library(kableExtra)

Problem 1

Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of (N+1)/2.

set.seed(123)
N <- 10
X <-  runif(10000, min=0, max=N)
Y <- rnorm(10000, mean=(N+1)/2, sd=(N+1)/2)# mean and standard deviation is (N+1)/2
df <- data.frame(cbind(X, Y))
summary(X)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.000653 2.528918 4.945676 4.975494 7.433941 9.999414
hist(X)

summary(Y)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -15.649   1.841   5.475   5.511   9.330  26.663
hist(Y)

### Probability Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities.

#set variables
#median of the X variable
x<-median(X)
x
## [1] 4.945676
y <- quantile(Y, 0.25)
y
##      25% 
## 1.840529

a. P(X>x | X>y)

pXXy <- nrow(subset(df, X > x & Y > y))/10000
pXy <- nrow(subset(df, X > y))/10000
Prob_a <- (pXXy/pXy)
Prob_a
## [1] 0.4606328

b. P(X>x, Y>y)

Prob_b <- nrow(subset(df, X > x & Y > y))/10000
Prob_b
## [1] 0.3756

c. P(X<x | X>y)

pXXy2 <- nrow(subset(df, X < x & X > y))/10000
pXy2<- nrow(subset(df, X > y))/10000
Prob_c<-pXXy2/pXy2
Prob_c
## [1] 0.386804

Investigate

Investigate whether P(X>x and Y>y)=P(X>x)P(Y>y) by building a table and evaluating the marginal and joint probabilities.

matrix<-matrix( c(sum(X>x & Y<y),sum(X>x & Y>y), sum(X<x & Y<y),sum(X<x & Y>y)), nrow = 2,ncol = 2)
matrix<-cbind(matrix,c(matrix[1,1]+matrix[1,2],matrix[2,1]+matrix[2,2]))
matrix<-rbind(matrix,c(matrix[1,1]+matrix[2,1],matrix[1,2]+matrix[2,2],matrix[1,3]+matrix[2,3]))
contingency<-as.data.frame(matrix)
names(contingency) <- c("X>x","X<x", "Total")
row.names(contingency) <- c("Y<y","Y>y", "Total")
kable(contingency) %>%
  kable_styling(bootstrap_options = "bordered")
X>x X<x Total
Y<y 1244 1256 2500
Y>y 3756 3744 7500
Total 5000 5000 10000
prob_matrix<-matrix/matrix[3,3]
contingency_p<-as.data.frame(prob_matrix)
names(contingency_p) <- c("X>x","X<x", "Total")
row.names(contingency_p) <- c("Y<y","Y>y", "Total")
kable(round(contingency_p,2)) %>%
  kable_styling(bootstrap_options = "bordered")
X>x X<x Total
Y<y 0.12 0.13 0.25
Y>y 0.38 0.37 0.75
Total 0.50 0.50 1.00

Compute P(X>x)P(Y>y)

prob_matrix[3,1]*prob_matrix[2,3]
## [1] 0.375

Compute P(X>x and Y>y)

round(prob_matrix[2,1],digits = 3)
## [1] 0.376

Since the values are so similar/close we would conclude that X and Y are indeed independent.

Fisher’s Exact Test and the Chi Square Test

Check to see if independence holds by using Fisher’s Exact Test and the Chi Square Test. What is the difference between the two? Which is most appropriate?

Fisher’s Exact Test

fisher.test(matrix,simulate.p.value=TRUE)
## 
##  Fisher's Exact Test for Count Data with simulated p-value (based
##  on 2000 replicates)
## 
## data:  matrix
## p-value = 0.9985
## alternative hypothesis: two.sided

Chi Square Test

chisq.test(matrix, correct = TRUE)
## 
##  Pearson's Chi-squared test
## 
## data:  matrix
## X-squared = 0.0768, df = 4, p-value = 0.9993

P values obtained from both test seems to greater than 0.05 making null hypothesis H0 acceptable.

Fisher’s exact test is practically applied only in analysis of small samples but actually it is valid for all sample sizes. While the chi-squared test relies on an approximation, Fisher’s exact test is one of exact tests.

As Fisher’s exact test is used in analysis of small samples, chi-squared test is appropriate in this case.

Problem 2

The House Prices: Advanced Regression Techniques competition. https://www.kaggle.com/c/house-prices-advanced-regression-techniques.

