
b |
| UNA1/11h |
33.36 |
a |
b |
| UNA1/9h |
31.44 |
|
b |
B/Tempo
tks <- AOV %>% TukeyC(which = 'Lote:Tempo',
error = 'Within',
fl1 = 2)
tks[["out"]][["Result"]] %>% kable
| UNA2/19h |
30.51 |
a |
| UNA2/17h |
29.86 |
a |
| UNA2/15h |
29.15 |
a |
| UNA2/13h |
28.12 |
a |
| UNA2/11h |
26.55 |
a |
| UNA2/7h |
26.07 |
a |
| UNA2/9h |
24.62 |
a |
C/Tempo
tkw <- AOV %>% TukeyC(which = 'Lote:Tempo',
error = 'Within',
fl1 = 3)
tkw[["out"]][["Result"]] %>% kable
| BUERAREMA/11h |
26.88 |
a |
| BUERAREMA/19h |
25.73 |
a |
| BUERAREMA/17h |
25.62 |
a |
| BUERAREMA/15h |
24.88 |
a |
| BUERAREMA/13h |
24.02 |
a |
| BUERAREMA/7h |
23.76 |
a |
| BUERAREMA/9h |
20.54 |
a |
D/Tempo
tkr <- AOV %>% TukeyC(which = 'Lote:Tempo',
error = 'Within',
fl1 = 4)
tkr[["out"]][["Result"]] %>% kable
| ITAJUIPE/11h |
24.24 |
a |
| ITAJUIPE/19h |
23.15 |
a |
| ITAJUIPE/17h |
22.65 |
a |
| ITAJUIPE/15h |
21.98 |
a |
| ITAJUIPE/13h |
21.27 |
a |
| ITAJUIPE/7h |
20.79 |
a |
| ITAJUIPE/9h |
17.90 |
a |
E/Tempo
tkt <- AOV %>% TukeyC(which = 'Lote:Tempo',
error = 'Within',
fl1 = 5)
tkt[["out"]][["Result"]] %>% kable
| ITAMARACA/11h |
23.72 |
a |
| ITAMARACA/19h |
22.45 |
a |
| ITAMARACA/17h |
22.04 |
a |
| ITAMARACA/15h |
21.45 |
a |
| ITAMARACA/13h |
20.77 |
a |
| ITAMARACA/7h |
20.34 |
a |
| ITAMARACA/9h |
17.80 |
a |
Sementes dentro de Tempo
25/Tempo
tkq1 <- AOV %>% TukeyC(which = 'Sementes:Tempo',
error = 'Within',
fl1 = 1)
tkq1[["out"]][["Result"]] %>% kable
| 25/11h |
19.82 |
a |
| 25/19h |
19.35 |
a |
| 25/17h |
19.02 |
a |
| 25/15h |
18.59 |
a |
| 25/13h |
18.05 |
a |
| 25/7h |
17.34 |
a |
| 25/9h |
16.98 |
a |
50/Tempo
tks1 <- AOV %>% TukeyC(which = 'Sementes:Tempo',
error = 'Within',
fl1 = 2)
tks1[["out"]][["Result"]] %>% kable
| 50/19h |
36.76 |
a |
|
|
| 50/17h |
36.11 |
a |
b |
|
| 50/15h |
35.09 |
a |
b |
|
| 50/11h |
34.09 |
a |
b |
|
| 50/13h |
34.02 |
a |
b |
|
| 50/7h |
32.82 |
|
b |
|
| 50/9h |
27.94 |
|
|
c |
Lote / Sementes dentro de Tempo
A/Sementes/Tempo
tkq2 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 1,
fl2 = 1
)
tkq2[["out"]][["Result"]] %>% kable
| UNA1/25/19h |
27.00 |
a |
| UNA1/25/17h |
26.62 |
a |
| UNA1/25/15h |
26.23 |
a |
| UNA1/25/13h |
25.60 |
a |
| UNA1/25/7h |
24.32 |
a |
| UNA1/25/11h |
23.85 |
a |
| UNA1/25/9h |
22.27 |
a |
tkq3 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 1,
fl2 = 2
)
tkq3[["out"]][["Result"]] %>% kable
| UNA1/50/19h |
49.88 |
a |
|
| UNA1/50/17h |
48.65 |
a |
b |
| UNA1/50/15h |
47.30 |
a |
b |
| UNA1/50/13h |
46.35 |
a |
b |
| UNA1/50/7h |
44.60 |
a |
b |
| UNA1/50/11h |
42.88 |
a |
b |
| UNA1/50/9h |
