The core features of hoarding disorder (HD) include extreme difficulties with discarding everyday possessions and significant levels of clutter in living areas. HD is associated with high levels of distress and impairment, and it is often accompanied by excessive acquiring. Although hoarding is believed to be a worldwide phenomenon, cross-cultural research remains in nascent stages, hampered in part by a lack of validated measures in languages besides English. In the present study, we aimed to address this gap in the literature by validating a Spanish translation of the Hoarding Rating Scale (HRS), a widely used measure that maps onto core diagnostic criteria for HD.
Our sample (N=826) included participants responding in English (n = 555; 45.9% female; M age = 35.2; 7.3% Latinx) or Spanish (n = 271; 45.9% female; M age = 26.0; 69.6% Latinx) to a battery of questionnaires via Amazon’s Mechanical Turk. The Spanish HRS was translated using back-translation and editorial board methods. We first used an item-response theory (IRT) approach to test differential item functioning (DIF) of the English and Spanish versions of the HRS. Next, we examined convergent and divergent validity by comparing the strength of associations of each language version with other known, well-validated measures of hoarding and associated features.
R packages used: itemanalysis, lavaan, semTools, lordif
HRS: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), HRS1, HRS2, HRS3,
HRS4, HRS5))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.92 0.92 0.9 0.69 11 0.0058 1.1 1.3 0.67
lower alpha upper 95% confidence boundaries
0.9 0.92 0.93
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
HRS1 0.89 0.90 0.88 0.69 8.7 0.0074 0.0048 0.67
HRS2 0.91 0.92 0.89 0.73 10.8 0.0060 0.0035 0.72
HRS3 0.90 0.90 0.88 0.70 9.5 0.0070 0.0073 0.70
HRS4 0.89 0.89 0.86 0.67 8.0 0.0080 0.0038 0.64
HRS5 0.89 0.89 0.86 0.67 8.0 0.0079 0.0023 0.65
Item statistics
n raw.r std.r r.cor r.drop mean sd
HRS1 548 0.87 0.87 0.84 0.79 1.0 1.5
HRS2 548 0.82 0.81 0.73 0.71 1.4 1.7
HRS3 548 0.85 0.85 0.79 0.76 1.2 1.6
HRS4 548 0.90 0.90 0.88 0.83 1.0 1.5
HRS5 548 0.89 0.90 0.88 0.84 0.8 1.4
Non missing response frequency for each item
0 1 2 3 4 5 6 7 8 miss
HRS1 0.55 0.17 0.13 0.04 0.06 0.03 0.01 0.01 0.00 0.01
HRS2 0.43 0.19 0.17 0.06 0.09 0.03 0.01 0.01 0.01 0.01
HRS3 0.51 0.17 0.16 0.04 0.06 0.04 0.01 0.00 0.01 0.01
HRS4 0.56 0.18 0.12 0.05 0.05 0.02 0.01 0.00 0.01 0.01
HRS5 0.64 0.15 0.10 0.03 0.03 0.02 0.01 0.00 0.00 0.01
HRS: Spanish
