Note: Data for covid-19 last updated 4/22/2020.
Data Set-up
Key for the dfs:
df_unfiltered: USA as states, no as country
df_world: USA as country, no as states
df_filtered: Social variables (population, age, urban, density, HDI) and USA as country, no as states.
VARIABLES
dependent_variables <- names(df_unfiltered)[c(23:28,30:33,35:50)]
dependent_variables
## [1] "total_deaths_per_million"
## [2] "days_to_reached_0.1_deaths_per_million"
## [3] "days_to_reached_1_deaths_per_million"
## [4] "mean_daily_deaths_per_million"
## [5] "median_daily_deaths_per_million"
## [6] "max_daily_deaths_per_million"
## [7] "total_deaths_week_3_per_million"
## [8] "median_daily_deaths_per_million_week_3"
## [9] "mean_daily_deaths_per_million_week_3"
## [10] "max_daily_deaths_per_million_week_3"
## [11] "total_deaths_month_1_per_million"
## [12] "median_daily_deaths_per_million_month_1"
## [13] "mean_daily_deaths_per_million_month_1"
## [14] "max_daily_deaths_per_million_month_1"
## [15] "log_total_deaths_per_million"
## [16] "log_mean_daily_deaths_per_million"
## [17] "log_median_daily_deaths_per_million"
## [18] "log_max_daily_deaths_per_million"
## [19] "log_total_deaths_week_3_per_million"
## [20] "log_median_daily_deaths_per_million_week_3"
## [21] "log_mean_daily_deaths_per_million_week_3"
## [22] "log_max_daily_deaths_per_million_week_3"
## [23] "log_total_deaths_month_1_per_million"
## [24] "log_median_daily_deaths_per_million_month_1"
## [25] "log_mean_daily_deaths_per_million_month_1"
## [26] "log_max_daily_deaths_per_million_month_1"
independent_variables_continuous <- names(df_unfiltered)[17:18]
independent_variables_continuous
## [1] "BCG_mean_coverage" "BCG_median_coverage"
independent_variables_categorical <- names(df_unfiltered)[12]
independent_variables_categorical
## [1] "BCG_policy"
confounding_varibales <- names(df_unfiltered)[c(7,51,6,10)]
confounding_varibales
## [1] "population_density_2018" "urban_percentage_2018"
## [3] "HDI_2018" "ages_65_up"
dependent_variables_label <- df_labels$New.label[df_labels$Variable %in% dependent_variables]
confounding_varibales_label <- df_labels$New.label[df_labels$Variable %in% confounding_varibales]
Models with UNFILTERED data
All data, including states of USA
Linear Models Unfiltered
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_continuous), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_continuous, "_LMU")
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_continuous[i]])
model_results[j,i] <- glance(linear_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.0149270 |
0.0078625 |
| days_to_reached_1_deaths_per_million |
0.0000129 |
0.0000100 |
| mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| max_daily_deaths_per_million |
0.0000103 |
0.0000082 |
| total_deaths_week_3_per_million |
0.0002023 |
0.0001891 |
| median_daily_deaths_per_million_week_3 |
0.0000002 |
0.0000001 |
| mean_daily_deaths_per_million_week_3 |
0.0002014 |
0.0001883 |
| max_daily_deaths_per_million_week_3 |
0.0066965 |
0.0063904 |
| total_deaths_month_1_per_million |
0.0000050 |
0.0000046 |
| median_daily_deaths_per_million_month_1 |
0.0000231 |
0.0000220 |
| mean_daily_deaths_per_million_month_1 |
0.0000048 |
0.0000045 |
| max_daily_deaths_per_million_month_1 |
0.0001430 |
0.0001337 |
| log_total_deaths_per_million |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
Anova Models Unfiltered
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_categorical), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_categorical, "_AMU")
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_categorical[i]])
model_results[j,i] <- glance(aov_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.0001479 |
| days_to_reached_1_deaths_per_million |
0.0000135 |
| mean_daily_deaths_per_million |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
| max_daily_deaths_per_million |
0.0000129 |
| total_deaths_week_3_per_million |
0.0004875 |
| median_daily_deaths_per_million_week_3 |
0.0000001 |
| mean_daily_deaths_per_million_week_3 |
0.0004854 |
| max_daily_deaths_per_million_week_3 |
0.0172147 |
| total_deaths_month_1_per_million |
0.0000418 |
| median_daily_deaths_per_million_month_1 |
0.0000708 |
| mean_daily_deaths_per_million_month_1 |
0.0000405 |
| max_daily_deaths_per_million_month_1 |
0.0008810 |
| log_total_deaths_per_million |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.0000000 |
| log_median_daily_deaths_per_million |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.0000000 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
T-test Models Unfiltered
