Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of \(\mu =\sigma =(N+1)/2\).
N <- 11 # Set a value for N
numbers <- 10000 # Set the amount for the random numbers
X <- runif(numbers, min = 1, max = N) # Generate random variable X
summary(X) # Display X's information
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 3.543 6.069 6.047 8.558 11.000
mu = sigma = (N + 1) / 2 # Set value for mu and sigma
Y <- rnorm(numbers, mean = mu, sd = sigma) # Generate random variable Y
summary(Y) # Display Y's information
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -18.616 2.010 5.909 6.020 10.058 26.463
Probability. Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities. 5 points a. P(X>x | X>y) b. P(X>x, Y>y) c. P(X<x | X>y)
x <- median(X) # Median of X
y <- quantile(Y, 0.25) # 1st quartile of Y
prob_Xx_and_Xy <- sum(X > x & X > y) / numbers # Probabilty that X > x and X > y
prob_Xy <- sum(X > y) / numbers # Probability that X > y
round(prob_Xx_given_Xy <- prob_Xx_and_Xy / prob_Xy, 4) # Divide the first probability found by the second probability found
## [1] 0.554
The probability that X > x given that X > y is equal to 0.5561 or 55.61%. (at the moment I ran the code)
round(sum(X > x & Y > y) / numbers, 4) # Probability that X > x and Y > y
## [1] 0.3742
The probability that X > x while at the same time Y > y is 0.3754 or 37.54%. (at the moment I ran the code)
prob_Xx_and_Xy_less <- sum(X < x & X > y) / numbers # Probability that X < x and X > y
round(prob_Xx_and_Xy_less / prob_Xy, 4)
## [1] 0.446
The probability that X < x given that X > y is 0.4439 or 44.39%. (at the moment I ran the code)
5 points. Investigate whether P(X>x and Y>y)=P(X>x)P(Y>y) by building a table and evaluating the marginal and joint probabilities.
table <- matrix(c(sum(X > x & Y < y) / numbers, sum(X > x & Y > y) / numbers, sum(X < x & Y < y) / numbers, sum(X < x & Y > y) / numbers), ncol = 2, byrow = TRUE) # Create a matrix showing the different probabilities
table <- cbind(table, c(table[1,1] + table[1,2], table[2,1] + table[2,2])) # Get total of columns
table <- rbind(table, c(table[1,1] + table[2,1], table[1,2] + table[2,2], table[1,3] + table[2,3])) # Get total of rows
colnames(table) <- c("X > x", "X < x", "Total") # Rename columns to show probabilites of X and x
rownames(table) <- c("Y < y", "Y > y", "Total") # Rename rows to show probabilities of Y and y
as.table(table) # Convert matrix into a table
## X > x X < x Total
## Y < y 0.1258 0.3742 0.5000
## Y > y 0.1242 0.3758 0.5000
## Total 0.2500 0.7500 1.0000
round(table[3,1] * table[2,3], 4) # P(X > x) * P(Y > y)
## [1] 0.125
round(table[2,1], 4) # P(X > x & Y > y)
## [1] 0.1242
From the table built and by evaluating the marginal and joint probabilities, we can see that P(X > x and Y > y) is almost equal to P(X > x) * P(Y > y). There is a slight rounding error.
5 points. Check to see if independence holds by using Fisher’s Exact Test and the Chi Square Test. What is the difference between the two? Which is most appropriate?
fisher.test(table)
## Warning in fisher.test(table): 'x' has been rounded to integer: Mean relative
## difference: 0.8333333
##
## Fisher's Exact Test for Count Data
##
## data: table
## p-value = 1
## alternative hypothesis: two.sided
chisq.test(table)
## Warning in chisq.test(table): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: table
## X-squared = 1.3653e-05, df = 4, p-value = 1
For both the Fisher’s Exact Test and the Chi Square Test independence holds. This is seen by the high p-value we get from both tests. The difference between the two is Fisher’s Exact Test is best used when dealing with a small sample size and the Chi Square Test is best used when dealing with a large sample size. Chi Square Test would be most appropriate to use in this situation.
train_dataset <- read.csv("https://raw.githubusercontent.com/bpersaud104/Data605/master/train.csv", header = TRUE) # Load training dataset from Kaggle
test_dataset <- read.csv("https://raw.githubusercontent.com/bpersaud104/Data605/master/test.csv", header = TRUE) # Load testing dataset from Kaggle
5 points. Descriptive and Inferential Statistics. Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable. Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not?