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), HRS1, HRS2, HRS3,
HRS4, HRS5))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.93 0.93 0.92 0.74 14 0.0064 1.9 1.9 0.74
lower alpha upper 95% confidence boundaries
0.92 0.93 0.95
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
HRS1 0.92 0.92 0.90 0.75 12 0.0078 0.00093 0.74
HRS2 0.92 0.92 0.90 0.73 11 0.0083 0.00175 0.74
HRS3 0.92 0.92 0.90 0.74 11 0.0079 0.00162 0.74
HRS4 0.92 0.92 0.90 0.74 12 0.0079 0.00191 0.74
HRS5 0.91 0.91 0.89 0.72 10 0.0090 0.00112 0.72
Item statistics
n raw.r std.r r.cor r.drop mean sd
HRS1 188 0.87 0.87 0.83 0.80 1.6 2.1
HRS2 188 0.89 0.89 0.86 0.83 2.0 2.2
HRS3 188 0.88 0.88 0.84 0.81 2.0 2.1
HRS4 188 0.88 0.88 0.84 0.81 2.1 2.1
HRS5 188 0.92 0.92 0.89 0.86 1.8 2.2
Non missing response frequency for each item
0 1 2 3 4 5 6 7 8 miss
HRS1 0.53 0.08 0.10 0.06 0.12 0.05 0.04 0.02 0.01 0.31
HRS2 0.40 0.10 0.12 0.11 0.14 0.06 0.05 0.01 0.02 0.31
HRS3 0.37 0.12 0.13 0.08 0.16 0.06 0.04 0.02 0.01 0.31
HRS4 0.35 0.12 0.13 0.11 0.15 0.08 0.04 0.01 0.01 0.31
HRS5 0.47 0.10 0.07 0.08 0.13 0.05 0.06 0.01 0.01 0.31
DASS Anxiety: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), DASS2, DASS4,
DASS7, DASS9, DASS15, DASS19, DASS20))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.87 0.87 0.87 0.5 6.9 0.0082 0.44 0.56 0.49
lower alpha upper 95% confidence boundaries
0.86 0.87 0.89
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
DASS2 0.87 0.87 0.86 0.53 6.7 0.0084 0.0064 0.50
DASS4 0.86 0.86 0.85 0.50 6.1 0.0093 0.0106 0.49
DASS7 0.86 0.86 0.85 0.50 6.0 0.0095 0.0104 0.48
DASS9 0.85 0.85 0.83 0.48 5.6 0.0101 0.0051 0.49
DASS15 0.84 0.85 0.83 0.48 5.5 0.0102 0.0047 0.48
DASS19 0.86 0.86 0.85 0.50 6.1 0.0093 0.0108 0.49
DASS20 0.85 0.85 0.84 0.49 5.8 0.0098 0.0049 0.48
Item statistics
n raw.r std.r r.cor r.drop mean sd
DASS2 546 0.67 0.67 0.58 0.54 0.56 0.78
DASS4 546 0.73 0.74 0.67 0.63 0.36 0.68
DASS7 546 0.74 0.75 0.68 0.64 0.35 0.72
DASS9 546 0.81 0.80 0.77 0.71 0.53 0.82
DASS15 546 0.81 0.81 0.79 0.73 0.42 0.75
DASS19 546 0.74 0.74 0.67 0.63 0.51 0.73
DASS20 546 0.78 0.78 0.74 0.69 0.37 0.70
Non missing response frequency for each item
0 1 2 3 miss
DASS2 0.59 0.29 0.10 0.03 0.02
DASS4 0.74 0.17 0.08 0.01 0.02
DASS7 0.76 0.15 0.06 0.03 0.02
DASS9 0.66 0.19 0.13 0.03 0.02
DASS15 0.71 0.18 0.08 0.03 0.02
DASS19 0.60 0.30 0.07 0.02 0.02
DASS20 0.74 0.17 0.07 0.02 0.02
DASS Anxiety: Spanish
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), DASS2, DASS4,