# Import training data
train <- read.csv('https://raw.githubusercontent.com/gpadmaperuma/DATA-605/master/Final%20Project/train.csv')
test <- read.csv('https://raw.githubusercontent.com/gpadmaperuma/DATA-605/master/Final%20Project/test.csv')

Descriptive and Inferential Statistics

Summary of Training data

summary(train)
##        Id           MSSubClass       MSZoning     LotFrontage    
##  Min.   :   1.0   Min.   : 20.0   C (all):  10   Min.   : 21.00  
##  1st Qu.: 365.8   1st Qu.: 20.0   FV     :  65   1st Qu.: 59.00  
##  Median : 730.5   Median : 50.0   RH     :  16   Median : 69.00  
##  Mean   : 730.5   Mean   : 56.9   RL     :1151   Mean   : 70.05  
##  3rd Qu.:1095.2   3rd Qu.: 70.0   RM     : 218   3rd Qu.: 80.00  
##  Max.   :1460.0   Max.   :190.0                  Max.   :313.00  
##                                                  NA's   :259     
##     LotArea        Street      Alley      LotShape  LandContour
##  Min.   :  1300   Grvl:   6   Grvl:  50   IR1:484   Bnk:  63   
##  1st Qu.:  7554   Pave:1454   Pave:  41   IR2: 41   HLS:  50   
##  Median :  9478               NA's:1369   IR3: 10   Low:  36   
##  Mean   : 10517                           Reg:925   Lvl:1311   
##  3rd Qu.: 11602                                                
##  Max.   :215245                                                
##                                                                
##   Utilities      LotConfig    LandSlope   Neighborhood   Condition1  
##  AllPub:1459   Corner : 263   Gtl:1382   NAmes  :225   Norm   :1260  
##  NoSeWa:   1   CulDSac:  94   Mod:  65   CollgCr:150   Feedr  :  81  
##                FR2    :  47   Sev:  13   OldTown:113   Artery :  48  
##                FR3    :   4              Edwards:100   RRAn   :  26  
##                Inside :1052              Somerst: 86   PosN   :  19  
##                                          Gilbert: 79   RRAe   :  11  
##                                          (Other):707   (Other):  15  
##    Condition2     BldgType      HouseStyle   OverallQual    
##  Norm   :1445   1Fam  :1220   1Story :726   Min.   : 1.000  
##  Feedr  :   6   2fmCon:  31   2Story :445   1st Qu.: 5.000  
##  Artery :   2   Duplex:  52   1.5Fin :154   Median : 6.000  
##  PosN   :   2   Twnhs :  43   SLvl   : 65   Mean   : 6.099  
##  RRNn   :   2   TwnhsE: 114   SFoyer : 37   3rd Qu.: 7.000  
##  PosA   :   1                 1.5Unf : 14   Max.   :10.000  
##  (Other):   2                 (Other): 19                   
##   OverallCond      YearBuilt     YearRemodAdd    RoofStyle   
##  Min.   :1.000   Min.   :1872   Min.   :1950   Flat   :  13  
##  1st Qu.:5.000   1st Qu.:1954   1st Qu.:1967   Gable  :1141  
##  Median :5.000   Median :1973   Median :1994   Gambrel:  11  
##  Mean   :5.575   Mean   :1971   Mean   :1985   Hip    : 286  
##  3rd Qu.:6.000   3rd Qu.:2000   3rd Qu.:2004   Mansard:   7  
##  Max.   :9.000   Max.   :2010   Max.   :2010   Shed   :   2  
##                                                              
##     RoofMatl     Exterior1st   Exterior2nd    MasVnrType    MasVnrArea    
##  CompShg:1434   VinylSd:515   VinylSd:504   BrkCmn : 15   Min.   :   0.0  
##  Tar&Grv:  11   HdBoard:222   MetalSd:214   BrkFace:445   1st Qu.:   0.0  
##  WdShngl:   6   MetalSd:220   HdBoard:207   None   :864   Median :   0.0  
##  WdShake:   5   Wd Sdng:206   Wd Sdng:197   Stone  :128   Mean   : 103.7  
##  ClyTile:   1   Plywood:108   Plywood:142   NA's   :  8   3rd Qu.: 166.0  
##  Membran:   1   CemntBd: 61   CmentBd: 60                 Max.   :1600.0  
##  (Other):   2   (Other):128   (Other):136                 NA's   :8       
##  ExterQual ExterCond  Foundation  BsmtQual   BsmtCond    BsmtExposure
##  Ex: 52    Ex:   3   BrkTil:146   Ex  :121   Fa  :  45   Av  :221    
##  Fa: 14    Fa:  28   CBlock:634   Fa  : 35   Gd  :  65   Gd  :134    
##  Gd:488    Gd: 146   PConc :647   Gd  :618   Po  :   2   Mn  :114    
##  TA:906    Po:   1   Slab  : 24   TA  :649   TA  :1311   No  :953    
##            TA:1282   Stone :  6   NA's: 37   NA's:  37   NA's: 38    
##                      Wood  :  3                                      
##                                                                      
##  BsmtFinType1   BsmtFinSF1     BsmtFinType2   BsmtFinSF2     
##  ALQ :220     Min.   :   0.0   ALQ :  19    Min.   :   0.00  
##  BLQ :148     1st Qu.:   0.0   BLQ :  33    1st Qu.:   0.00  
##  GLQ :418     Median : 383.5   GLQ :  14    Median :   0.00  
##  LwQ : 74     Mean   : 443.6   LwQ :  46    Mean   :  46.55  
##  Rec :133     3rd Qu.: 712.2   Rec :  54    3rd Qu.:   0.00  
##  Unf :430     Max.   :5644.0   Unf :1256    Max.   :1474.00  
##  NA's: 37                      NA's:  38                     
##    BsmtUnfSF       TotalBsmtSF      Heating     HeatingQC CentralAir
##  Min.   :   0.0   Min.   :   0.0   Floor:   1   Ex:741    N:  95    
##  1st Qu.: 223.0   1st Qu.: 795.8   GasA :1428   Fa: 49    Y:1365    
##  Median : 477.5   Median : 991.5   GasW :  18   Gd:241              
##  Mean   : 567.2   Mean   :1057.4   Grav :   7   Po:  1              
##  3rd Qu.: 808.0   3rd Qu.:1298.2   OthW :   2   TA:428              
##  Max.   :2336.0   Max.   :6110.0   Wall :   4                       
##                                                                     
##  Electrical     X1stFlrSF      X2ndFlrSF     LowQualFinSF    
##  FuseA:  94   Min.   : 334   Min.   :   0   Min.   :  0.000  
##  FuseF:  27   1st Qu.: 882   1st Qu.:   0   1st Qu.:  0.000  
##  FuseP:   3   Median :1087   Median :   0   Median :  0.000  
##  Mix  :   1   Mean   :1163   Mean   : 347   Mean   :  5.845  
##  SBrkr:1334   3rd Qu.:1391   3rd Qu.: 728   3rd Qu.:  0.000  
##  NA's :   1   Max.   :4692   Max.   :2065   Max.   :572.000  
##                                                              
##    GrLivArea     BsmtFullBath     BsmtHalfBath        FullBath    
##  Min.   : 334   Min.   :0.0000   Min.   :0.00000   Min.   :0.000  
##  1st Qu.:1130   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:1.000  
##  Median :1464   Median :0.0000   Median :0.00000   Median :2.000  
##  Mean   :1515   Mean   :0.4253   Mean   :0.05753   Mean   :1.565  
##  3rd Qu.:1777   3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:2.000  
##  Max.   :5642   Max.   :3.0000   Max.   :2.00000   Max.   :3.000  
##                                                                   
##     HalfBath       BedroomAbvGr    KitchenAbvGr   KitchenQual
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Ex:100     
##  1st Qu.:0.0000   1st Qu.:2.000   1st Qu.:1.000   Fa: 39     
##  Median :0.0000   Median :3.000   Median :1.000   Gd:586     
##  Mean   :0.3829   Mean   :2.866   Mean   :1.047   TA:735     
##  3rd Qu.:1.0000   3rd Qu.:3.000   3rd Qu.:1.000              
##  Max.   :2.0000   Max.   :8.000   Max.   :3.000              
##                                                              
##   TotRmsAbvGrd    Functional    Fireplaces    FireplaceQu   GarageType 
##  Min.   : 2.000   Maj1:  14   Min.   :0.000   Ex  : 24    2Types :  6  
##  1st Qu.: 5.000   Maj2:   5   1st Qu.:0.000   Fa  : 33    Attchd :870  
##  Median : 6.000   Min1:  31   Median :1.000   Gd  :380    Basment: 19  
##  Mean   : 6.518   Min2:  34   Mean   :0.613   Po  : 20    BuiltIn: 88  
##  3rd Qu.: 7.000   Mod :  15   3rd Qu.:1.000   TA  :313    CarPort:  9  
##  Max.   :14.000   Sev :   1   Max.   :3.000   NA's:690    Detchd :387  
##                   Typ :1360                               NA's   : 81  
##   GarageYrBlt   GarageFinish   GarageCars      GarageArea     GarageQual 
##  Min.   :1900   Fin :352     Min.   :0.000   Min.   :   0.0   Ex  :   3  
##  1st Qu.:1961   RFn :422     1st Qu.:1.000   1st Qu.: 334.5   Fa  :  48  
##  Median :1980   Unf :605     Median :2.000   Median : 480.0   Gd  :  14  
##  Mean   :1979   NA's: 81     Mean   :1.767   Mean   : 473.0   Po  :   3  
##  3rd Qu.:2002                3rd Qu.:2.000   3rd Qu.: 576.0   TA  :1311  
##  Max.   :2010                Max.   :4.000   Max.   :1418.0   NA's:  81  
##  NA's   :81                                                              
##  GarageCond  PavedDrive   WoodDeckSF      OpenPorchSF     EnclosedPorch   
##  Ex  :   2   N:  90     Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  Fa  :  35   P:  30     1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Gd  :   9   Y:1340     Median :  0.00   Median : 25.00   Median :  0.00  
##  Po  :   7              Mean   : 94.24   Mean   : 46.66   Mean   : 21.95  
##  TA  :1326              3rd Qu.:168.00   3rd Qu.: 68.00   3rd Qu.:  0.00  
##  NA's:  81              Max.   :857.00   Max.   :547.00   Max.   :552.00  
##                                                                           
##    X3SsnPorch      ScreenPorch        PoolArea        PoolQC    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Ex  :   2  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000   Fa  :   2  
##  Median :  0.00   Median :  0.00   Median :  0.000   Gd  :   3  
##  Mean   :  3.41   Mean   : 15.06   Mean   :  2.759   NA's:1453  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000              
##  Max.   :508.00   Max.   :480.00   Max.   :738.000              
##                                                                 
##    Fence      MiscFeature    MiscVal             MoSold      
##  GdPrv:  59   Gar2:   2   Min.   :    0.00   Min.   : 1.000  
##  GdWo :  54   Othr:   2   1st Qu.:    0.00   1st Qu.: 5.000  
##  MnPrv: 157   Shed:  49   Median :    0.00   Median : 6.000  
##  MnWw :  11   TenC:   1   Mean   :   43.49   Mean   : 6.322  
##  NA's :1179   NA's:1406   3rd Qu.:    0.00   3rd Qu.: 8.000  
##                           Max.   :15500.00   Max.   :12.000  
##                                                              
##      YrSold        SaleType    SaleCondition    SalePrice     
##  Min.   :2006   WD     :1267   Abnorml: 101   Min.   : 34900  
##  1st Qu.:2007   New    : 122   AdjLand:   4   1st Qu.:129975  
##  Median :2008   COD    :  43   Alloca :  12   Median :163000  
##  Mean   :2008   ConLD  :   9   Family :  20   Mean   :180921  
##  3rd Qu.:2009   ConLI  :   5   Normal :1198   3rd Qu.:214000  
##  Max.   :2010   ConLw  :   5   Partial: 125   Max.   :755000  
##                 (Other):   9
summary(test)
##        Id         MSSubClass        MSZoning     LotFrontage    
##  Min.   :1461   Min.   : 20.00   C (all):  15   Min.   : 21.00  
##  1st Qu.:1826   1st Qu.: 20.00   FV     :  74   1st Qu.: 58.00  
##  Median :2190   Median : 50.00   RH     :  10   Median : 67.00  
##  Mean   :2190   Mean   : 57.38   RL     :1114   Mean   : 68.58  
##  3rd Qu.:2554   3rd Qu.: 70.00   RM     : 242   3rd Qu.: 80.00  
##  Max.   :2919   Max.   :190.00   NA's   :   4   Max.   :200.00  
##                                                 NA's   :227     
##     LotArea       Street      Alley      LotShape  LandContour
##  Min.   : 1470   Grvl:   6   Grvl:  70   IR1:484   Bnk:  54   
##  1st Qu.: 7391   Pave:1453   Pave:  37   IR2: 35   HLS:  70   
##  Median : 9399               NA's:1352   IR3:  6   Low:  24   
##  Mean   : 9819                           Reg:934   Lvl:1311   
##  3rd Qu.:11518                                                
##  Max.   :56600                                                
##                                                               
##   Utilities      LotConfig    LandSlope   Neighborhood   Condition1  
##  AllPub:1457   Corner : 248   Gtl:1396   NAmes  :218   Norm   :1251  
##  NA's  :   2   CulDSac:  82   Mod:  60   OldTown:126   Feedr  :  83  
##                FR2    :  38   Sev:   3   CollgCr:117   Artery :  44  
##                FR3    :  10              Somerst: 96   RRAn   :  24  
##                Inside :1081              Edwards: 94   PosN   :  20  
##                                          NridgHt: 89   RRAe   :  17  
##                                          (Other):719   (Other):  20  
##   Condition2     BldgType     HouseStyle   OverallQual      OverallCond   
##  Artery:   3   1Fam  :1205   1.5Fin:160   Min.   : 1.000   Min.   :1.000  
##  Feedr :   7   2fmCon:  31   1.5Unf:  5   1st Qu.: 5.000   1st Qu.:5.000  
##  Norm  :1444   Duplex:  57   1Story:745   Median : 6.000   Median :5.000  
##  PosA  :   3   Twnhs :  53   2.5Unf: 13   Mean   : 6.079   Mean   :5.554  
##  PosN  :   2   TwnhsE: 113   2Story:427   3rd Qu.: 7.000   3rd Qu.:6.000  
##                              SFoyer: 46   Max.   :10.000   Max.   :9.000  
##                              SLvl  : 63                                   
##    YearBuilt     YearRemodAdd    RoofStyle       RoofMatl     Exterior1st 
##  Min.   :1879   Min.   :1950   Flat   :   7   CompShg:1442   VinylSd:510  
##  1st Qu.:1953   1st Qu.:1963   Gable  :1169   Tar&Grv:  12   MetalSd:230  
##  Median :1973   Median :1992   Gambrel:  11   WdShake:   4   HdBoard:220  
##  Mean   :1971   Mean   :1984   Hip    : 265   WdShngl:   1   Wd Sdng:205  
##  3rd Qu.:2001   3rd Qu.:2004   Mansard:   4                  Plywood:113  
##  Max.   :2010   Max.   :2010   Shed   :   3                  (Other):180  
##                                                              NA's   :  1  
##   Exterior2nd    MasVnrType    MasVnrArea     ExterQual ExterCond
##  VinylSd:510   BrkCmn : 10   Min.   :   0.0   Ex: 55    Ex:   9  
##  MetalSd:233   BrkFace:434   1st Qu.:   0.0   Fa: 21    Fa:  39  
##  HdBoard:199   None   :878   Median :   0.0   Gd:491    Gd: 153  
##  Wd Sdng:194   Stone  :121   Mean   : 100.7   TA:892    Po:   2  
##  Plywood:128   NA's   : 16   3rd Qu.: 164.0             TA:1256  
##  (Other):194                 Max.   :1290.0                      
##  NA's   :  1                 NA's   :15                          
##   Foundation  BsmtQual   BsmtCond    BsmtExposure BsmtFinType1
##  BrkTil:165   Ex  :137   Fa  :  59   Av  :197     ALQ :209    
##  CBlock:601   Fa  : 53   Gd  :  57   Gd  :142     BLQ :121    
##  PConc :661   Gd  :591   Po  :   3   Mn  :125     GLQ :431    
##  Slab  : 25   TA  :634   TA  :1295   No  :951     LwQ : 80    
##  Stone :  5   NA's: 44   NA's:  45   NA's: 44     Rec :155    
##  Wood  :  2                                       Unf :421    
##                                                   NA's: 42    
##    BsmtFinSF1     BsmtFinType2   BsmtFinSF2        BsmtUnfSF     
##  Min.   :   0.0   ALQ :  33    Min.   :   0.00   Min.   :   0.0  
##  1st Qu.:   0.0   BLQ :  35    1st Qu.:   0.00   1st Qu.: 219.2  
##  Median : 350.5   GLQ :  20    Median :   0.00   Median : 460.0  
##  Mean   : 439.2   LwQ :  41    Mean   :  52.62   Mean   : 554.3  
##  3rd Qu.: 753.5   Rec :  51    3rd Qu.:   0.00   3rd Qu.: 797.8  
##  Max.   :4010.0   Unf :1237    Max.   :1526.00   Max.   :2140.0  
##  NA's   :1        NA's:  42    NA's   :1         NA's   :1       
##   TotalBsmtSF   Heating     HeatingQC CentralAir Electrical  
##  Min.   :   0   GasA:1446   Ex:752    N: 101     FuseA:  94  
##  1st Qu.: 784   GasW:   9   Fa: 43    Y:1358     FuseF:  23  
##  Median : 988   Grav:   2   Gd:233               FuseP:   5  
##  Mean   :1046   Wall:   2   Po:  2               SBrkr:1337  
##  3rd Qu.:1305               TA:429                           
##  Max.   :5095                                                
##  NA's   :1                                                   
##    X1stFlrSF        X2ndFlrSF     LowQualFinSF        GrLivArea   
##  Min.   : 407.0   Min.   :   0   Min.   :   0.000   Min.   : 407  
##  1st Qu.: 873.5   1st Qu.:   0   1st Qu.:   0.000   1st Qu.:1118  
##  Median :1079.0   Median :   0   Median :   0.000   Median :1432  
##  Mean   :1156.5   Mean   : 326   Mean   :   3.543   Mean   :1486  
##  3rd Qu.:1382.5   3rd Qu.: 676   3rd Qu.:   0.000   3rd Qu.:1721  
##  Max.   :5095.0   Max.   :1862   Max.   :1064.000   Max.   :5095  
##                                                                   
##   BsmtFullBath     BsmtHalfBath       FullBath        HalfBath     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :2.000   Median :0.0000  
##  Mean   :0.4345   Mean   :0.0652   Mean   :1.571   Mean   :0.3777  
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :3.0000   Max.   :2.0000   Max.   :4.000   Max.   :2.0000  