summary(train_dataset) # Show statistics for training dataset
## Id MSSubClass MSZoning LotFrontage
## Min. : 1.0 Min. : 20.0 C (all): 10 Min. : 21.00
## 1st Qu.: 365.8 1st Qu.: 20.0 FV : 65 1st Qu.: 59.00
## Median : 730.5 Median : 50.0 RH : 16 Median : 69.00
## Mean : 730.5 Mean : 56.9 RL :1151 Mean : 70.05
## 3rd Qu.:1095.2 3rd Qu.: 70.0 RM : 218 3rd Qu.: 80.00
## Max. :1460.0 Max. :190.0 Max. :313.00
## NA's :259
## LotArea Street Alley LotShape LandContour Utilities
## Min. : 1300 Grvl: 6 Grvl: 50 IR1:484 Bnk: 63 AllPub:1459
## 1st Qu.: 7554 Pave:1454 Pave: 41 IR2: 41 HLS: 50 NoSeWa: 1
## Median : 9478 NA's:1369 IR3: 10 Low: 36
## Mean : 10517 Reg:925 Lvl:1311
## 3rd Qu.: 11602
## Max. :215245
##
## LotConfig LandSlope Neighborhood Condition1 Condition2
## Corner : 263 Gtl:1382 NAmes :225 Norm :1260 Norm :1445
## CulDSac: 94 Mod: 65 CollgCr:150 Feedr : 81 Feedr : 6
## FR2 : 47 Sev: 13 OldTown:113 Artery : 48 Artery : 2
## FR3 : 4 Edwards:100 RRAn : 26 PosN : 2
## Inside :1052 Somerst: 86 PosN : 19 RRNn : 2
## Gilbert: 79 RRAe : 11 PosA : 1
## (Other):707 (Other): 15 (Other): 2
## BldgType HouseStyle OverallQual OverallCond YearBuilt
## 1Fam :1220 1Story :726 Min. : 1.000 Min. :1.000 Min. :1872
## 2fmCon: 31 2Story :445 1st Qu.: 5.000 1st Qu.:5.000 1st Qu.:1954
## Duplex: 52 1.5Fin :154 Median : 6.000 Median :5.000 Median :1973
## Twnhs : 43 SLvl : 65 Mean : 6.099 Mean :5.575 Mean :1971
## TwnhsE: 114 SFoyer : 37 3rd Qu.: 7.000 3rd Qu.:6.000 3rd Qu.:2000
## 1.5Unf : 14 Max. :10.000 Max. :9.000 Max. :2010
## (Other): 19
## YearRemodAdd RoofStyle RoofMatl Exterior1st Exterior2nd
## Min. :1950 Flat : 13 CompShg:1434 VinylSd:515 VinylSd:504
## 1st Qu.:1967 Gable :1141 Tar&Grv: 11 HdBoard:222 MetalSd:214
## Median :1994 Gambrel: 11 WdShngl: 6 MetalSd:220 HdBoard:207
## Mean :1985 Hip : 286 WdShake: 5 Wd Sdng:206 Wd Sdng:197
## 3rd Qu.:2004 Mansard: 7 ClyTile: 1 Plywood:108 Plywood:142
## Max. :2010 Shed : 2 Membran: 1 CemntBd: 61 CmentBd: 60
## (Other): 2 (Other):128 (Other):136
## MasVnrType MasVnrArea ExterQual ExterCond Foundation BsmtQual
## BrkCmn : 15 Min. : 0.0 Ex: 52 Ex: 3 BrkTil:146 Ex :121
## BrkFace:445 1st Qu.: 0.0 Fa: 14 Fa: 28 CBlock:634 Fa : 35
## None :864 Median : 0.0 Gd:488 Gd: 146 PConc :647 Gd :618
## Stone :128 Mean : 103.7 TA:906 Po: 1 Slab : 24 TA :649
## NA's : 8 3rd Qu.: 166.0 TA:1282 Stone : 6 NA's: 37
## Max. :1600.0 Wood : 3
## NA's :8
## BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
## Fa : 45 Av :221 ALQ :220 Min. : 0.0 ALQ : 19
## Gd : 65 Gd :134 BLQ :148 1st Qu.: 0.0 BLQ : 33
## Po : 2 Mn :114 GLQ :418 Median : 383.5 GLQ : 14
## TA :1311 No :953 LwQ : 74 Mean : 443.6 LwQ : 46
## NA's: 37 NA's: 38 Rec :133 3rd Qu.: 712.2 Rec : 54
## Unf :430 Max. :5644.0 Unf :1256
## NA's: 37 NA's: 38
## BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating HeatingQC
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Floor: 1 Ex:741
## 1st Qu.: 0.00 1st Qu.: 223.0 1st Qu.: 795.8 GasA :1428 Fa: 49
## Median : 0.00 Median : 477.5 Median : 991.5 GasW : 18 Gd:241
## Mean : 46.55 Mean : 567.2 Mean :1057.4 Grav : 7 Po: 1
## 3rd Qu.: 0.00 3rd Qu.: 808.0 3rd Qu.:1298.2 OthW : 2 TA:428
## Max. :1474.00 Max. :2336.0 Max. :6110.0 Wall : 4
##
## CentralAir Electrical X1stFlrSF X2ndFlrSF LowQualFinSF
## N: 95 FuseA: 94 Min. : 334 Min. : 0 Min. : 0.000
## Y:1365 FuseF: 27 1st Qu.: 882 1st Qu.: 0 1st Qu.: 0.000
## FuseP: 3 Median :1087 Median : 0 Median : 0.000
## Mix : 1 Mean :1163 Mean : 347 Mean : 5.845
## SBrkr:1334 3rd Qu.:1391 3rd Qu.: 728 3rd Qu.: 0.000
## NA's : 1 Max. :4692 Max. :2065 Max. :572.000
##
## GrLivArea BsmtFullBath BsmtHalfBath FullBath
## Min. : 334 Min. :0.0000 Min. :0.00000 Min. :0.000
## 1st Qu.:1130 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:1.000
## Median :1464 Median :0.0000 Median :0.00000 Median :2.000
## Mean :1515 Mean :0.4253 Mean :0.05753 Mean :1.565
## 3rd Qu.:1777 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:2.000
## Max. :5642 Max. :3.0000 Max. :2.00000 Max. :3.000
##