40.60 |
|
b |
B/Sementes/Tempo
tkq5 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 2,
fl2 = 1
)
tkq5[["out"]][["Result"]] %>% kable
| UNA2/25/9h |
23.73 |
a |
| UNA2/25/11h |
23.23 |
a |
| UNA2/25/19h |
21.00 |
a |
| UNA2/25/17h |
20.52 |
a |
| UNA2/25/15h |
20.07 |
a |
| UNA2/25/13h |
19.52 |
a |
| UNA2/25/7h |
19.45 |
a |
tkq6 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 2,
fl2 = 2
)
tkq6[["out"]][["Result"]] %>% kable
| UNA2/50/19h |
40.02 |
a |
|
|
| UNA2/50/17h |
39.20 |
a |
|
|
| UNA2/50/15h |
38.23 |
a |
b |
|
| UNA2/50/13h |
36.73 |
a |
b |
|
| UNA2/50/7h |
32.69 |
a |
b |
c |
| UNA2/50/11h |
29.88 |
|
b |
c |
| UNA2/50/9h |
25.52 |
|
|
c |
C/Sementes/Tempo
tkq8 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 3,
fl2 = 1
)
tkq8[["out"]][["Result"]] %>% kable
| BUERAREMA/25/11h |
19.57 |
a |
| BUERAREMA/25/19h |
18.18 |
a |
| BUERAREMA/25/17h |
17.90 |
a |
| BUERAREMA/25/15h |
17.40 |
a |
| BUERAREMA/25/13h |
16.75 |
a |
| BUERAREMA/25/7h |
16.09 |
a |
| BUERAREMA/25/9h |
14.47 |
a |
tkq9 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 3,
fl2 = 2
)
tkq9[["out"]][["Result"]] %>% kable
| BUERAREMA/50/11h |
34.17 |
a |
| BUERAREMA/50/17h |
33.35 |
a |
| BUERAREMA/50/19h |
33.27 |
a |
| BUERAREMA/50/15h |
32.35 |
a |
| BUERAREMA/50/7h |
31.43 |
a |
| BUERAREMA/50/13h |
31.30 |
a |
| BUERAREMA/50/9h |
26.60 |
a |
D/Sementes/Tempo
tko2 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 4,
fl2 = 1
)
tko2[["out"]][["Result"]] %>% kable
| ITAJUIPE/25/11h |
15.65 |
a |
| ITAJUIPE/25/19h |
14.85 |
a |
| ITAJUIPE/25/17h |
14.62 |
a |
| ITAJUIPE/25/15h |
14.25 |
a |
| ITAJUIPE/25/13h |
13.80 |
a |
| ITAJUIPE/25/7h |
12.66 |
a |
| ITAJUIPE/25/9h |
11.47 |
a |
tko3 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 4,
fl2 = 2
)
tko3[["out"]][["Result"]] %>% kable
| ITAJUIPE/50/11h |
32.83 |
a |
| ITAJUIPE/50/19h |
31.45 |
a |
| ITAJUIPE/50/17h |
30.68 |
a |
| ITAJUIPE/50/15h |
29.70 |
a |
| ITAJUIPE/50/7h |
28.91 |
a |
| ITAJUIPE/50/13h |
28.75 |
a |
| ITAJUIPE/50/9h |
24.32 |
a |
E/Sementes/Tempo
tko5 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 5,
fl2 = 1
)
tko5[["out"]][["Result"]] %>% kable
| ITAMARACA/25/11h |
16.77 |
a |
| ITAMARACA/25/19h |
15.73 |
a |
| ITAMARACA/25/17h |
15.43 |
a |
| ITAMARACA/25/15h |
15.00 |
a |
| ITAMARACA/25/13h |
14.60 |
a |
| ITAMARACA/25/7h |
14.19 |
a |
| ITAMARACA/25/9h |
12.97 |
a |
tko6 <- AOV %>% TukeyC(
which = 'Lote:Sementes:Tempo',
error = 'Within',
fl1 = 5,
fl2 = 2
)
tko6[["out"]][["Result"]] %>% kable
| ITAMARACA/50/11h |
30.67 |
a |
| ITAMARACA/50/19h |