DASS7, DASS9, DASS15, DASS19, DASS20))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.9 0.9 0.91 0.57 9.4 0.0093 0.54 0.63 0.59
lower alpha upper 95% confidence boundaries
0.88 0.9 0.92
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
DASS2 0.91 0.91 0.91 0.64 10.7 0.0082 0.006 0.65
DASS4 0.88 0.89 0.90 0.57 8.0 0.0111 0.022 0.59
DASS7 0.88 0.89 0.89 0.57 8.0 0.0111 0.020 0.59
DASS9 0.88 0.89 0.89 0.57 8.0 0.0111 0.021 0.61
DASS15 0.88 0.88 0.87 0.54 7.2 0.0119 0.014 0.58
DASS19 0.88 0.88 0.89 0.56 7.6 0.0115 0.015 0.59
DASS20 0.88 0.88 0.88 0.56 7.5 0.0116 0.016 0.58
Item statistics
n raw.r std.r r.cor r.drop mean sd
DASS2 93 0.63 0.61 0.52 0.48 0.70 0.87
DASS4 93 0.80 0.80 0.75 0.72 0.49 0.80
DASS7 93 0.80 0.80 0.77 0.72 0.42 0.74
DASS9 93 0.80 0.80 0.77 0.72 0.60 0.78
DASS15 93 0.87 0.88 0.87 0.82 0.46 0.73
DASS19 93 0.83 0.83 0.81 0.76 0.60 0.85
DASS20 93 0.84 0.84 0.82 0.78 0.52 0.79
Non missing response frequency for each item
0 1 2 3 miss
DASS2 0.53 0.29 0.14 0.04 0.66
DASS4 0.67 0.20 0.10 0.03 0.66
DASS7 0.71 0.18 0.09 0.02 0.66
DASS9 0.57 0.27 0.15 0.01 0.66
DASS15 0.68 0.18 0.14 0.00 0.66
DASS19 0.61 0.19 0.17 0.02 0.66
DASS20 0.66 0.18 0.15 0.01 0.66
DASS Depression: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), DASS3, DASS5,
DASS10, DASS13, DASS16, DASS17, DASS21))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.94 0.94 0.94 0.69 16 0.0039 0.7 0.78 0.69
lower alpha upper 95% confidence boundaries
0.93 0.94 0.95
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
DASS3 0.93 0.93 0.92 0.69 13 0.0046 0.0060 0.69
DASS5 0.94 0.94 0.93 0.73 16 0.0039 0.0016 0.74
DASS10 0.93 0.93 0.92 0.67 12 0.0049 0.0042 0.68
DASS13 0.93 0.93 0.92 0.69 13 0.0047 0.0068 0.69
DASS16 0.93 0.93 0.92 0.68 13 0.0048 0.0062 0.68
DASS17 0.93 0.93 0.93 0.69 13 0.0046 0.0058 0.70
DASS21 0.93 0.93 0.92 0.69 14 0.0045 0.0048 0.69
Item statistics
n raw.r std.r r.cor r.drop mean sd
DASS3 546 0.86 0.87 0.84 0.81 0.61 0.86
DASS5 546 0.77 0.77 0.71 0.69 0.89 0.91
DASS10 546 0.90 0.90 0.89 0.86 0.70 0.94
DASS13 546 0.87 0.87 0.84 0.82 0.85 0.98
DASS16 546 0.89 0.89 0.87 0.85 0.70 0.90
DASS17 546 0.86 0.85 0.83 0.80 0.60 0.92
DASS21 546 0.85 0.85 0.83 0.79 0.58 0.89
Non missing response frequency for each item
0 1 2 3 miss
DASS3 0.60 0.24 0.12 0.05 0.02
DASS5 0.41 0.36 0.17 0.06 0.02
DASS10 0.58 0.22 0.14 0.06 0.02
DASS13 0.47 0.29 0.14 0.09 0.02
DASS16 0.55 0.25 0.15 0.05 0.02
DASS17 0.64 0.17 0.12 0.06 0.02
DASS21 0.64 0.19 0.12 0.05 0.02
DASS Depression: Spanish
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), DASS3, DASS5,
