##Modelo de volativilidad
options(scipen=999)
pkges<-c("pdfetch","tseries","tidyverse","forecast")
#install.packages(pkges)
lapply(pkges,"library",character.only=T)
## [[1]]
## [1] "pdfetch" "stats" "graphics" "grDevices" "utils" "datasets"
## [7] "methods" "base"
##
## [[2]]
## [1] "tseries" "pdfetch" "stats" "graphics" "grDevices" "utils"
## [7] "datasets" "methods" "base"
##
## [[3]]
## [1] "forcats" "stringr" "dplyr" "purrr" "readr" "tidyr"
## [7] "tibble" "ggplot2" "tidyverse" "tseries" "pdfetch" "stats"
## [13] "graphics" "grDevices" "utils" "datasets" "methods" "base"
##
## [[4]]
## [1] "forecast" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "tseries" "pdfetch"
## [13] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
## [19] "base"
RUSELL200 <- pdfetch_YAHOO("^RUT",interval = '1d') #DATOS DE RUSELL200
tsRUSELL200 <- RUSELL200[,4]
##Calculamos retornos
R1 <- diff(log(tsRUSELL200))
R1 <- na.omit(R1)
plot.ts(R1)
hist(R1, main="", breaks=20, freq=FALSE, col="grey")
acf(R1)
ts.arch <- garch(R1,c(0,1))
##
## ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
## I INITIAL X(I) D(I)
##
## 1 2.588920e-04 1.000e+00
## 2 5.000000e-02 1.000e+00
##
## IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
## 0 1 -1.228e+04
## 1 7 -1.230e+04 1.25e-03 1.79e-03 2.7e-04 3.0e+10 2.7e-05 2.70e+07
## 2 8 -1.230e+04 1.10e-04 1.66e-04 2.3e-04 2.0e+00 2.7e-05 1.58e+02
## 3 9 -1.230e+04 2.10e-05 2.28e-05 2.7e-04 2.0e+00 2.7e-05 1.55e+02
## 4 16 -1.239e+04 7.55e-03 1.26e-02 4.4e-01 2.0e+00 8.0e-02 1.54e+02
## 5 17 -1.243e+04 2.86e-03 2.39e-03 1.7e-01 0.0e+00 5.4e-02 2.39e-03
## 6 19 -1.246e+04 2.45e-03 1.68e-03 1.8e-01 0.0e+00 7.9e-02 1.68e-03
## 7 20 -1.247e+04 1.11e-03 8.78e-04 1.3e-01 1.2e-01 7.9e-02 8.86e-04
## 8 21 -1.248e+04 5.39e-04 3.99e-04 9.4e-02 0.0e+00 7.1e-02 3.99e-04
## 9 22 -1.248e+04 1.29e-04 1.03e-04 5.3e-02 0.0e+00 4.6e-02 1.03e-04
## 10 23 -1.248e+04 1.41e-05 1.23e-05 2.1e-02 0.0e+00 1.9e-02 1.23e-05
## 11 24 -1.248e+04 4.02e-07 3.82e-07 3.8e-03 0.0e+00 3.7e-03 3.82e-07
## 12 25 -1.248e+04 1.31e-09 1.30e-09 2.3e-04 0.0e+00 2.2e-04 1.30e-09
## 13 26 -1.248e+04 1.27e-13 1.26e-13 2.2e-06 0.0e+00 2.2e-06 1.26e-13
##
## ***** RELATIVE FUNCTION CONVERGENCE *****
##
## FUNCTION -1.247967e+04 RELDX 2.232e-06
## FUNC. EVALS 26 GRAD. EVALS 14
## PRELDF 1.256e-13 NPRELDF 1.256e-13
##
## I FINAL X(I) D(I) G(I)
##
## 1 1.518198e-04 1.000e+00 1.851e-02
## 2 4.836897e-01 1.000e+00 -6.729e-08
summary(ts.arch)
##
## Call:
## garch(x = R1, order = c(0, 1))
##
## Model:
## GARCH(0,1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.10884 -0.45883 0.06567 0.55330 6.12675
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## a0 0.000151820 0.000002975 51.03 <0.0000000000000002 ***
## a1 0.483689728 0.024735224 19.55 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Diagnostic Tests:
## Jarque Bera Test
##
## data: Residuals
## X-squared = 4741.7, df = 2, p-value < 0.00000000000000022
##
##
## Box-Ljung test
##
## data: Squared.Residuals
## X-squared = 6.072, df = 1, p-value = 0.01373