## HalfBath BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd
## Min. :0.0000 Min. :0.000 Min. :0.000 Ex:100 Min. : 2.000
## 1st Qu.:0.0000 1st Qu.:2.000 1st Qu.:1.000 Fa: 39 1st Qu.: 5.000
## Median :0.0000 Median :3.000 Median :1.000 Gd:586 Median : 6.000
## Mean :0.3829 Mean :2.866 Mean :1.047 TA:735 Mean : 6.518
## 3rd Qu.:1.0000 3rd Qu.:3.000 3rd Qu.:1.000 3rd Qu.: 7.000
## Max. :2.0000 Max. :8.000 Max. :3.000 Max. :14.000
##
## Functional Fireplaces FireplaceQu GarageType GarageYrBlt
## Maj1: 14 Min. :0.000 Ex : 24 2Types : 6 Min. :1900
## Maj2: 5 1st Qu.:0.000 Fa : 33 Attchd :870 1st Qu.:1961
## Min1: 31 Median :1.000 Gd :380 Basment: 19 Median :1980
## Min2: 34 Mean :0.613 Po : 20 BuiltIn: 88 Mean :1979
## Mod : 15 3rd Qu.:1.000 TA :313 CarPort: 9 3rd Qu.:2002
## Sev : 1 Max. :3.000 NA's:690 Detchd :387 Max. :2010
## Typ :1360 NA's : 81 NA's :81
## GarageFinish GarageCars GarageArea GarageQual GarageCond
## Fin :352 Min. :0.000 Min. : 0.0 Ex : 3 Ex : 2
## RFn :422 1st Qu.:1.000 1st Qu.: 334.5 Fa : 48 Fa : 35
## Unf :605 Median :2.000 Median : 480.0 Gd : 14 Gd : 9
## NA's: 81 Mean :1.767 Mean : 473.0 Po : 3 Po : 7
## 3rd Qu.:2.000 3rd Qu.: 576.0 TA :1311 TA :1326
## Max. :4.000 Max. :1418.0 NA's: 81 NA's: 81
##
## PavedDrive WoodDeckSF OpenPorchSF EnclosedPorch X3SsnPorch
## N: 90 Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.00
## P: 30 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00
## Y:1340 Median : 0.00 Median : 25.00 Median : 0.00 Median : 0.00
## Mean : 94.24 Mean : 46.66 Mean : 21.95 Mean : 3.41
## 3rd Qu.:168.00 3rd Qu.: 68.00 3rd Qu.: 0.00 3rd Qu.: 0.00
## Max. :857.00 Max. :547.00 Max. :552.00 Max. :508.00
##
## ScreenPorch PoolArea PoolQC Fence MiscFeature
## Min. : 0.00 Min. : 0.000 Ex : 2 GdPrv: 59 Gar2: 2
## 1st Qu.: 0.00 1st Qu.: 0.000 Fa : 2 GdWo : 54 Othr: 2
## Median : 0.00 Median : 0.000 Gd : 3 MnPrv: 157 Shed: 49
## Mean : 15.06 Mean : 2.759 NA's:1453 MnWw : 11 TenC: 1
## 3rd Qu.: 0.00 3rd Qu.: 0.000 NA's :1179 NA's:1406
## Max. :480.00 Max. :738.000
##
## MiscVal MoSold YrSold SaleType
## Min. : 0.00 Min. : 1.000 Min. :2006 WD :1267
## 1st Qu.: 0.00 1st Qu.: 5.000 1st Qu.:2007 New : 122
## Median : 0.00 Median : 6.000 Median :2008 COD : 43
## Mean : 43.49 Mean : 6.322 Mean :2008 ConLD : 9
## 3rd Qu.: 0.00 3rd Qu.: 8.000 3rd Qu.:2009 ConLI : 5
## Max. :15500.00 Max. :12.000 Max. :2010 ConLw : 5
## (Other): 9
## SaleCondition SalePrice
## Abnorml: 101 Min. : 34900
## AdjLand: 4 1st Qu.:129975
## Alloca : 12 Median :163000
## Family : 20 Mean :180921
## Normal :1198 3rd Qu.:214000
## Partial: 125 Max. :755000
##
I chose LotArea and GarageArea as the two independent variables and SalePrice as the dependent variable. Let’s plot these variables.
hist(train_dataset$LotArea) # Plot LotArea variable from training dataset
hist(train_dataset$GarageArea) # Plot GarageArea variable from training dataset
hist(train_dataset$SalePrice) # Plot SalePrice from training dataset
For the most part, all three appear to be right skewed, with LotArea being heavily right skewed.
Let’s show a scatterplot of LotArea and GarageArea with SalePrice.
plot(train_dataset$LotArea, train_dataset$SalePrice) # Scatterplot of LotArea and SalePrice
plot(train_dataset$GarageArea, train_dataset$SalePrice) # Scatterplot of OverallQual and SalePrice
The scatterplot for LotArea has most of its points all in one area, the bottom left of the graph. The scatterplot for GarageArea has its points more spread out.
Let’s use the same three variables, LotArea, GarageArea, and SalePrice as the three quantitative variables and use them to make a correlation matrix.
correlation_matrix <- cbind(train_dataset$LotArea, train_dataset$GarageArea, train_dataset$SalePrice)
correlation_matrix <- cor(correlation_matrix)
correlation_matrix
## [,1] [,2] [,3]
## [1,] 1.0000000 0.1804028 0.2638434
## [2,] 0.1804028 1.0000000 0.6234314
## [3,] 0.2638434 0.6234314 1.0000000
Let’s do a hypothesis test using these three variables with a 80% confidence interval.
