a total of 2479 acccounts which is composed of 1567 ngos and 906 corporate accounts
Q: quite a few duplicate business accounts - maybe there were parent-offspring relationshis?
actors <-read.csv(file="actors_combined.csv", sep="\t", colClasses=c("screen_name"="character", "type"="character"))
tweets <-read.csv(file="filtered_later_april_half.csv", sep="\t", colClasses=c("user_screen_name"="character", "retweet_screen_name"="character", "in_reply_to_screen_name"="character", "id"="character"))
4. remove @, then select the corresponding columns
none_rts$mentioned_user <- gsub("@", "", none_rts$mention)
none_rts_v2 <- none_rts %>% select(user_screen_name, text, mentioned_user)
none_rts_v3 <-none_rts_v2 %>% select(user_screen_name, mentioned_user)
4. keep only mentions of other actors in the list
mentions <- none_rts_v3 %>% filter(none_rts_v3$mentioned_user %in% actors$screen_name)
5. convert the edgelist to an igraph object
library(igraph)
##
## Attaching package: 'igraph'
## The following object is masked from 'package:tidyr':
##
## crossing
## The following objects are masked from 'package:dplyr':
##
## as_data_frame, groups, union
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
mt_net <- graph_from_data_frame(mentions_v2, directed=T, vertices=actors)
6. simplify net
mt_net <- simplify(mt_net)
7. how many nodes and connections ?
vcount(mt_net)
## [1] 2468
ecount(mt_net)
## [1] 15
8. how many isolates
V(mt_net)$degree <- degree(mt_net, mode="all")
sum(V(mt_net)$degree==0)
## [1] 2444
9. plot the network with everyone in the actor list
plot(mt_net, vertex.label=NA, edge.arrow.size=0.04, edge.width=0.07, vertex.size=1)

10. plot the network with only those who have at least one connection
mt_iso <- V(mt_net)[degree(mt_net)==0]
mt_net_noniso <- delete.vertices(mt_net, mt_iso)
plot(mt_net_noniso, edge.arrow.size=0.1)

11. color the nodes based on the type of actors
V(mt_net_noniso)$color <-ifelse(V(mt_net_noniso)$type=="ngos", "yellow", "pink")
plot(mt_net_noniso, edge.arrow.size=0.1, vertex.color=V(mt_net_noniso)$color)