df_unfiltered$BCG_TF <- 1
df_unfiltered[which(df_unfiltered$BCG_policy == "never"),]$BCG_TF <- 0
df_unfiltered[which(df_unfiltered$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_unfiltered$BCG_TF_2 <- 1
df_unfiltered[which(df_unfiltered$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_unfiltered[which(df_unfiltered$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_unfiltered)[c(ncol(df_unfiltered)-1, ncol(df_unfiltered))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_t_test), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_t_test, "_TMU")
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
model_results[j, i] <- glance(t_test_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.9999510 |
0.9999586 |
| days_to_reached_1_deaths_per_million |
0.9999589 |
0.9999911 |
| mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| max_daily_deaths_per_million |
0.0000027 |
0.0000030 |
| total_deaths_week_3_per_million |
0.0000603 |
0.0000776 |
| median_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| mean_daily_deaths_per_million_week_3 |
0.0000601 |
0.0000772 |
| max_daily_deaths_per_million_week_3 |
0.0032160 |
0.0030934 |
| total_deaths_month_1_per_million |
0.0000038 |
0.0000039 |
| median_daily_deaths_per_million_month_1 |
0.0000042 |
0.0000013 |
| mean_daily_deaths_per_million_month_1 |
0.0000037 |
0.0000037 |
| max_daily_deaths_per_million_month_1 |
0.0002156 |
0.0001829 |
| log_total_deaths_per_million |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000000 |
Models without USA states (UNFILTEREDish data)
All data, excluding states of USA
Linear Models without USA states
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_continuous), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_continuous, "_LMU2")
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_world[,dependent_variables[j]]~df_world[,independent_variables_continuous[i]])
model_results[j,i] <- glance(linear_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.3319204 |
0.5242558 |
| days_to_reached_1_deaths_per_million |
0.4110823 |
0.3643631 |
| mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| max_daily_deaths_per_million |
0.0000104 |
0.0000070 |
| total_deaths_week_3_per_million |
0.0001675 |
0.0001593 |
| median_daily_deaths_per_million_week_3 |
0.0000091 |
0.0000056 |
| mean_daily_deaths_per_million_week_3 |
0.0001675 |
0.0001593 |
| max_daily_deaths_per_million_week_3 |
0.0017025 |
0.0016524 |
| total_deaths_month_1_per_million |
0.0000016 |
0.0000016 |
| median_daily_deaths_per_million_month_1 |
0.0002930 |
0.0002737 |
| mean_daily_deaths_per_million_month_1 |
0.0000016 |
0.0000016 |
| max_daily_deaths_per_million_month_1 |
0.0000747 |
0.0000751 |
| log_total_deaths_per_million |
0.0014301 |
0.0003249 |
| log_mean_daily_deaths_per_million |
0.0029308 |
0.0006819 |
| log_median_daily_deaths_per_million |
0.0000195 |
0.0000029 |
| log_max_daily_deaths_per_million |
0.0006394 |
0.0001056 |
| log_total_deaths_week_3_per_million |
0.0121553 |
0.0030733 |
| log_median_daily_deaths_per_million_week_3 |
0.0067429 |
0.0021655 |
| log_mean_daily_deaths_per_million_week_3 |
0.0121553 |
0.0030733 |
| log_max_daily_deaths_per_million_week_3 |
0.0055685 |
0.0013596 |
| log_total_deaths_month_1_per_million |
0.0115453 |
0.0037608 |
| log_median_daily_deaths_per_million_month_1 |
0.0056246 |
0.0021765 |
| log_mean_daily_deaths_per_million_month_1 |
0.0115453 |
0.0037608 |
| log_max_daily_deaths_per_million_month_1 |
0.0011728 |
0.0002773 |
Anova Models without USA states
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_categorical), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_categorical, "_AMU2")
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_world[,dependent_variables[j]]~df_world[,independent_variables_categorical[i]])
model_results[j,i] <- glance(aov_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.3720762 |
| days_to_reached_1_deaths_per_million |
0.4838823 |
| mean_daily_deaths_per_million |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
| max_daily_deaths_per_million |
0.0000000 |
| total_deaths_week_3_per_million |
0.0000005 |
| median_daily_deaths_per_million_week_3 |
0.0000001 |
| mean_daily_deaths_per_million_week_3 |
0.0000005 |
| max_daily_deaths_per_million_week_3 |
0.0000074 |
| total_deaths_month_1_per_million |
0.0000020 |
| median_daily_deaths_per_million_month_1 |
0.0004344 |
| mean_daily_deaths_per_million_month_1 |
0.0000020 |
| max_daily_deaths_per_million_month_1 |
0.0000063 |
| log_total_deaths_per_million |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.0000000 |