##  NA's   :2        NA's   :2                                        
##   BedroomAbvGr    KitchenAbvGr   KitchenQual  TotRmsAbvGrd   
##  Min.   :0.000   Min.   :0.000   Ex  :105    Min.   : 3.000  
##  1st Qu.:2.000   1st Qu.:1.000   Fa  : 31    1st Qu.: 5.000  
##  Median :3.000   Median :1.000   Gd  :565    Median : 6.000  
##  Mean   :2.854   Mean   :1.042   TA  :757    Mean   : 6.385  
##  3rd Qu.:3.000   3rd Qu.:1.000   NA's:  1    3rd Qu.: 7.000  
##  Max.   :6.000   Max.   :2.000               Max.   :15.000  
##                                                              
##    Functional     Fireplaces     FireplaceQu   GarageType   GarageYrBlt  
##  Typ    :1357   Min.   :0.0000   Ex  : 19    2Types : 17   Min.   :1895  
##  Min2   :  36   1st Qu.:0.0000   Fa  : 41    Attchd :853   1st Qu.:1959  
##  Min1   :  34   Median :0.0000   Gd  :364    Basment: 17   Median :1979  
##  Mod    :  20   Mean   :0.5812   Po  : 26    BuiltIn: 98   Mean   :1978  
##  Maj1   :   5   3rd Qu.:1.0000   TA  :279    CarPort:  6   3rd Qu.:2002  
##  (Other):   5   Max.   :4.0000   NA's:730    Detchd :392   Max.   :2207  
##  NA's   :   2                                NA's   : 76   NA's   :78    
##  GarageFinish   GarageCars      GarageArea     GarageQual  GarageCond 
##  Fin :367     Min.   :0.000   Min.   :   0.0   Fa  :  76   Ex  :   1  
##  RFn :389     1st Qu.:1.000   1st Qu.: 318.0   Gd  :  10   Fa  :  39  
##  Unf :625     Median :2.000   Median : 480.0   Po  :   2   Gd  :   6  
##  NA's: 78     Mean   :1.766   Mean   : 472.8   TA  :1293   Po  :   7  
##               3rd Qu.:2.000   3rd Qu.: 576.0   NA's:  78   TA  :1328  
##               Max.   :5.000   Max.   :1488.0               NA's:  78  
##               NA's   :1       NA's   :1                               
##  PavedDrive   WoodDeckSF       OpenPorchSF     EnclosedPorch    
##  N: 126     Min.   :   0.00   Min.   :  0.00   Min.   :   0.00  
##  P:  32     1st Qu.:   0.00   1st Qu.:  0.00   1st Qu.:   0.00  
##  Y:1301     Median :   0.00   Median : 28.00   Median :   0.00  
##             Mean   :  93.17   Mean   : 48.31   Mean   :  24.24  
##             3rd Qu.: 168.00   3rd Qu.: 72.00   3rd Qu.:   0.00  
##             Max.   :1424.00   Max.   :742.00   Max.   :1012.00  
##                                                                 
##    X3SsnPorch       ScreenPorch        PoolArea        PoolQC    
##  Min.   :  0.000   Min.   :  0.00   Min.   :  0.000   Ex  :   2  
##  1st Qu.:  0.000   1st Qu.:  0.00   1st Qu.:  0.000   Gd  :   1  
##  Median :  0.000   Median :  0.00   Median :  0.000   NA's:1456  
##  Mean   :  1.794   Mean   : 17.06   Mean   :  1.744              
##  3rd Qu.:  0.000   3rd Qu.:  0.00   3rd Qu.:  0.000              
##  Max.   :360.000   Max.   :576.00   Max.   :800.000              
##                                                                  
##    Fence      MiscFeature    MiscVal             MoSold      
##  GdPrv:  59   Gar2:   3   Min.   :    0.00   Min.   : 1.000  
##  GdWo :  58   Othr:   2   1st Qu.:    0.00   1st Qu.: 4.000  
##  MnPrv: 172   Shed:  46   Median :    0.00   Median : 6.000  
##  MnWw :   1   NA's:1408   Mean   :   58.17   Mean   : 6.104  
##  NA's :1169               3rd Qu.:    0.00   3rd Qu.: 8.000  
##                           Max.   :17000.00   Max.   :12.000  
##                                                              
##      YrSold        SaleType    SaleCondition 
##  Min.   :2006   WD     :1258   Abnorml:  89  
##  1st Qu.:2007   New    : 117   AdjLand:   8  
##  Median :2008   COD    :  44   Alloca :  12  
##  Mean   :2008   ConLD  :  17   Family :  26  
##  3rd Qu.:2009   CWD    :   8   Normal :1204  
##  Max.   :2010   (Other):  14   Partial: 120  
##                 NA's   :   1