DASS10, DASS13, DASS16, DASS17, DASS21))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.93 0.93 0.93 0.65 13 0.0067 0.54 0.67 0.63
lower alpha upper 95% confidence boundaries
0.92 0.93 0.94
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
DASS3 0.92 0.92 0.92 0.67 12 0.0075 0.0086 0.63
DASS5 0.93 0.93 0.92 0.67 12 0.0070 0.0106 0.68
DASS10 0.91 0.91 0.91 0.63 10 0.0084 0.0081 0.62
DASS13 0.92 0.93 0.92 0.68 13 0.0072 0.0095 0.68
DASS16 0.92 0.92 0.92 0.66 12 0.0077 0.0103 0.63
DASS17 0.91 0.91 0.91 0.63 10 0.0086 0.0064 0.62
DASS21 0.91 0.91 0.91 0.64 11 0.0082 0.0060 0.62
Item statistics
n raw.r std.r r.cor r.drop mean sd
DASS3 93 0.79 0.80 0.77 0.73 0.48 0.70
DASS5 93 0.80 0.79 0.74 0.71 0.81 0.90
DASS10 93 0.89 0.89 0.88 0.84 0.46 0.82
DASS13 93 0.78 0.78 0.72 0.70 0.59 0.81
DASS16 93 0.83 0.83 0.79 0.76 0.48 0.82
DASS17 93 0.90 0.90 0.90 0.86 0.48 0.82
DASS21 93 0.88 0.88 0.88 0.83 0.44 0.77
Non missing response frequency for each item
0 1 2 3 miss
DASS3 0.62 0.28 0.09 0.01 0.66
DASS5 0.48 0.26 0.23 0.03 0.66
DASS10 0.70 0.18 0.08 0.04 0.66
DASS13 0.59 0.25 0.14 0.02 0.66
DASS16 0.69 0.17 0.11 0.03 0.66
DASS17 0.69 0.17 0.11 0.03 0.66
DASS21 0.71 0.16 0.11 0.02 0.66
DASS Stress: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), DASS1, DASS6,
DASS8, DASS11, DASS12, DASS14, DASS18))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.91 0.91 0.9 0.58 9.8 0.006 0.75 0.68 0.57
lower alpha upper 95% confidence boundaries
0.9 0.91 0.92
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
DASS1 0.89 0.89 0.88 0.58 8.4 0.0069 0.0030 0.57
DASS6 0.89 0.89 0.88 0.58 8.2 0.0071 0.0052 0.56
DASS8 0.90 0.90 0.89 0.59 8.6 0.0068 0.0053 0.56
DASS11 0.89 0.89 0.88 0.57 7.9 0.0073 0.0044 0.56
DASS12 0.89 0.89 0.87 0.57 7.9 0.0074 0.0034 0.56
DASS14 0.90 0.90 0.89 0.61 9.3 0.0064 0.0035 0.60
DASS18 0.89 0.89 0.88 0.59 8.5 0.0069 0.0050 0.58
Item statistics
n raw.r std.r r.cor r.drop mean sd
DASS1 546 0.80 0.80 0.77 0.72 0.85 0.87
DASS6 546 0.82 0.82 0.78 0.74 0.71 0.85
DASS8 546 0.78 0.78 0.73 0.70 0.60 0.82
DASS11 546 0.84 0.84 0.81 0.77 0.83 0.85
DASS12 546 0.84 0.84 0.82 0.77 0.89 0.90
DASS14 546 0.73 0.74 0.67 0.64 0.68 0.82
DASS18 546 0.79 0.80 0.75 0.71 0.67 0.81
Non missing response frequency for each item
0 1 2 3 miss
DASS1 0.41 0.38 0.16 0.05 0.02
DASS6 0.50 0.33 0.13 0.04 0.02
DASS8 0.58 0.27 0.12 0.03 0.02
DASS11 0.42 0.37 0.17 0.04 0.02
DASS12 0.40 0.37 0.17 0.06 0.02
DASS14 0.52 0.31 0.14 0.03 0.02
DASS18 0.51 0.34 0.12 0.03 0.02
DASS Stress: Spanish