| log_median_daily_deaths_per_million |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.0000100 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0000001 |
| log_total_deaths_month_1_per_million |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.0000015 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
T-test Models without USA states
df_world$BCG_TF <- 1
df_world[which(df_world$BCG_policy == "never"),]$BCG_TF <- 0
df_world[which(df_world$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_world$BCG_TF_2 <- 1
df_world[which(df_world$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_world[which(df_world$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_world)[c(ncol(df_world)-1, ncol(df_world))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_t_test), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_t_test, "_TMU2")
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_world[,dependent_variables[j]]~df_world[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
model_results[j,i] <- glance(t_test_model)$p.value
}
}
| total_deaths_per_million |
0.0000000 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.9063435 |
0.7439748 |
| days_to_reached_1_deaths_per_million |
0.8284547 |
0.6533272 |
| mean_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| median_daily_deaths_per_million |
0.0000000 |
0.0000000 |
| max_daily_deaths_per_million |
0.0000029 |
0.0000000 |
| total_deaths_week_3_per_million |
0.0001552 |
0.0000001 |
| median_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000000 |
| mean_daily_deaths_per_million_week_3 |
0.0001552 |
0.0000001 |
| max_daily_deaths_per_million_week_3 |
0.0022963 |
0.0000021 |
| total_deaths_month_1_per_million |
0.0000124 |
0.0000001 |
| median_daily_deaths_per_million_month_1 |
0.0000391 |
0.0000040 |
| mean_daily_deaths_per_million_month_1 |
0.0000124 |
0.0000001 |
| max_daily_deaths_per_million_month_1 |
0.0006775 |
0.0000026 |
| log_total_deaths_per_million |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.0000000 |
0.0000003 |
| log_median_daily_deaths_per_million |
0.0000000 |
0.0000105 |
| log_max_daily_deaths_per_million |
0.0000000 |
0.0000006 |
| log_total_deaths_week_3_per_million |
0.0000000 |
0.0000708 |
| log_median_daily_deaths_per_million_week_3 |
0.0000008 |
0.0095828 |
| log_mean_daily_deaths_per_million_week_3 |
0.0000000 |
0.0000708 |
| log_max_daily_deaths_per_million_week_3 |
0.0000001 |
0.0000937 |
| log_total_deaths_month_1_per_million |
0.0000000 |
0.0000838 |
| log_median_daily_deaths_per_million_month_1 |
0.0000001 |
0.0105758 |
| log_mean_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000838 |
| log_max_daily_deaths_per_million_month_1 |
0.0000000 |
0.0000214 |
Models with FILTERED data
All data, filtered as follows
df_filtered <- subsoet(df_unfiltered,
covid19_cumulative_deaths > 0
& population_million > 1
& ages_65_up > 15
& urban_percentage_2018 > 60
& population_density_2018 < 300
& HDI_2018 > 0.7
& ISO3 != "USA_state")
Linear Models Filtered
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_continuous), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_continuous, "_LMF")
for(i in 1:length(independent_variables_continuous)){
for(j in 1:length(dependent_variables)){
linear_model <- lm(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_continuous[i]])
model_results[j,i] <- glance(linear_model)$p.value
}
}
| total_deaths_per_million |
0.0200810 |
0.0130794 |
| days_to_reached_0.1_deaths_per_million |
0.3098944 |
0.2972757 |
| days_to_reached_1_deaths_per_million |
0.1846061 |
0.1933569 |
| mean_daily_deaths_per_million |
0.0167913 |
0.0098991 |
| median_daily_deaths_per_million |
0.0235405 |
0.0213611 |
| max_daily_deaths_per_million |
0.0234976 |
0.0152219 |
| total_deaths_week_3_per_million |
0.2688315 |
0.2886136 |
| median_daily_deaths_per_million_week_3 |
0.2758677 |
0.2921062 |
| mean_daily_deaths_per_million_week_3 |
0.2688315 |
0.2886136 |
| max_daily_deaths_per_million_week_3 |
0.2381408 |
0.2603534 |
| total_deaths_month_1_per_million |
0.0606641 |
0.0598189 |
| median_daily_deaths_per_million_month_1 |
0.4176019 |
0.4500354 |
| mean_daily_deaths_per_million_month_1 |
0.0606641 |
0.0598189 |
| max_daily_deaths_per_million_month_1 |
0.0176593 |
0.0119085 |
| log_total_deaths_per_million |
0.0688078 |
0.0468943 |
| log_mean_daily_deaths_per_million |
0.1123067 |
0.0793990 |
| log_median_daily_deaths_per_million |
0.0872487 |
0.0706727 |
| log_max_daily_deaths_per_million |
0.0982779 |
0.0711571 |
| log_total_deaths_week_3_per_million |