29.18 |
a |
| ITAMARACA/50/17h |
28.65 |
a |
| ITAMARACA/50/15h |
27.90 |
a |
| ITAMARACA/50/13h |
26.95 |
a |
| ITAMARACA/50/7h |
26.49 |
a |
| ITAMARACA/50/9h |
22.62 |
a |
# library(easyanova)
# r2 = ea2(pss, design = 9)
Sementes/Tempo
25/Tempo
tkv1 <- AOV %>% TukeyC(
which = 'Sementes:Tempo',
error = 'Within',
fl1 = 1
)
tkv1[["out"]][["Result"]] %>% kable
| 25/11h |
19.82 |
a |
| 25/19h |
19.35 |
a |
| 25/17h |
19.02 |
a |
| 25/15h |
18.59 |
a |
| 25/13h |
18.05 |
a |
| 25/7h |
17.34 |
a |
| 25/9h |
16.98 |
a |
50/Tempo
tkv2 <- AOV %>% TukeyC(
which = 'Sementes:Tempo',
error = 'Within',
fl1 = 2
)
tkv2[["out"]][["Result"]] %>% kable
| 50/19h |
36.76 |
a |
|
|
| 50/17h |
36.11 |
a |
b |
|
| 50/15h |
35.09 |
a |
b |
|
| 50/11h |
34.09 |
a |
b |
|
| 50/13h |
34.02 |
a |
b |
|
| 50/7h |
32.82 |
|
b |
|
| 50/9h |
27.94 |
|
|
c |
Sementes/Tempo/Lote
25/Tempo/Lote
tkp1 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 1,
fl2 = 1
)
tkp1[["out"]][["Result"]] %>% kable
| 25/7h/UNA1 |
24.32 |
a |
|
|
| 25/7h/UNA2 |
19.45 |
a |
b |
|
| 25/7h/BUERAREMA |
16.09 |
|
b |
c |
| 25/7h/ITAMARACA |
14.19 |
|
b |
c |
| 25/7h/ITAJUIPE |
12.66 |
|
|
c |
tkp2 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 1,
fl2 = 2
)
tkp2[["out"]][["Result"]] %>% kable
| 25/9h/UNA2 |
23.73 |
a |
|
|
| 25/9h/UNA1 |
22.27 |
a |
b |
|
| 25/9h/BUERAREMA |
14.47 |
|
b |
c |
| 25/9h/ITAMARACA |
12.97 |
|
|
c |
| 25/9h/ITAJUIPE |
11.47 |
|
|
c |
tkp3 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 1,
fl2 = 3
)
tkp3[["out"]][["Result"]] %>% kable
| 25/11h/UNA1 |
23.85 |
a |
| 25/11h/UNA2 |
23.23 |
a |
| 25/11h/BUERAREMA |
19.57 |
a |
| 25/11h/ITAMARACA |
16.77 |
a |
| 25/11h/ITAJUIPE |
15.65 |
a |
tkp4 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 1,
fl2 = 4
)
tkp4[["out"]][["Result"]] %>% kable
| 25/13h/UNA1 |
25.60 |
a |
|
| 25/13h/UNA2 |
19.52 |
a |
b |
| 25/13h/BUERAREMA |
16.75 |
|
b |
| 25/13h/ITAMARACA |
14.60 |
|
b |
| 25/13h/ITAJUIPE |
13.80 |
|
b |
tkp5 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 1,
fl2 = 5
)
tkp5[["out"]][["Result"]] %>% kable
| 25/15h/UNA1 |
26.23 |
a |
|
| 25/15h/UNA2 |
20.07 |
a |
b |
| 25/15h/BUERAREMA |
17.40 |
|
b |
| 25/15h/ITAMARACA |
15.00 |
|
b |
| 25/15h/ITAJUIPE |
14.25 |
|
b |
tkp6 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 1,
fl2 = 6
)
tkp6[["out"]][["Result"]] %>% kable
| 25/17h/UNA1 |
26.62 |
a |
|
| 25/17h/UNA2 |
20.52 |
a |
b |
| 25/17h/BUERAREMA |
17.90 |
|
b |
| 25/17h/ITAMARACA |
15.43 |
|
b |
| 25/17h/ITAJUIPE |
14.62 |
|
b |
tkp7 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 1,