cor.test(train_dataset$LotArea, train_dataset$SalePrice, conf.level = 0.80)
##
## Pearson's product-moment correlation
##
## data: train_dataset$LotArea and train_dataset$SalePrice
## t = 10.445, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.2323391 0.2947946
## sample estimates:
## cor
## 0.2638434
cor.test(train_dataset$LotArea, train_dataset$GarageArea, conf.level = 0.80)
##
## Pearson's product-moment correlation
##
## data: train_dataset$LotArea and train_dataset$GarageArea
## t = 7.0034, df = 1458, p-value = 3.803e-12
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.1477356 0.2126767
## sample estimates:
## cor
## 0.1804028
cor.test(train_dataset$GarageArea, train_dataset$SalePrice, conf.level = 0.80)
##
## Pearson's product-moment correlation
##
## data: train_dataset$GarageArea and train_dataset$SalePrice
## t = 30.446, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.6024756 0.6435283
## sample estimates:
## cor
## 0.6234314
From the hypothesis test between LotArea and SalePrice, we can say that there is a correlation since the p-value is below 0.05 and the 80% confidence interval is (0.2323391, 0.2947946). From the hypothesis test between LotArea and GarageArea we can say there is a correlation since the p-value is below 0.05 and the 80% confidence interval is (0.1477356, 0.2126767). From the hypothesis test between GarageArea and SalePrice we can say there is a correlation since the p-value is below 0.05 and the 80% confidence interval is (0.6024756, 0.6435283). My analysis shows that the there is a correlation between the three variables picked, LotArea, GarageArea, and SalePrice. There is little correlation between LotArea and GarageArea as the correlation is only 0.1804 . There is a big correlation between GarageArea and SalePrice as the correlation is 0.6234. Based on this analysis I would be worried about familywise error because each of the p-values are below 0.05, showing that there is some correlation. This means that we reject the null hypothesis.
5 points. Linear Algebra and Correlation. Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix.
precision_matrix <- solve(correlation_matrix) # Create precision matrix using correlation matrix
precision_matrix
## [,1] [,2] [,3]
## [1,] 1.07530074 -0.02799273 -0.2662594
## [2,] -0.02799273 1.63649778 -1.0128585
## [3,] -0.26625940 -1.01285847 1.7016986
round(correlation_matrix %*% precision_matrix, 4) # Multiply correlation matrix by precision matrix
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
round(precision_matrix %*% correlation_matrix, 4) # Multiply precision matrix by correlation matrix
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
In both cases, multiplying the correlation matrix by the precision matrix and multiplying the precision matrix by the correlation matrix gives the Identity matrix.
LU_decomposition <- function(A){ # Simple function to calculate LU decomposition
rows = columns = dim(A)[1] # Get rows and columns
U = A # Get upper
L = diag(rows) # Get Lower
for (j in 1:(columns-1)) {
for(i in (j+1):rows){
L[i,j] = (U[i,j] / U[j,j]) # Calculate Lower
U[i,] = U[i,] - (U[j,] * L[i,j]) # Calculate Upper
}
}
LU = list("Lower" = L, "Upper" = U) # List Lower and Upper
return(LU)
}
LU_decomposition(correlation_matrix) # LU decomposition on correlation matrix
## $Lower
## [,1] [,2] [,3]
## [1,] 1.0000000 0.0000000 0
## [2,] 0.1804028 1.0000000 0
## [3,] 0.2638434 0.5952044 1
##
## $Upper
## [,1] [,2] [,3]
## [1,] 1 0.1804028 0.2638434
## [2,] 0 0.9674548 0.5758334
## [3,] 0 0.0000000 0.5876481
LU_decomposition(precision_matrix) # LU decomposition on precision matrix
## $Lower
## [,1] [,2] [,3]
## [1,] 1.00000000 0.0000000 0
## [2,] -0.02603247 1.0000000 0
## [3,] -0.24761389 -0.6234314 1
##
## $Upper
## [,1] [,2] [,3]
## [1,] 1.075301 -0.02799273 -0.2662594
## [2,] 0.000000 1.63576906 -1.0197899
## [3,] 0.000000 0.00000000 1.0000000
From the LU decomposition above we can see the lower and upper matrices for both the correlation matrix and the precision matrix. In both cases, multiplying the lower by the upper gives us the original matrix.
5 points. Calculus-Based Probability & Statistics. Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ). Find the optimal value of for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, )). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.
library(MASS) # Load MASS pacakge
## Warning: package 'MASS' was built under R version 3.6.3
I chose to use the PoolArea variable due to it being heavily right skewed. The min of PoolArea is 0 so let us add 1 to it so we can have a min above 0.