Univariate descriptive statistics

Provide univariate descriptive statistics and appropriate plots for the training data set

#Summary
summary(train$SalePrice)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   34900  129975  163000  180921  214000  755000
#Histogram
hist(train$SalePrice, main="Sale Price")

# QQ Plot
qqnorm(train$SalePrice)
qqline(train$SalePrice)

Scatter plots

rovide a scatterplot matrix for at least two of the independent variables and the dependent variable

#ScatterPlot
pairs(~SalePrice+LotArea+GrLivArea++GarageArea,data=train, main="Scatterplot Matrix")

#### Correlation Matrix
Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not?

#Subsetting data
sub_df <- data.frame(train$LotArea,train$GrLivArea,train$GarageArea)
#Correlation
cormatrix <- cor(sub_df)
cormatrix
##                  train.LotArea train.GrLivArea train.GarageArea
## train.LotArea        1.0000000       0.2631162        0.1804028
## train.GrLivArea      0.2631162       1.0000000        0.4689975
## train.GarageArea     0.1804028       0.4689975        1.0000000
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.6.3
## corrplot 0.84 loaded
corrplot(cormatrix, method="square")

#### Hypothesis Test

#GrLivArea & LotArea
cor.test(train$LotArea,train$GrLivArea,method = "pearson",conf.level = 0.80)
## 
##  Pearson's product-moment correlation
## 
## data:  train$LotArea and train$GrLivArea
## t = 10.414, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.2315997 0.2940809
## sample estimates:
##       cor 
## 0.2631162
#GarageArea & LotArea
cor.test(train$LotArea,train$GarageArea,method = "pearson",conf.level = 0.80)
## 
##  Pearson's product-moment correlation
## 
## data:  train$LotArea and train$GarageArea
## t = 7.0034, df = 1458, p-value = 3.803e-12
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.1477356 0.2126767
## sample estimates:
##       cor 
## 0.1804028
#GarageArea & GrLivArea
cor.test(train$GarageArea,train$GrLivArea,method = "pearson",conf.level = 0.80)
## 
##  Pearson's product-moment correlation
## 
## data:  train$GarageArea and train$GrLivArea
## t = 20.276, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.4423993 0.4947713
## sample estimates:
##       cor 
## 0.4689975