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), DASS1, DASS6,
DASS8, DASS11, DASS12, DASS14, DASS18))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.9 0.9 0.9 0.56 9 0.0096 0.68 0.66 0.55
lower alpha upper 95% confidence boundaries
0.88 0.9 0.92
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
DASS1 0.90 0.90 0.89 0.59 8.7 0.0098 0.0064 0.60
DASS6 0.89 0.89 0.88 0.58 8.1 0.0107 0.0065 0.55
DASS8 0.87 0.88 0.88 0.55 7.2 0.0119 0.0109 0.52
DASS11 0.88 0.88 0.88 0.55 7.3 0.0116 0.0092 0.55
DASS12 0.89 0.89 0.89 0.58 8.2 0.0106 0.0115 0.60
DASS14 0.88 0.88 0.88 0.55 7.3 0.0117 0.0105 0.54
DASS18 0.87 0.88 0.87 0.54 7.2 0.0118 0.0075 0.54
Item statistics
n raw.r std.r r.cor r.drop mean sd
DASS1 93 0.72 0.71 0.64 0.60 0.88 0.92
DASS6 93 0.75 0.75 0.71 0.66 0.66 0.79
DASS8 93 0.84 0.83 0.80 0.76 0.70 0.89
DASS11 93 0.81 0.82 0.79 0.75 0.55 0.73
DASS12 93 0.76 0.75 0.69 0.65 0.71 0.87
DASS14 93 0.82 0.83 0.80 0.76 0.62 0.76
DASS18 93 0.83 0.84 0.82 0.76 0.62 0.88
Non missing response frequency for each item
0 1 2 3 miss
DASS1 0.43 0.31 0.20 0.05 0.66
DASS6 0.53 0.30 0.16 0.01 0.66
DASS8 0.54 0.28 0.13 0.05 0.66
DASS11 0.59 0.27 0.14 0.00 0.66
DASS12 0.55 0.20 0.24 0.01 0.66
DASS14 0.54 0.31 0.14 0.01 0.66
DASS18 0.59 0.25 0.11 0.05 0.66
SIR Clutter: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), SIR1, SIR3, SIR5,
SIR8, SIR10, SIR12, SIR15, SIR20, SIR22))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.93 0.93 0.94 0.61 14 0.0043 0.49 0.58 0.62
lower alpha upper 95% confidence boundaries
0.92 0.93 0.94
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
SIR1 0.93 0.93 0.94 0.64 14 0.0045 0.0069 0.63
SIR3 0.92 0.93 0.93 0.61 13 0.0048 0.0107 0.61
SIR5 0.92 0.92 0.93 0.60 12 0.0049 0.0069 0.62
SIR8 0.92 0.92 0.93 0.60 12 0.0052 0.0093 0.60
SIR10 0.92 0.92 0.93 0.60 12 0.0050 0.0066 0.60
SIR12 0.92 0.93 0.94 0.61 13 0.0048 0.0112 0.62
SIR15 0.92 0.92 0.93 0.59 12 0.0052 0.0080 0.60
SIR20 0.93 0.93 0.94 0.62 13 0.0046 0.0106 0.62
SIR22 0.93 0.93 0.94 0.62 13 0.0047 0.0112 0.63
Item statistics
n raw.r std.r r.cor r.drop mean sd
SIR1 96 0.70 0.71 0.66 0.63 0.90 0.66
SIR3 96 0.80 0.81 0.79 0.75 0.40 0.61
SIR5 96 0.83 0.83 0.83 0.78 0.33 0.66
SIR8 96 0.86 0.86 0.85 0.82 0.56 0.75
SIR10 96 0.84 0.84 0.83 0.79 0.35 0.68
SIR12 96 0.80 0.80 0.76 0.74 0.46 0.69
SIR15 96 0.87 0.87 0.86 0.83 0.43 0.75
SIR20 96 0.79 0.77 0.74 0.71 0.53 0.91
SIR22 96 0.79 0.78 0.74 0.72 0.43 0.78
Non missing response frequency for each item
0 1 2 3 4 miss
SIR1 0.27 0.56 0.17 0.00 0.00 0.83