fl2 = 7
)
tkp7[["out"]][["Result"]] %>% kable
| 25/19h/UNA1 |
27.00 |
a |
|
| 25/19h/UNA2 |
21.00 |
a |
b |
| 25/19h/BUERAREMA |
18.18 |
|
b |
| 25/19h/ITAMARACA |
15.73 |
|
b |
| 25/19h/ITAJUIPE |
14.85 |
|
b |
50/Tempo/Lote
tkm1 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 2,
fl2 = 1
)
tkm1[["out"]][["Result"]] %>% kable
| 50/7h/UNA1 |
44.60 |
a |
|
|
| 50/7h/UNA2 |
32.69 |
|
b |
|
| 50/7h/BUERAREMA |
31.43 |
|
b |
c |
| 50/7h/ITAJUIPE |
28.91 |
|
b |
c |
| 50/7h/ITAMARACA |
26.49 |
|
|
c |
tkm2 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 2,
fl2 = 2
)
tkm2[["out"]][["Result"]] %>% kable
| 50/9h/UNA1 |
40.60 |
a |
|
| 50/9h/BUERAREMA |
26.60 |
|
b |
| 50/9h/UNA2 |
25.52 |
|
b |
| 50/9h/ITAJUIPE |
24.32 |
|
b |
| 50/9h/ITAMARACA |
22.62 |
|
b |
tkm3 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 2,
fl2 = 3
)
tkm3[["out"]][["Result"]] %>% kable
| 50/11h/UNA1 |
42.88 |
a |
|
| 50/11h/BUERAREMA |
34.17 |
|
b |
| 50/11h/ITAJUIPE |
32.83 |
|
b |
| 50/11h/ITAMARACA |
30.67 |
|
b |
| 50/11h/UNA2 |
29.88 |
|
b |
tkm4 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 2,
fl2 = 4
)
tkm4[["out"]][["Result"]] %>% kable
| 50/13h/UNA1 |
46.35 |
a |
|
|
| 50/13h/UNA2 |
36.73 |
|
b |
|
| 50/13h/BUERAREMA |
31.30 |
|
b |
c |
| 50/13h/ITAJUIPE |
28.75 |
|
b |
c |
| 50/13h/ITAMARACA |
26.95 |
|
|
c |
tkm5 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 2,
fl2 = 5
)
tkm5[["out"]][["Result"]] %>% kable
| 50/15h/UNA1 |
47.30 |
a |
|
|
| 50/15h/UNA2 |
38.23 |
|
b |
|
| 50/15h/BUERAREMA |
32.35 |
|
b |
c |
| 50/15h/ITAJUIPE |
29.70 |
|
|
c |
| 50/15h/ITAMARACA |
27.90 |
|
|
c |
tkm6 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 2,
fl2 = 6
)
tkm6[["out"]][["Result"]] %>% kable
| 50/17h/UNA1 |
48.65 |
a |
|
|
| 50/17h/UNA2 |
39.20 |
|
b |
|
| 50/17h/BUERAREMA |
33.35 |
|
b |
c |
| 50/17h/ITAJUIPE |
30.68 |
|
|
c |
| 50/17h/ITAMARACA |
28.65 |
|
|
c |
tkm7 <- AOV %>% TukeyC(
which = 'Sementes:Tempo:Lote',
error = 'Within',
fl1 = 2,
fl2 = 7
)
tkm7[["out"]][["Result"]] %>% kable
| 50/19h/UNA1 |
49.88 |
a |
|
|
| 50/19h/UNA2 |
40.02 |
|
b |
|
| 50/19h/BUERAREMA |
33.27 |
|
b |
c |
| 50/19h/ITAJUIPE |
31.45 |
|
|
c |
| 50/19h/ITAMARACA |
29.18 |
|
|
c |
######################################################
Resultados
ANOVA
Germinação
ger <- read_excel("CEjeni.xlsx", sheet = "ger")
ger$lote <- ger$lote %>% factor(.,c("UNA1","UNA2", "BUERAREMA", "ITAJUIPE" , "ITAMARACA"))
ger <- ger[order(ger$lote),]
av <- aov(ger_per ~ lote, ger)
anova(av) %>% kable
| lote |
4 |
3891.2 |
972.8000 |
9.306122 |
0.0005484 |
| Residuals |
15 |