0.7169883 |
0.6815864 |
| log_median_daily_deaths_per_million_week_3 |
0.3915494 |
0.3858247 |
| log_mean_daily_deaths_per_million_week_3 |
0.7169883 |
0.6815864 |
| log_max_daily_deaths_per_million_week_3 |
0.6176365 |
0.5975727 |
| log_total_deaths_month_1_per_million |
0.2300306 |
0.1978414 |
| log_median_daily_deaths_per_million_month_1 |
0.6460633 |
0.6170304 |
| log_mean_daily_deaths_per_million_month_1 |
0.2300306 |
0.1978414 |
| log_max_daily_deaths_per_million_month_1 |
0.0707810 |
0.0494013 |
Anova Models Filtered
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_categorical), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_categorical, "_AMF")
for(i in 1:length(independent_variables_categorical)){
for(j in 1:length(dependent_variables)){
aov_model <- aov(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_categorical[i]])
model_results[j,i] <- glance(aov_model)$p.value
}
}
| total_deaths_per_million |
0.0182780 |
| days_to_reached_0.1_deaths_per_million |
0.5066961 |
| days_to_reached_1_deaths_per_million |
0.7897329 |
| mean_daily_deaths_per_million |
0.0244175 |
| median_daily_deaths_per_million |
0.0704910 |
| max_daily_deaths_per_million |
0.0098238 |
| total_deaths_week_3_per_million |
0.2682578 |
| median_daily_deaths_per_million_week_3 |
0.1632630 |
| mean_daily_deaths_per_million_week_3 |
0.2682578 |
| max_daily_deaths_per_million_week_3 |
0.4246833 |
| total_deaths_month_1_per_million |
0.2091805 |
| median_daily_deaths_per_million_month_1 |
0.1337124 |
| mean_daily_deaths_per_million_month_1 |
0.2091805 |
| max_daily_deaths_per_million_month_1 |
0.1755753 |
| log_total_deaths_per_million |
0.0074763 |
| log_mean_daily_deaths_per_million |
0.0140145 |
| log_median_daily_deaths_per_million |
0.0175344 |
| log_max_daily_deaths_per_million |
0.0108388 |
| log_total_deaths_week_3_per_million |
0.5383513 |
| log_median_daily_deaths_per_million_week_3 |
0.2756231 |
| log_mean_daily_deaths_per_million_week_3 |
0.5383513 |
| log_max_daily_deaths_per_million_week_3 |
0.5994709 |
| log_total_deaths_month_1_per_million |
0.1763712 |
| log_median_daily_deaths_per_million_month_1 |
0.0199775 |
| log_mean_daily_deaths_per_million_month_1 |
0.1763712 |
| log_max_daily_deaths_per_million_month_1 |
0.1035297 |
T-test Filtered
df_filtered$BCG_TF <- 1
df_filtered[which(df_filtered$BCG_policy == "never"),]$BCG_TF <- 0
df_filtered[which(df_filtered$BCG_policy == "interrupted"),]$BCG_TF <- 0
df_filtered$BCG_TF_2 <- 1
df_filtered[which(df_filtered$BCG_policy == "never"),]$BCG_TF_2 <- 0
df_filtered[which(df_filtered$BCG_policy == "interrupted"),]$BCG_TF_2 <- NA
independent_variables_t_test <- names(df_filtered)[c(ncol(df_filtered)-1, ncol(df_filtered))] #BCG_TF
independent_variables_t_test
## [1] "BCG_TF" "BCG_TF_2"
model_results <- data.frame(matrix(NA, ncol = length(independent_variables_t_test), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(independent_variables_t_test, "_TMF")
for(i in 1:length(independent_variables_t_test)){
for(j in 1:length(dependent_variables)){
t_test_model <- t.test(df_filtered[,dependent_variables[j]]~df_filtered[,independent_variables_t_test[i]], paired = FALSE, na.action = na.pass, alternative="greater", var.equal = TRUE)
model_results[j, i] <- glance(t_test_model)$p.value
}
}
| total_deaths_per_million |
0.0086223 |
0.0006706 |
| days_to_reached_0.1_deaths_per_million |
0.1863422 |
0.1108277 |
| days_to_reached_1_deaths_per_million |
0.3963441 |
0.2462513 |
| mean_daily_deaths_per_million |
0.0064404 |
0.0005282 |
| median_daily_deaths_per_million |
0.0249060 |
0.0097696 |
| max_daily_deaths_per_million |
0.0025747 |
0.0000008 |
| total_deaths_week_3_per_million |
0.0619118 |
0.1587155 |
| median_daily_deaths_per_million_week_3 |
0.0337576 |
0.1170317 |
| mean_daily_deaths_per_million_week_3 |
0.0619118 |
0.1587155 |
| max_daily_deaths_per_million_week_3 |
0.1029118 |
0.2022459 |
| total_deaths_month_1_per_million |
0.0367781 |
0.0391609 |
| median_daily_deaths_per_million_month_1 |
0.0384985 |
0.1567297 |
| mean_daily_deaths_per_million_month_1 |
0.0367781 |
0.0391609 |
| max_daily_deaths_per_million_month_1 |
0.0326939 |
0.0346584 |
| log_total_deaths_per_million |
0.0020591 |
0.0003713 |
| log_mean_daily_deaths_per_million |
0.0031508 |
0.0013188 |
| log_median_daily_deaths_per_million |
0.0027675 |
0.0065103 |
| log_max_daily_deaths_per_million |
0.0023940 |
0.0026049 |
| log_total_deaths_week_3_per_million |
0.1425635 |
0.3462628 |
| log_median_daily_deaths_per_million_week_3 |
0.0758333 |
0.3812898 |
| log_mean_daily_deaths_per_million_week_3 |
0.1425635 |
