Do height of a person influence their chest size?

Nischay Bikram Thapa

S3819491

Introduction

Problem Statement

Data

Descriptive Statistics

Looking at the summary statistics, it is evident that a person chest diameter is 27.97 on average with a range from 25.65 to 29.95. Similarly, for the height of a person, the average is recorded as 171.1 with a range from 163.8 to 177.8.

summary_stats <- data %>% summary()

knitr::kable(summary_stats)
che.di hgt
Min. :22.20 Min. :147.2
1st Qu.:25.65 1st Qu.:163.8
Median :27.80 Median :170.3
Mean :27.97 Mean :171.1
3rd Qu.:29.95 3rd Qu.:177.8
Max. :35.60 Max. :198.1

Data Visualisation I

Glancing at the histogram, the distribution of both chest diameter and height are relatively normal.

ggplot(data,aes(che.di))+geom_histogram(bins=30)+ ylab('Frequency')+ggtitle('Histogram of Chest Diameter')
ggplot(data,aes(hgt))+geom_histogram(bins=30)+ ylab('Frequency')+ggtitle('Histogram of Height')

Data Visualisation II

ggplot(data,aes(y=che.di))+geom_boxplot(fill='red')+ggtitle('Summary of Chest Diameter')
ggplot(data,aes(y=hgt))+geom_boxplot(fill='yellow')+ggtitle('Summary of Height')

Data Visulisation III

ggplot(data,aes(x=hgt,y=che.di))+geom_point(color='#0072B2')+ggtitle('Height Vs. Chest Diameter')

Hypothesis Testing I

Correlation Analysis

Hypothesis Generation

\(H_0\): There is no correlation between chest diameter and height of a person.

\(H_a\): There is significant correlation between chest diameter and height of a person

Mathematically,

\(H_0: r = 0\)

\(H_a: r \ne0\)

Test Result I

library(Hmisc)
library(psychometric)
corr<-as.matrix(dplyr::select(data,che.di,hgt)) #Create a matrix of the variables to be correlated
rcorr(corr, type = "pearson")
##        che.di  hgt
## che.di   1.00 0.63
## hgt      0.63 1.00
## 
## n= 507 
## 
## 
## P
##        che.di hgt
## che.di         0 
## hgt     0
r=cor(data$che.di,data$hgt)
CIr(r = r, n = 50, level = .95)
## [1] 0.4222205 0.7707495

A Pearson’s correlation was calculated to measure the strength of the linear relationship between chest diameter and height. The positive correlation was statistically significant, r=.63, p<.001, 95% CI [0.422, .770]

Hypothesis Testing II

Linear Regression Analysis

Hypothesis Generation

\(H_0\): The data do not fit the linear regression model

\(H_a\): The data fit the linear regression model

Mathematically,

\(H_0: \alpha = 0\)

\(H_a: \alpha \ne0\)

Test Result II

model <- lm(che.di~hgt,data=data)
model %>% summary()
## 
## Call:
## lm(formula = che.di ~ hgt, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3102 -1.4326 -0.0696  1.4168  6.8929 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -3.2947     1.7319  -1.902   0.0577 .  
## hgt           0.1827     0.0101  18.082   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.138 on 505 degrees of freedom
## Multiple R-squared:  0.393,  Adjusted R-squared:  0.3918 
## F-statistic:   327 on 1 and 505 DF,  p-value: < 2.2e-16
model %>% confint()
##                  2.5 %    97.5 %
## (Intercept) -6.6972252 0.1079121
## hgt          0.1628512 0.2025541

Model Visualisation

Model Validation

plot(model)

Discussion

Major Findings

References