fit_variable <- train_dataset$PoolArea + 1
summary(fit_variable)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 1.000 1.000 3.759 1.000 739.000
fit_exp_function <- fitdistr(fit_variable, "exponential") # Fit exponential probability function using created variable
fit_exp_function
## rate
## 0.266034985
## (0.006962454)
lambda <- fit_exp_function$estimate # Compute optimal values of lambda
lambda
## rate
## 0.266035
exponential_samples <- rexp(1000, lambda) # Use optimal value to create 1000 samples of exponential distribution
exponential_samples
## [1] 0.852380777 3.109206304 3.037865460 2.598455560 15.450979425
## [6] 4.733622179 2.480186403 0.399630561 2.628919552 3.698496697
## [11] 1.012472765 6.941859424 1.999521234 6.490322617 5.111915806
## [16] 2.034294575 8.030406645 3.201296004 0.093622765 8.939915284
## [21] 1.014436810 0.640881663 1.126627964 2.914497835 2.806180258
## [26] 9.920630091 3.254174138 0.414889752 4.700588570 0.354377038
## [31] 1.480375479 1.121633241 6.121231978 2.389816054 2.702871970
## [36] 9.013886222 0.178775466 1.320370346 0.919730573 1.725417562
## [41] 1.553309645 5.739827394 2.751278504 3.698643028 4.676062258
## [46] 3.812122871 7.278435182 1.086761368 0.124159468 2.048646278
## [51] 4.563502357 3.770401518 5.671556286 6.970588894 6.658117896
## [56] 4.729882910 3.375228787 4.616870751 1.669679373 3.238358169
## [61] 0.734958774 7.672791555 1.283713880 2.323640401 10.073728576
## [66] 4.691019099 2.863218501 6.754300664 3.091523854 1.260383614
## [71] 0.158996287 0.690491030 7.236519352 1.061367000 0.513654500
## [76] 9.838932450 2.080668946 0.332561861 8.316471693 0.408903168
## [81] 4.538622902 3.574722497 4.327325436 3.416672516 2.385242902
## [86] 8.146210675 0.864146173 2.651705128 1.641118190 2.092865386
## [91] 3.366107034 0.216609427 0.489303533 0.912900267 1.063013014
## [96] 6.837928773 12.323481865 3.582094965 0.602631463 4.174828061
## [101] 0.729270777 5.709839433 5.384287102 0.429651588 2.415587528
## [106] 2.101911631 4.523340456 0.834685430 6.257241062 0.727302836
## [111] 0.531167509 0.802529630 5.759148717 1.330296913 1.609193382
## [116] 1.746698182 2.339419424 2.841063026 2.097262603 2.354760737
## [121] 0.442306265 7.208270615 2.188616038 0.056413418 10.349939847
## [126] 3.371936024 14.535708813 0.735872557 3.511678413 2.265849160
## [131] 0.039256050 6.454424082 1.277832265 9.021999225 1.096409059
## [136] 2.761917359 0.128671054 2.703598817 1.324357012 0.453988084
## [141] 0.351512039 5.526375298 0.544090047 0.299089870 5.980070150
## [146] 1.110647936 2.195951058 0.938600828 2.608013852 6.079154224
## [151] 0.045280994 4.794426685 1.542379777 0.376087033 5.158523467
## [156] 3.432638193 11.434221842 0.428077402 0.282466288 11.776089768
## [161] 3.352738438 3.901712607 19.628117738 0.596319692 3.709154079
## [166] 2.216636779 8.353473930 1.486519917 0.734489799 3.541697835
## [171] 1.103258397 2.245158585 4.107367700 3.387252978 4.489355612
## [176] 4.897362970 4.352877975 3.836680073 9.337416895 3.248104137
## [181] 1.952001829 7.402323233 0.292054202 1.212592127 3.669444952
## [186] 7.472067446 1.632741017 0.539565548 4.906654344 0.984561781
## [191] 3.213994475 2.820256405 0.204425920 2.954599908 12.142129904
## [196] 0.351177784 2.807273979 2.492472886 0.896519479 6.538667236
## [201] 4.575715613 0.237983242 5.381611140 0.025422440 17.491400374
## [206] 0.151228919 0.041210897 1.578045222 7.990793803 1.140586769
## [211] 1.425772294 6.117681055 0.122802461 4.302937554 1.706823089
## [216] 4.959760503 1.319614683 0.735676323 0.906169734 18.355265597
## [221] 10.248724824 1.050553241 1.042025647 5.428994957 0.466698141
## [226] 2.485027851 1.696976707 0.162050682 2.784301194 5.406383486
## [231] 0.643220011 0.132868987 1.149794318 0.892150693 1.568816138
## [236] 7.364369463 8.998408752 0.543853058 0.958449287 1.263275060
## [241] 8.680305617 2.339584733 2.209614357 3.350989042 3.086619864
## [246] 1.005272038 5.311309230 3.412816654 6.491440954 0.815249501
## [251] 5.335092228 4.382267810 0.021344030 3.562973129 5.972171844
## [256] 4.466163163 1.774893340 5.339354415 0.047721405 1.124701108
## [261] 2.111336078 4.545810384 13.507553111 0.726596290 4.517635427
## [266] 5.521027689 5.993788191 5.522238420 9.020437122 1.845947382
## [271] 2.758370653 2.630063535 3.106118238 2.814219960 1.097099094
## [276] 1.551164221 2.236425812 1.887930756 1.134933993 6.999261161
## [281] 5.810937292 12.423489647 3.712093265 4.214996231 7.181064957
## [286] 13.043878173 12.745118012 3.624773053 1.151511931 1.266968981
## [291] 3.157247835 1.205185171 6.552687777 4.394870557 1.126610416
## [296] 7.377538173 7.653611704 3.157608430 4.884736981 0.257439633
## [301] 0.173081807 3.122581583 6.102784372 9.643505729 0.985096031
## [306] 7.125045843 5.284928940 5.769075857 4.296431203 11.712784961
## [311] 3.172470494 9.762607692 6.098729311 5.183835327 1.580303506
## [316] 0.637555005 0.462442590 1.161795756 2.502392681 1.057626565
## [321] 