1568.0 |
104.5333 |
|
|
cv(av) %>% kable
boxplot(ger_per ~ lote,
ger,
col = cor,
xlab = "Lote",
ylab = 'Germinação (%)')

tk <- TukeyC(av)
tk[["out"]][["Result"]] %>% kable
| ITAMARACA |
75.00 |
a |
|
| ITAJUIPE |
73.00 |
a |
|
| BUERAREMA |
62.00 |
a |
b |
| UNA1 |
43.00 |
|
b |
| UNA2 |
43.00 |
|
b |
######################################################
Resultados
ANOVA
Emergência
emer <- read_excel("CEjeni.xlsx", sheet = "emer")
emer %<>% gather(lote_r,
value, -DIAS,
na.rm = TRUE)
emer %>% separate(lote_r,c("lote","r")) -> emer
names(emer)[1] <- "dias"
emer$lote <- emer$lote %>% factor(.,c("UNA1","UNA2", "BUERAREMA", "ITAJUIPE" , "ITAMARACA"))
emer <- emer[order(emer$lote),]
#emer$value[emer$value == 0] <- NA
av <- aov(value ~ lote,emer)
anova(av) %>% kable
| lote |
4 |
4966.48 |
1241.62000 |
18.56908 |
0 |
| Residuals |
795 |
53157.60 |
66.86491 |
|
|
cv(av) %>% kable
boxplot(value ~ lote,
emer,
col = cor,
xlab = "Lote",
ylab = 'Emergência (%)')

tk <- TukeyC(av)
tk[["out"]][["Result"]] %>% kable
| BUERAREMA |
10.08 |
a |
|
|
| UNA1 |
7.93 |
a |
b |
|
| UNA2 |
7.23 |
|
b |
|
| ITAJUIPE |
6.98 |
|
b |
|
| ITAMARACA |
2.45 |
|
|
c |
emer %>% ggplot(aes(x=dias, y=value, fill=lote)) +
geom_bar(stat = "identity") +
xlab('Dias') + ylab('Emergência (%)')+
theme_bw() +
scale_fill_manual(values=cor, name="Lote")+
theme(
text = element_text(size = 10),
axis.text.y = element_text(
angle = 90,
hjust = 1,
colour = "black"
),
axis.text.x = element_text(
angle = 45,
hjust = 1,
colour = "black"
)
) + facet_wrap(~lote)

#####################
######################################################
Resultados
ANOVA
T50
t50 <- read_excel("CEjeni.xlsx", sheet = "T50")
t50 %<>% gather(lote_r,
value, -DIAS,
na.rm = TRUE)
t50 %>% separate(lote_r,c("lote","r")) -> t50
names(t50)[1] <- "dias"
t50$lote <- t50$lote %>% factor(.,c("UNA1","UNA2", "BUERAREMA", "ITAJUIPE" , "ITAMARACA"))
t50 <- t50[order(t50$lote),]
#emer$value[emer$value == 0] <- NA
av <- aov(value ~ lote,t50)
anova(av) %>% kable
| lote |
4 |
5395.58 |
1348.89500 |
32.55088 |
0 |
| Residuals |
795 |
32944.47 |
41.43958 |
|
|
cv(av) %>% kable
boxplot(value ~ lote,
t50,
col = cor,
xlab = "Lote",
ylab = 'T50')

tk <- TukeyC(av)
tk[["out"]][["Result"]] %>% kable
| ITAMARACA |
13.24 |
a |
|
|
| BUERAREMA |
11.66 |
a |
b |
|
| ITAJUIPE |
10.38 |
|
b |
|
| UNA2 |
6.86 |
|
|
c |
| UNA1 |
6.73 |
|
|
c |
######################################################
Outros gráficos
names(t50)[4] <- "t50"
names(emer)[4] <- "emer"
df <- merge(t50,emer)
sum_my_rise <- function(x, num_var, ...){
group_var <- quos(...)