0.3462628 |
| log_max_daily_deaths_per_million_week_3 |
0.1593286 |
0.3371390 |
| log_total_deaths_month_1_per_million |
0.0294479 |
0.0574266 |
| log_median_daily_deaths_per_million_month_1 |
0.0152696 |
0.4500793 |
| log_mean_daily_deaths_per_million_month_1 |
0.0294479 |
0.0574266 |
| log_max_daily_deaths_per_million_month_1 |
0.0166482 |
0.0385099 |
Models with Confounding varibales
confounding_varibales <- names(df_unfiltered)[c(7,51,6,10)]
confounding_varibales
## [1] "population_density_2018" "urban_percentage_2018"
## [3] "HDI_2018" "ages_65_up"
Linear Models (with UNFILTERED data, including USA states)
df_confounding_models <- data.frame()
model_results <- data.frame(matrix(NA, ncol = length(confounding_varibales), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(confounding_varibales, "_LMU")
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
lm_model <- lm(df_unfiltered[,dependent_variables[j]]~df_unfiltered[,confounding_varibales[i]], df_unfiltered)
model_results[j,i] <- glance(lm_model)$p.value
}
}
| total_deaths_per_million |
0.5881310 |
0.0000006 |
0.0000001 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.6254575 |
0.0001316 |
0.0000017 |
0.0029274 |
| days_to_reached_1_deaths_per_million |
0.3043795 |
0.9947058 |
0.0003671 |
0.0360163 |
| mean_daily_deaths_per_million |
0.3852901 |
0.0000036 |
0.0000007 |
0.0000022 |
| median_daily_deaths_per_million |
0.9394696 |
0.0000422 |
0.0000092 |
0.0000030 |
| max_daily_deaths_per_million |
0.0152616 |
0.0001172 |
0.0000175 |
0.0005292 |
| total_deaths_week_3_per_million |
0.1418436 |
0.0004850 |
0.0000162 |
0.0000638 |
| median_daily_deaths_per_million_week_3 |
0.9286466 |
0.0003179 |
0.0000172 |
0.0001131 |
| mean_daily_deaths_per_million_week_3 |
0.1418689 |
0.0004843 |
0.0000161 |
0.0000637 |
| max_daily_deaths_per_million_week_3 |
0.0009550 |
0.0016727 |
0.0000153 |
0.0000221 |
| total_deaths_month_1_per_million |
0.5960968 |
0.0002247 |
0.0002153 |
0.0027748 |
| median_daily_deaths_per_million_month_1 |
0.7350231 |
0.0035340 |
0.0021708 |
0.0100217 |
| mean_daily_deaths_per_million_month_1 |
0.5967231 |
0.0002231 |
0.0002112 |
0.0027711 |
| max_daily_deaths_per_million_month_1 |
0.5264177 |
0.0007549 |
0.0000487 |
0.0034942 |
| log_total_deaths_per_million |
0.3112114 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.2487730 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million |
0.4021833 |
0.0000075 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million |
0.0733813 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.1764563 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.3126177 |
0.0000008 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.1770712 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0425772 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.7880514 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.3477729 |
0.0000033 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_month_1 |
0.7800000 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.8309074 |
0.0000000 |
0.0000000 |
0.0000000 |
Linear Models (with UNFILTEREDish data, excluding USA states)
model_results <- data.frame(matrix(NA, ncol = length(confounding_varibales), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(confounding_varibales, "_LMU2")
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
lm_model <- lm(df_world[,dependent_variables[j]]~df_world[,confounding_varibales[i]], df_world)
model_results[j,i] <- glance(lm_model)$p.value
}
}
| total_deaths_per_million |
0.6552885 |
0.0000692 |
0.0000007 |
0.0000000 |
| days_to_reached_0.1_deaths_per_million |
0.5318725 |
0.0018491 |
0.0053167 |
0.1350306 |
| days_to_reached_1_deaths_per_million |
0.2634260 |
0.9671671 |
0.2247596 |
0.4427651 |
| mean_daily_deaths_per_million |
0.4043781 |
0.0003804 |
0.0000113 |
0.0000000 |
| median_daily_deaths_per_million |
0.7254814 |
0.0019110 |
0.0001183 |
0.0000001 |
| max_daily_deaths_per_million |
0.0057970 |
0.0036729 |
0.0000026 |
0.0000000 |
| total_deaths_week_3_per_million |
0.2081375 |
0.0084138 |
0.0014368 |
0.0000001 |
| median_daily_deaths_per_million_week_3 |
0.6667958 |
0.0096835 |
0.0007402 |
0.0000000 |
| mean_daily_deaths_per_million_week_3 |
0.2081375 |
0.0084138 |
0.0014368 |
0.0000001 |
| max_daily_deaths_per_million_week_3 |
0.0043473 |
0.0096377 |
0.0037324 |
0.0000015 |
| total_deaths_month_1_per_million |
0.9336853 |
0.0033483 |
0.0063512 |
0.0000583 |
| median_daily_deaths_per_million_month_1 |
0.7665812 |
0.0288492 |
0.0375058 |
0.0000422 |
| mean_daily_deaths_per_million_month_1 |
0.9336853 |