2.896204941 0.358888866 0.901430908 2.269119239 0.878178085
## [326] 4.013095148 6.374461770 2.307405697 1.240727119 11.784148300
## [331] 0.470845465 6.978872206 11.199566691 1.553074221 5.342843268
## [336] 5.689289848 0.810161658 1.450717526 2.521929504 2.113526903
## [341] 3.658785620 13.179302035 4.200538961 2.989226279 0.387669032
## [346] 3.872490448 0.864035873 3.486516601 3.163213256 2.707902346
## [351] 3.187016707 12.998997550 0.622204894 3.351495178 1.661535142
## [356] 7.238432065 8.287132155 1.888532565 0.122006030 5.072128027
## [361] 0.255464184 2.552254480 0.016718131 0.776912679 3.035450005
## [366] 3.390102601 4.132966809 3.870962916 3.816933464 0.640003574
## [371] 7.020040072 8.584313562 7.398310629 5.929003340 1.612647196
## [376] 0.574984327 5.405448967 11.219921583 0.387533154 2.208030879
## [381] 5.174942845 1.129994590 4.817359207 3.564708938 2.779931453
## [386] 4.558146010 6.493833088 1.480950845 1.993990386 2.598352948
## [391] 0.235597801 5.767812351 1.953187454 1.845705080 0.476565890
## [396] 0.102024194 5.576784506 3.763834845 2.753240318 12.385887858
## [401] 2.695898668 0.245797222 1.351726887 0.382203316 2.889544988
## [406] 2.188239421 0.007314591 2.180737562 8.455559816 3.670920790
## [411] 0.534617207 6.249717490 6.648628660 0.792581094 3.325800479
## [416] 0.454891186 2.674123396 2.113808374 2.847370190 1.515487467
## [421] 3.068626215 3.940373360 0.029553950 7.412565678 0.426190725
## [426] 5.941848030 7.934791386 7.367036421 2.380379489 3.158717364
## [431] 0.264631303 6.395575003 5.891494660 2.280915456 0.590257565
## [436] 1.393090545 5.428280831 12.982228023 0.720591364 1.442643707
## [441] 2.012946027 1.147126026 3.127349219 12.769599305 1.159377325
## [446] 1.082054583 2.152348612 4.437215159 1.814568959 3.552740668
## [451] 0.364645427 2.764492022 5.786840683 8.129179529 5.838393095
## [456] 5.065214686 4.704299819 2.292423090 1.785100941 0.014974688
## [461] 3.300249570 13.562155156 6.404286997 4.950455038 0.637304864
## [466] 3.064036965 0.196256388 1.051735545 0.350995114 1.119146561
## [471] 3.729249947 3.159922817 1.795796851 3.358802725 0.861435969
## [476] 0.749399076 4.891437921 2.248180470 2.011495858 1.225542400
## [481] 2.282391671 1.974742291 0.441139306 17.977525586 0.703740006
## [486] 1.979284650 1.178705470 5.121465190 0.091690723 8.110342720
## [491] 3.963697738 6.167933827 13.226997449 7.987267956 5.114614385
## [496] 4.752185544 2.122685058 0.769359079 8.032245251 2.123409198
## [501] 2.103962335 15.567096465 3.663813144 1.655976231 3.552741203
## [506] 1.593309907 5.179473607 10.951095403 1.040711872 4.099125725
## [511] 4.237197918 2.572024191 2.016867249 7.031318865 2.821717689
## [516] 1.282456844 6.947770108 1.956671671 0.183012118 2.146704829
## [521] 16.222517601 0.067345716 5.098047646 0.414723334 0.174381948
## [526] 1.746275834 4.891523056 3.173488829 0.895149848 0.861065840
## [531] 10.273287054 1.939077042 8.090423401 2.141558340 4.212666784
## [536] 17.816471827 1.741094069 5.033103811 4.231596189 5.044652562
## [541] 2.233930714 5.335560926 6.288484604 3.255643881 3.176925332
## [546] 2.032306620 2.401038270 16.656873319 8.831298915 1.497618954
## [551] 3.273533519 5.676920724 0.468115783 2.396620893 1.411948697
## [556] 3.525146034 6.446577700 14.579456509 12.508583693 0.161352202
## [561] 0.862589488 0.627549815 0.200960618 4.090325209 5.863252897
## [566] 2.558674242 5.040691692 3.620324461 9.023190857 5.367471350
## [571] 0.404223172 1.741810817 4.071977490 0.343893936 2.808708165
## [576] 7.202852603 3.889148585 3.412414047 0.617888558 5.675214485
## [581] 5.618802211 0.102580306 4.724093954 5.004489013 8.682202963
## [586] 1.777339206 1.388411775 1.562734505 15.756496874 2.764846931
## [591] 1.554158273 1.653136528 2.864645094 5.088013779 2.986616955
## [596] 3.809038883 8.645431148 3.462754562 8.706952363 5.212929725
## [601] 5.909984993 14.214520115 10.412667769 4.478829809 7.535102376
## [606] 2.474374832 16.683076439 8.935206017 2.265774501 8.856569506
## [611] 8.873468211 2.692473938 1.052170857 2.593719198 2.816731168
## [616] 19.854743426 0.306654270 6.526598953 3.584431973 0.042259546
## [621] 15.280476267 0.431434010 7.813080372 11.932090006 0.685169745
## [626] 6.851725318 2.380698502 2.881421772 7.581749704 7.450086501
## [631] 11.076412363 0.736356550 1.439531728 0.778429504 0.692785157
## [636] 0.355585299 0.324299223 2.067483474 1.595062298 0.015306725
## [641] 0.841275359 0.683355859 2.614527722 2.534891453 6.233784041
## [646] 8.024730194 10.099592932 7.437462622 3.465241255 0.200207742
## [651] 0.211857585 0.937115860 1.259119324 1.678063119 6.394659325
## [656] 3.011221684 3.251165094 1.366039947 2.791243334 3.690138535
## [661] 2.901972707 7.914513090 6.792207341 2.906616637 1.853794930
## [666] 2.475678201 1.890062899 4.699198529 6.628684668 0.758380330
## [671] 3.844901769 1.050397850 0.029760500 4.141698198 5.012647172
## [676] 2.426943809 2.358472233 3.093293526 11.518005402 3.158870477