num_var <- enquo(num_var)
x %>%
group_by(!!!group_var) %>%
summarize(mean = mean(!!num_var), n = n(),
min = min(!!num_var),
max = max(!!num_var),
sd = sd(!!num_var), se = sd/sqrt(n),
sum = sum(!!num_var))
}
library(emmeans)
a1 <- aov(t50 ~ lote, data=df)
leastsquare = emmeans(a1,
pairwise ~ lote,
adjust="tukey")
tkp<-multcomp::cld(leastsquare$emmeans,
alpha=0.05,
Letters=letters,
reversed=T,
adjust="tukey")
ww <- sum_my_rise(df, t50,lote)
ok <- merge(tkp,ww)
pd = position_dodge(1)
p <- ggplot(data = ok, aes(x = lote, y = mean, fill = lote, label=.group)) +
theme_minimal()
p <- p + geom_bar(stat = "identity", position = "dodge") +
labs(y = "T50", x = "",
title = "") +
geom_text(position = pd, vjust=-0.5, hjust=2) +
scale_fill_manual(values=cor, name="Lote")+
geom_errorbar(aes(ymin = mean - se,
ymax = mean + se),
width = 0.2,
size = 0.7,
position = pd,
color = "black") +
theme(
text = element_text(size = 10),
axis.text.y = element_text(
angle = 90,
hjust = 1,
colour = "black"),
axis.text.x = element_text(
angle = 45,
hjust = 1,
colour = "black"
))
p

#######################
df$emer <- df$emer/100
a1 <- aov(emer ~ lote, data=df)
leastsquare = emmeans(a1,
pairwise ~ lote,
adjust="tukey")
tkp<-multcomp::cld(leastsquare$emmeans,
alpha=0.05,
Letters=letters,
reversed=T,
adjust="tukey")
ww <- sum_my_rise(df, emer,lote)
ok <- merge(tkp,ww)
pd = position_dodge(1)
p <- ggplot(data = ok, aes(x = lote, y = mean, fill = lote, label=.group)) +
theme_minimal()
p <- p + geom_bar(stat = "identity", position = "dodge") +
labs(y = "Emergência (%)", x = "",
title = "") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1))+
geom_text(position = pd, vjust=-0.5, hjust=2) +
scale_fill_manual(values=cor, name="Lote")+
geom_errorbar(aes(ymin = mean - se,
ymax = mean + se),
width = 0.2,
size = 0.7,
position = pd,
color = "black") +
theme(
text = element_text(size = 10),
axis.text.y = element_text(
angle = 90,
hjust = 1,
colour = "black"),
axis.text.x = element_text(
angle = 45,
hjust = 1,
colour = "black"
))
p

#######################################
ger <- read_excel("CEjeni.xlsx", sheet = "ger")
ger$lote <- ger$lote %>% factor(.,c("UNA1","UNA2", "BUERAREMA", "ITAJUIPE" , "ITAMARACA"))
ger <- ger[order(ger$lote),]
ger$ger_per <- ger$ger_per/100
a1 <- aov(ger_per ~ lote, data=ger)
leastsquare = emmeans(a1,
pairwise ~ lote,
adjust="tukey")
tkp<-multcomp::cld(leastsquare$emmeans,
alpha=0.05,
Letters=letters,
reversed=T,
adjust="tukey")
ww <- sum_my_rise(ger, ger_per,lote)
ok <- merge(tkp,ww)
pd = position_dodge(1)
p <- ggplot(data = ok, aes(x = lote, y = mean, fill = lote, label=.group)) +
theme_minimal()
p <- p + geom_bar(stat = "identity", position = "dodge") +
labs(y = "Germinação (%)", x = "",
title = "") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1))+
geom_text(position = pd, vjust=-0.5, hjust=2) +
scale_fill_manual(values=cor, name="Lote")+
geom_errorbar(aes(ymin = mean - se,
ymax = mean + se),
width = 0.2,
size = 0.7,
position = pd,
color = "black") +
theme(
text = element_text(size = 10),
axis.text.y = element_text(
angle = 90,
hjust = 1,
colour = "black"),
axis.text.x = element_text(
angle = 45,
hjust = 1,
colour = "black"
))
p