0.0033483 |
0.0063512 |
0.0000583 |
| max_daily_deaths_per_million_month_1 |
0.8394024 |
0.0102175 |
0.0030207 |
0.0002915 |
| log_total_deaths_per_million |
0.2369341 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million |
0.1737385 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million |
0.1841849 |
0.0002954 |
0.0000000 |
0.0000016 |
| log_max_daily_deaths_per_million |
0.0425377 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_total_deaths_week_3_per_million |
0.1211820 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_week_3 |
0.2561719 |
0.0000279 |
0.0000000 |
0.0000000 |
| log_mean_daily_deaths_per_million_week_3 |
0.1211820 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_week_3 |
0.0232416 |
0.0000000 |
0.0000000 |
0.0000000 |
| log_total_deaths_month_1_per_million |
0.5362953 |
0.0000013 |
0.0000000 |
0.0000000 |
| log_median_daily_deaths_per_million_month_1 |
0.2844749 |
0.0000923 |
0.0000000 |
0.0000002 |
| log_mean_daily_deaths_per_million_month_1 |
0.5362953 |
0.0000013 |
0.0000000 |
0.0000000 |
| log_max_daily_deaths_per_million_month_1 |
0.5433118 |
0.0000014 |
0.0000000 |
0.0000000 |
Linear Models (with FILTERED data)
model_results <- data.frame(matrix(NA, ncol = length(confounding_varibales), nrow = length(dependent_variables)))
rownames(model_results) <- dependent_variables
colnames(model_results) <- paste0(confounding_varibales, "_LMF")
for(i in 1:length(confounding_varibales)){
for(j in 1:length(dependent_variables)){
lm_model <- lm(df_filtered[,dependent_variables[j]]~df_filtered[,confounding_varibales[i]], df_filtered)
model_results[j,i] <- glance(lm_model)$p.value
}
}
| total_deaths_per_million |
0.0227421 |
0.5085246 |
0.3891885 |
0.3483063 |
| days_to_reached_0.1_deaths_per_million |
0.6886736 |
0.5336460 |
0.6137551 |
0.1430033 |
| days_to_reached_1_deaths_per_million |
0.7635746 |
0.5111901 |
0.5103232 |
0.0102821 |
| mean_daily_deaths_per_million |
0.0249032 |
0.4359951 |
0.2954470 |
0.3663080 |
| median_daily_deaths_per_million |
0.0349675 |
0.9181378 |
0.5207464 |
0.2067582 |
| max_daily_deaths_per_million |
0.1693494 |
0.1260287 |
0.1220730 |
0.5081068 |
| total_deaths_week_3_per_million |
0.4027611 |
0.7819172 |
0.4732807 |
0.2513538 |
| median_daily_deaths_per_million_week_3 |
0.3046428 |
0.6456844 |
0.2745237 |
0.1615026 |
| mean_daily_deaths_per_million_week_3 |
0.4027611 |
0.7819172 |
0.4732807 |
0.2513538 |
| max_daily_deaths_per_million_week_3 |
0.5230424 |
0.8793002 |
0.5697286 |
0.2959691 |
| total_deaths_month_1_per_million |
0.2678673 |
0.6345460 |
0.4253593 |
0.3957908 |
| median_daily_deaths_per_million_month_1 |
0.3180395 |
0.8671323 |
0.4643671 |
0.3406577 |
| mean_daily_deaths_per_million_month_1 |
0.2678673 |
0.6345460 |
0.4253593 |
0.3957908 |
| max_daily_deaths_per_million_month_1 |
0.1105504 |
0.5639718 |
0.3165927 |
0.4168637 |
| log_total_deaths_per_million |
0.0114176 |
0.4352474 |
0.0688101 |
0.1655063 |
| log_mean_daily_deaths_per_million |
0.0177705 |
0.4992911 |
0.0641028 |
0.1208885 |
| log_median_daily_deaths_per_million |
0.0159156 |
0.6372384 |
0.0836058 |
0.1017734 |
| log_max_daily_deaths_per_million |
0.1095580 |
0.2623762 |
0.0230553 |
0.1542857 |
| log_total_deaths_week_3_per_million |
0.1935794 |
0.9654785 |
0.2088619 |
0.0314163 |
| log_median_daily_deaths_per_million_week_3 |
0.4769506 |
0.4230607 |
0.1162568 |
0.0582856 |
| log_mean_daily_deaths_per_million_week_3 |
0.1935794 |
0.9654785 |
0.2088619 |
0.0314163 |
| log_max_daily_deaths_per_million_week_3 |
0.3198832 |
0.9735288 |
0.2055565 |
0.0370244 |
| log_total_deaths_month_1_per_million |
0.0830269 |
0.7359661 |
0.1199333 |
0.0818872 |
| log_median_daily_deaths_per_million_month_1 |
0.2237801 |
0.3638491 |
0.0850376 |
0.0280949 |
| log_mean_daily_deaths_per_million_month_1 |
0.0830269 |
0.7359661 |
0.1199333 |
0.0818872 |
| log_max_daily_deaths_per_million_month_1 |
0.0530406 |
0.6210655 |
0.0724144 |
0.1610295 |
Combination Tables (p-value matrix)
Linear Models
| total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0200810 |
0.0130794 |
| days_to_reached_0.1_deaths_per_million |
Days to 0.1 Death/1 M |
0.0149270 |
0.0078625 |
0.3319204 |
0.5242558 |
0.3098944 |
0.2972757 |
| days_to_reached_1_deaths_per_million |
Days to 1 Death/1 M |
0.0000129 |
0.0000100 |
0.4110823 |
0.3643631 |
0.1846061 |
0.1933569 |
| mean_daily_deaths_per_million |
Deaths/day/1 M (mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0167913 |
0.0098991 |
| median_daily_deaths_per_million |
Deaths/day/1 M (median) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0235405 |