## [681] 0.506056574 6.871217842 2.518932426 4.591710361 3.216643298
## [686] 2.137160534 13.109966240 2.472459653 1.141206229 0.277636368
## [691] 2.694946285 2.088629390 6.578202400 8.878764298 4.328744998
## [696] 0.607274359 3.069341699 5.442913176 9.406815836 2.611704325
## [701] 1.671234855 3.769147336 0.485564539 1.130400538 0.262000246
## [706] 7.595307557 5.147652826 3.178325038 0.609244341 0.008868522
## [711] 2.152343715 5.443811800 3.908195815 0.490855336 0.058184358
## [716] 1.964450296 8.390083496 0.856995072 2.477643203 9.208026739
## [721] 3.523652532 2.720149190 2.624908443 5.734281005 5.024077514
## [726] 3.196871936 2.132845372 7.359918649 2.840503316 1.998027167
## [731] 0.310575137 2.499625478 1.333684625 6.309060120 0.707022135
## [736] 1.928535626 1.434800158 0.658521462 0.245469297 5.993584623
## [741] 5.937031228 1.593910736 1.527705828 0.067859999 2.690595077
## [746] 8.355777758 1.691539876 6.259858561 1.125528391 5.386997777
## [751] 0.432592757 2.144274358 0.189539115 9.736312120 3.995563830
## [756] 3.098790397 0.655318932 7.391047093 2.688961535 0.369209675
## [761] 6.235347669 1.601585834 6.314107086 1.817275504 0.646999158
## [766] 1.815696047 1.724770802 0.774702586 0.811582995 2.217054690
## [771] 0.076225382 3.633700681 11.227947325 13.148544401 6.199935776
## [776] 8.874757934 4.517807389 2.417023408 4.623699675 6.658633093
## [781] 4.044615154 1.738341573 2.673738006 8.288505789 2.659223646
## [786] 2.517005672 3.431147181 0.499002050 0.733022676 2.641812718
## [791] 2.362901281 0.285893860 1.862018361 7.877983989 0.464151235
## [796] 1.083381076 6.504808849 13.528513805 9.237068525 3.608855006
## [801] 0.775139373 3.896374551 0.089003510 2.309198184 9.594046149
## [806] 1.408336706 7.656132476 3.371754636 3.986925607 5.712004467
## [811] 8.648842563 0.139181142 1.691625608 7.276914357 6.604882480
## [816] 0.280871244 2.345232353 3.199164099 1.731213731 0.906785560
## [821] 4.353474186 0.155725221 0.223448376 3.779911847 5.176427749
## [826] 4.184171240 5.313580686 4.576825646 4.154953482 0.690737635
## [831] 0.728782526 2.967448326 0.446174854 1.007025395 1.204849221
## [836] 5.799620060 0.746522082 4.166733702 0.456762605 2.883034835
## [841] 0.957403897 3.417426347 10.630175786 0.712674703 1.389872899
## [846] 1.199138965 1.740738221 1.256558937 2.136952393 12.862346190
## [851] 9.154381163 6.023547435 2.673257619 0.775279255 0.569082082
## [856] 2.182246668 16.641444613 0.948426927 0.441191746 1.878861975
## [861] 0.509324963 1.622948053 0.918635471 11.584130495 5.128186455
## [866] 0.370337457 3.196808432 1.231893442 5.700845411 4.622922690
## [871] 2.717617468 16.570756079 2.416864462 4.078287076 2.345650635
## [876] 1.363981748 0.399134804 9.178234876 1.814036548 5.087943547
## [881] 8.862191737 1.643509433 0.650427614 6.635995843 3.093449415
## [886] 4.941914827 4.977007712 0.895248282 4.153066244 0.977259029
## [891] 6.879590823 0.081975055 5.403212667 0.777847826 1.523383920
## [896] 0.527664158 6.904729458 3.096941553 5.421100277 4.785761545
## [901] 2.235347163 2.630839297 1.742589060 0.379240239 2.151756017
## [906] 1.855044218 1.829441301 1.311091631 9.410755133 1.832939741
## [911] 1.016571894 2.323072064 3.416716791 5.691269871 6.937546595
## [916] 3.074685985 4.051563308 5.380218206 1.401663074 2.857890718
## [921] 3.640364825 4.446774159 0.278134563 0.234070802 0.611373852
## [926] 0.146156202 5.548456363 1.136106661 6.749551690 2.917973362
## [931] 1.460174430 6.129404288 7.764868796 0.402434853 1.297066737
## [936] 12.727066677 3.339954187 1.351916647 6.814858903 0.692328156
## [941] 1.906778167 4.920045540 0.496406559 8.786102320 0.735574799
## [946] 1.261677328 2.883606101 1.037399860 1.165448174 0.235606413
## [951] 3.631852737 1.174257072 3.663826643 7.147493261 11.913512787
## [956] 1.318980999 5.587728663 11.270492976 8.665113082 4.024052846
## [961] 0.200409087 1.163920141 1.839020544 1.372396442 0.504132049
## [966] 5.027656477 12.325916485 4.433231304 0.119796384 0.079255939
## [971] 4.847343293 1.953165870 3.345510554 0.185884247 4.192279924
## [976] 5.241749251 0.127498458 1.557928790 4.329972568 0.704232753
## [981] 11.210979535 3.827976164 3.638728880 0.890811402 0.470430526
## [986] 0.668710732 0.003484520 12.668219144 0.475208306 1.396938945
## [991] 8.023092047 11.512461818 13.604057731 7.089480370 5.525544437
## [996] 11.250142095 6.965915312 0.016391932 2.940792556 1.493531197
hist(exponential_samples) # Plot samples
hist(train_dataset$PoolArea) # Plot original variable
From the plots, you can see for the original variable PoolArea is heavily right skewed with almost all of its data at 0. Looking at the plot from the fitted variable, we see the distribution is still right skewed but its data is more spread out.
round(qexp(0.05, rate = lambda), 4) # Find 5th percentile
## [1] 0.1928
round(qexp(0.95, rate = lambda), 4) # Find 95th percentile
## [1] 11.2607
The 5th percentile is 0.1928 and the 95th percentile is 11.2607.