With all three p-values at less than 0.05, we can reject the null hypothesis. We are confident that the correlation between the three variables are not zeroes. It is safe to say that we are 80% confident that the correlation between GrLivArea & LotArea is between 0.2315997 & 0.2940809, GarageArea & LotArea is between 0.1477356 & 0.2126767 and GarageArea & GrLivArea is between 0.1477356 & 0.2126767.

Linear Algebra and Correlation

Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix.

Invert your correlation matrix from above.

precision_matrix<-solve(cormatrix)
round(precision_matrix,4)
##                  train.LotArea train.GrLivArea train.GarageArea
## train.LotArea           1.0792         -0.2470          -0.0789
## train.GrLivArea        -0.2470          1.3385          -0.5832
## train.GarageArea       -0.0789         -0.5832           1.2877

Multiply the matrix

#Correlation matrix by Precision matrix
corr_by_prec <- cormatrix%*%precision_matrix
round(corr_by_prec, 4)
##                  train.LotArea train.GrLivArea train.GarageArea
## train.LotArea                1               0                0
## train.GrLivArea              0               1                0
## train.GarageArea             0               0                1
#precision matrix by the correlation matrix
prec_by_corr <- precision_matrix%*%cormatrix
round(prec_by_corr, 4)
##                  train.LotArea train.GrLivArea train.GarageArea
## train.LotArea                1               0                0
## train.GrLivArea              0               1                0
## train.GarageArea             0               0                1

Conduct LU Decomposition

library(matrixcalc)
lu.decomposition(precision_matrix)
## $L
##             [,1]       [,2] [,3]
## [1,]  1.00000000  0.0000000    0
## [2,] -0.22884393  1.0000000    0
## [3,] -0.07307553 -0.4689975    1
## 
## $U
##          [,1]       [,2]        [,3]
## [1,] 1.079209 -0.2469705 -0.07886378
## [2,] 0.000000  1.2819833 -0.60124693
## [3,] 0.000000  0.0000000  1.00000000

Calculus-Based Probability & Statistics

Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function.

mass_fit <- train$TotalBsmtSF
min(mass_fit)
## [1] 0

Fit an exponential probability density function

library(MASS)
fit <- fitdistr(mass_fit, "exponential")
fit
##        rate    
##   9.456896e-04 
##  (2.474983e-05)

Find the optimal value of \(\lambda\) for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000,\(\lambda\))).

lambda<-fit$estimate
sim<- rexp(1000,lambda)
lambda
##         rate 
## 0.0009456896

plot and compare

hist(sim,breaks = 100)

hist(mass_fit, breaks = 100)

library(ggplot2)
sim.df <- data.frame(length = sim)
mass_fit.df <- data.frame(length = mass_fit)

sim.df$from <- 'sim'
mass_fit.df$from <- 'Mass_Fit'

both.df <- rbind(sim.df,mass_fit.df)

ggplot(both.df, aes(length, fill = from)) + geom_density(alpha = 0.2)

cumulative distribution function (CDF)

Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF).

quantile(sim, probs=c(0.05, 0.95))  
##         5%        95% 
##   55.16854 3200.41083

Also generate a 95% confidence interval from the empirical data, assuming normality.

mean(mass_fit)
## [1] 1057.429
normal<-rnorm(length(mass_fit),mean(mass_fit),sd(mass_fit))
hist(normal)

provide the empirical 5th percentile and 95th percentile of the data.

quantile(normal, probs=c(0.05, 0.95))
##        5%       95% 
##  343.4975 1762.2931
normal.df <- data.frame(length = normal)

normal.df$from <- 'normal'

all.df <- rbind(both.df,normal.df)

ggplot(all.df, aes(length, fill = from)) + geom_density(alpha = 0.2)

Modeling

Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score.

Keggle Submission

image

image

me(Id = test$Id, SalePrice = y_hat) summary(su