0.0213611 |
| max_daily_deaths_per_million |
Deaths/day/1 M (max) |
0.0000103 |
0.0000082 |
0.0000104 |
0.0000070 |
0.0234976 |
0.0152219 |
| total_deaths_week_3_per_million |
Deaths/1 M/week 3 (Total) |
0.0002023 |
0.0001891 |
0.0001675 |
0.0001593 |
0.2688315 |
0.2886136 |
| median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (median) |
0.0000002 |
0.0000001 |
0.0000091 |
0.0000056 |
0.2758677 |
0.2921062 |
| mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (mean) |
0.0002014 |
0.0001883 |
0.0001675 |
0.0001593 |
0.2688315 |
0.2886136 |
| max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (max) |
0.0066965 |
0.0063904 |
0.0017025 |
0.0016524 |
0.2381408 |
0.2603534 |
| total_deaths_month_1_per_million |
Deaths/1 M/month 1 (Total) |
0.0000050 |
0.0000046 |
0.0000016 |
0.0000016 |
0.0606641 |
0.0598189 |
| median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (median) |
0.0000231 |
0.0000220 |
0.0002930 |
0.0002737 |
0.4176019 |
0.4500354 |
| mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (mean) |
0.0000048 |
0.0000045 |
0.0000016 |
0.0000016 |
0.0606641 |
0.0598189 |
| max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (max) |
0.0001430 |
0.0001337 |
0.0000747 |
0.0000751 |
0.0176593 |
0.0119085 |
| log_total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0014301 |
0.0003249 |
0.0688078 |
0.0468943 |
| log_mean_daily_deaths_per_million |
Deaths/day/1 M log(mean) |
0.0000000 |
0.0000000 |
0.0029308 |
0.0006819 |
0.1123067 |
0.0793990 |
| log_median_daily_deaths_per_million |
Deaths/day/1 M log(median) |
0.0000000 |
0.0000000 |
0.0000195 |
0.0000029 |
0.0872487 |
0.0706727 |
| log_max_daily_deaths_per_million |
Deaths/day/1 M loglog(max) |
0.0000000 |
0.0000000 |
0.0006394 |
0.0001056 |
0.0982779 |
0.0711571 |
| log_total_deaths_week_3_per_million |
Deaths/1 M/week 3 log(Total) |
0.0000000 |
0.0000000 |
0.0121553 |
0.0030733 |
0.7169883 |
0.6815864 |
| log_median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(median) |
0.0000000 |
0.0000000 |
0.0067429 |
0.0021655 |
0.3915494 |
0.3858247 |
| log_mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(mean) |
0.0000000 |
0.0000000 |
0.0121553 |
0.0030733 |
0.7169883 |
0.6815864 |
| log_max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(max) |
0.0000000 |
0.0000000 |
0.0055685 |
0.0013596 |
0.6176365 |
0.5975727 |
| log_total_deaths_month_1_per_million |
Deaths/1 M/month 1 log(Total) |
0.0000000 |
0.0000000 |
0.0115453 |
0.0037608 |
0.2300306 |
0.1978414 |
| log_median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(median) |
0.0000000 |
0.0000000 |
0.0056246 |
0.0021765 |
0.6460633 |
0.6170304 |
| log_mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(mean) |
0.0000000 |
0.0000000 |
0.0115453 |
0.0037608 |
0.2300306 |
0.1978414 |
| log_max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(max) |
0.0000000 |
0.0000000 |
0.0011728 |
0.0002773 |
0.0707810 |
0.0494013 |
Anova Models
| total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0182780 |
| days_to_reached_0.1_deaths_per_million |
Days to 0.1 Death/1 M |
0.0001479 |
0.3720762 |
0.5066961 |
| days_to_reached_1_deaths_per_million |
Days to 1 Death/1 M |
0.0000135 |
0.4838823 |
0.7897329 |
| mean_daily_deaths_per_million |
Deaths/day/1 M (mean) |
0.0000000 |
0.0000000 |
0.0244175 |
| median_daily_deaths_per_million |
Deaths/day/1 M (median) |
0.0000000 |
0.0000000 |
0.0704910 |
| max_daily_deaths_per_million |
Deaths/day/1 M (max) |
0.0000129 |
0.0000000 |
0.0098238 |
| total_deaths_week_3_per_million |
Deaths/1 M/week 3 (Total) |
0.0004875 |
0.0000005 |
0.2682578 |
| median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (median) |
0.0000001 |
0.0000001 |
0.1632630 |
| mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (mean) |
0.0004854 |
0.0000005 |
0.2682578 |
| max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (max) |
0.0172147 |
0.0000074 |
0.4246833 |
| total_deaths_month_1_per_million |
Deaths/1 M/month 1 (Total) |
0.0000418 |
0.0000020 |
0.2091805 |
| median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (median) |
0.0000708 |
0.0004344 |
0.1337124 |
| mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (mean) |
0.0000405 |
0.0000020 |
0.2091805 |
| max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (max) |
0.0008810 |
0.0000063 |
0.1755753 |
| log_total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0074763 |
| log_mean_daily_deaths_per_million |
Deaths/day/1 M log(mean) |
0.0000000 |
0.0000000 |
0.0140145 |
| log_median_daily_deaths_per_million |
Deaths/day/1 M log(median) |
0.0000000 |