Z <- 1.96 # Z value for 95% confidence interval
n <- length(train_dataset$PoolArea) # length of PoolArea
mean <- mean(train_dataset$PoolArea) # Mean of PoolArea
standard_deviation <- sd(train_dataset$PoolArea) # Standard deviation of PoolArea
upper_bound <- round(mean + Z * standard_deviation / sqrt(n), 4) # Calculate upper bound of confidence interval
lower_bound <- round(mean - Z * standard_deviation / sqrt(n), 4) # Calculate lower bound of confidence interval
c(lower_bound, upper_bound) # Display confidence interval
## [1] 0.6980 4.8198
The confidence interval is (0.6980, 4.8198).
quantile(fit_variable, 0.05) # Find empirical 5th percentile
## 5%
## 1
quantile(fit_variable, 0.95) # Find empirical 95th percentile
## 95%
## 1
The empirical 5th percentile and empirical 95th percentile are both 1.
10 points. Modeling. Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score.
To build the multiple regression model. let’s chose the variables that are a good fit. From looking over the data, I chose LotArea, GarageArea, OverallQual, and GrLivArea.
linear_model <- lm(train_dataset$SalePrice ~ train_dataset$LotArea + train_dataset$GarageArea + train_dataset$PoolArea + train_dataset$OverallQual + train_dataset$GrLivArea)
summary(linear_model)
##
## Call:
## lm(formula = train_dataset$SalePrice ~ train_dataset$LotArea +
## train_dataset$GarageArea + train_dataset$PoolArea + train_dataset$OverallQual +
## train_dataset$GrLivArea)
##
## Residuals:
## Min 1Q Median 3Q Max
## -418154 -20584 -1794 17549 301223
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.036e+05 4.803e+03 -21.564 < 2e-16 ***
## train_dataset$LotArea 7.889e-01 1.093e-01 7.214 8.69e-13 ***
## train_dataset$GarageArea 6.849e+01 6.066e+00 11.291 < 2e-16 ***
## train_dataset$PoolArea -2.074e+01 2.643e+01 -0.785 0.433
## train_dataset$OverallQual 2.862e+04 1.029e+03 27.810 < 2e-16 ***
## train_dataset$GrLivArea 4.572e+01 2.620e+00 17.451 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 39910 on 1454 degrees of freedom
## Multiple R-squared: 0.7485, Adjusted R-squared: 0.7476
## F-statistic: 865.5 on 5 and 1454 DF, p-value: < 2.2e-16
This model doesn’t seem to be good. Let’s remove LotArea and PoolArea since those have the highest values.
linear_model <- lm(train_dataset$SalePrice ~ + train_dataset$GarageArea + train_dataset$OverallQual + train_dataset$GrLivArea)
summary(linear_model)
##
## Call:
## lm(formula = train_dataset$SalePrice ~ +train_dataset$GarageArea +
## train_dataset$OverallQual + train_dataset$GrLivArea)
##
## Residuals:
## Min 1Q Median 3Q Max
## -403609 -21227 -1439 17917 299973
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -99060.087 4837.368 -20.48 <2e-16 ***
## train_dataset$GarageArea 72.948 6.138 11.88 <2e-16 ***
## train_dataset$OverallQual 27910.785 1040.867 26.82 <2e-16 ***
## train_dataset$GrLivArea 49.649 2.565 19.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 40590 on 1456 degrees of freedom
## Multiple R-squared: 0.7394, Adjusted R-squared: 0.7389
## F-statistic: 1377 on 3 and 1456 DF, p-value: < 2.2e-16
The formula based on the summary of the linear model is SalePrice = 72.948 * GarageArea + 27910.785 * OverallQual + 49.649 * GrLivArea - 99060.087.
hist(linear_model$residuals)
qqnorm(linear_model$residuals)
qqline(linear_model$residuals)
The histogram looks to show a nearly normal distribution. The Q-Q Plot shows that most points follow the straight line. So we could assume there is a normal distribution.
SalePrice <- (72.948 * train_dataset$GarageArea) + (27910.785 * train_dataset$OverallQual) + (49.649 * train_dataset$GrLivArea) - 99060.087 # Change SalePrice to match linear regression model
test_data <- test_dataset[,c("Id", "GarageArea", "OverallQual", "GrLivArea")] # Get variables from test dataset to use in model
model_submission <- cbind(test_data$Id, SalePrice) # Create model to submit using Id test dataset and altered SalePrice
## Warning in cbind(test_data$Id, SalePrice): number of rows of result is not a
## multiple of vector length (arg 1)
model_submission[model_submission < 0] <- median(SalePrice) # To avoid any negative numbers in model
colnames(model_submission) <- c("Id", "SalePrice") # Change to appropriate column names
model_submission <- as.data.frame(model_submission[1:1459,]) # Change to a dataframe with 1459 observations
head(model_submission) # Display model
## Id SalePrice
## 1 1461 221190.7
## 2 1462 164617.7
## 3 1463 229340.9
## 4 1464 228395.4
## 5 1465 294339.2
## 6 1466 143130.8
write.csv(model_submission, file = "Kaggle Submission.csv", row.names = FALSE) # Create csv file to submit to Kaggle
Kaggle.com Username: bpersaud Score: 0.59837