0.0000000 |
0.0175344 |
| log_max_daily_deaths_per_million |
Deaths/day/1 M loglog(max) |
0.0000000 |
0.0000000 |
0.0108388 |
| log_total_deaths_week_3_per_million |
Deaths/1 M/week 3 log(Total) |
0.0000000 |
0.0000000 |
0.5383513 |
| log_median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(median) |
0.0000000 |
0.0000100 |
0.2756231 |
| log_mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(mean) |
0.0000000 |
0.0000000 |
0.5383513 |
| log_max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(max) |
0.0000000 |
0.0000001 |
0.5994709 |
| log_total_deaths_month_1_per_million |
Deaths/1 M/month 1 log(Total) |
0.0000000 |
0.0000000 |
0.1763712 |
| log_median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(median) |
0.0000000 |
0.0000015 |
0.0199775 |
| log_mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(mean) |
0.0000000 |
0.0000000 |
0.1763712 |
| log_max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(max) |
0.0000000 |
0.0000000 |
0.1035297 |
T-test Models
| total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0086223 |
0.0006706 |
| days_to_reached_0.1_deaths_per_million |
Days to 0.1 Death/1 M |
0.9999510 |
0.9999586 |
0.9063435 |
0.7439748 |
0.1863422 |
0.1108277 |
| days_to_reached_1_deaths_per_million |
Days to 1 Death/1 M |
0.9999589 |
0.9999911 |
0.8284547 |
0.6533272 |
0.3963441 |
0.2462513 |
| mean_daily_deaths_per_million |
Deaths/day/1 M (mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0064404 |
0.0005282 |
| median_daily_deaths_per_million |
Deaths/day/1 M (median) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0249060 |
0.0097696 |
| max_daily_deaths_per_million |
Deaths/day/1 M (max) |
0.0000027 |
0.0000030 |
0.0000029 |
0.0000000 |
0.0025747 |
0.0000008 |
| total_deaths_week_3_per_million |
Deaths/1 M/week 3 (Total) |
0.0000603 |
0.0000776 |
0.0001552 |
0.0000001 |
0.0619118 |
0.1587155 |
| median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (median) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0337576 |
0.1170317 |
| mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (mean) |
0.0000601 |
0.0000772 |
0.0001552 |
0.0000001 |
0.0619118 |
0.1587155 |
| max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 (max) |
0.0032160 |
0.0030934 |
0.0022963 |
0.0000021 |
0.1029118 |
0.2022459 |
| total_deaths_month_1_per_million |
Deaths/1 M/month 1 (Total) |
0.0000038 |
0.0000039 |
0.0000124 |
0.0000001 |
0.0367781 |
0.0391609 |
| median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (median) |
0.0000042 |
0.0000013 |
0.0000391 |
0.0000040 |
0.0384985 |
0.1567297 |
| mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (mean) |
0.0000037 |
0.0000037 |
0.0000124 |
0.0000001 |
0.0367781 |
0.0391609 |
| max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 (max) |
0.0002156 |
0.0001829 |
0.0006775 |
0.0000026 |
0.0326939 |
0.0346584 |
| log_total_deaths_per_million |
Deaths/1 M (Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000000 |
0.0020591 |
0.0003713 |
| log_mean_daily_deaths_per_million |
Deaths/day/1 M log(mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000003 |
0.0031508 |
0.0013188 |
| log_median_daily_deaths_per_million |
Deaths/day/1 M log(median) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000105 |
0.0027675 |
0.0065103 |
| log_max_daily_deaths_per_million |
Deaths/day/1 M loglog(max) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000006 |
0.0023940 |
0.0026049 |
| log_total_deaths_week_3_per_million |
Deaths/1 M/week 3 log(Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000708 |
0.1425635 |
0.3462628 |
| log_median_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(median) |
0.0000000 |
0.0000000 |
0.0000008 |
0.0095828 |
0.0758333 |
0.3812898 |
| log_mean_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000708 |
0.1425635 |
0.3462628 |
| log_max_daily_deaths_per_million_week_3 |
Deaths/1 M/week 3 log(max) |
0.0000000 |
0.0000000 |
0.0000001 |
0.0000937 |
0.1593286 |
0.3371390 |
| log_total_deaths_month_1_per_million |
Deaths/1 M/month 1 log(Total) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000838 |
0.0294479 |
0.0574266 |
| log_median_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(median) |
0.0000000 |
0.0000000 |
0.0000001 |
0.0105758 |
0.0152696 |
0.4500793 |
| log_mean_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(mean) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000838 |
0.0294479 |
0.0574266 |
| log_max_daily_deaths_per_million_month_1 |
Deaths/1 M/month 1 log(max) |
0.0000000 |
0.0000000 |
0.0000000 |
0.0000214 |
0.0166482 |
0.0385099 |