SIR3 0.67 0.27 0.06 0.00 0.00 0.83
SIR5 0.74 0.21 0.04 0.00 0.01 0.83
SIR8 0.57 0.31 0.09 0.02 0.00 0.83
SIR10 0.73 0.21 0.05 0.00 0.01 0.83
SIR12 0.65 0.26 0.08 0.01 0.00 0.83
SIR15 0.71 0.18 0.09 0.02 0.00 0.83
SIR20 0.68 0.18 0.09 0.04 0.01 0.83
SIR22 0.72 0.16 0.11 0.00 0.01 0.83
SIR Clutter: Spanish
Some items ( SIR10 ) were negatively correlated with the total scale and
probably should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), SIR1, SIR3, SIR5,
SIR8, SIR10, SIR12, SIR15, SIR20, SIR22))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.86 0.89 0.92 0.47 7.9 0.012 0.99 0.74 0.62
lower alpha upper 95% confidence boundaries
0.84 0.86 0.89
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
SIR1 0.84 0.87 0.90 0.46 6.8 0.0147 0.1206 0.63
SIR3 0.83 0.86 0.89 0.44 6.3 0.0155 0.1139 0.60
SIR5 0.84 0.87 0.90 0.45 6.5 0.0151 0.1200 0.63
SIR8 0.83 0.86 0.89 0.44 6.3 0.0156 0.1131 0.60
SIR10 0.93 0.93 0.94 0.64 13.9 0.0062 0.0052 0.64
SIR12 0.83 0.87 0.90 0.45 6.5 0.0154 0.1224 0.62
SIR15 0.83 0.86 0.90 0.44 6.4 0.0158 0.1167 0.62
SIR20 0.83 0.87 0.90 0.45 6.4 0.0154 0.1167 0.62
SIR22 0.83 0.86 0.89 0.44 6.2 0.0157 0.1103 0.59
Item statistics
n raw.r std.r r.cor r.drop mean sd
SIR1 91 0.743 0.75784 0.72 0.67 0.97 0.97
SIR3 91 0.824 0.83856 0.83 0.77 0.76 0.96
SIR5 91 0.786 0.79606 0.78 0.72 0.90 1.00
SIR8 91 0.824 0.83353 0.82 0.77 0.95 1.00
SIR10 91 0.063 0.00022 -0.15 -0.15 2.10 1.43
SIR12 91 0.807 0.80870 0.78 0.74 0.71 1.07
SIR15 91 0.823 0.82482 0.81 0.75 1.02 1.14
SIR20 91 0.804 0.81456 0.80 0.74 0.68 1.01
SIR22 91 0.837 0.85022 0.84 0.78 0.80 1.01
Non missing response frequency for each item
0 1 2 3 4 miss
SIR1 0.38 0.35 0.19 0.07 0.01 0.66
SIR3 0.53 0.25 0.16 0.04 0.01 0.66
SIR5 0.45 0.27 0.22 0.03 0.02 0.66
SIR8 0.44 0.26 0.21 0.09 0.00 0.66
SIR10 0.18 0.20 0.22 0.16 0.24 0.66
SIR12 0.63 0.13 0.16 0.05 0.02 0.66
SIR15 0.43 0.29 0.16 0.08 0.04 0.66
SIR20 0.63 0.15 0.13 0.09 0.00 0.66
SIR22 0.55 0.18 0.20 0.08 0.00 0.66
SIR Discarding: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), SIR4r, SIR6, SIR7,
SIR13, SIR17, SIR19, SIR23))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.89 0.91 0.91 0.58 9.6 0.0076 0.83 0.74 0.64
lower alpha upper 95% confidence boundaries
0.87 0.89 0.9
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
SIR4r 0.92 0.92 0.92 0.67 12.2 0.0051 0.0081 0.67
SIR6 0.86 0.88 0.88 0.54 7.1 0.0098 0.0251 0.57
SIR7 0.86 0.88 0.89 0.56 7.5 0.0096 0.0297 0.57
SIR13 0.87 0.89 0.89 0.57 7.9 0.0092 0.0309 0.57
SIR17 0.86 0.88 0.89 0.56 7.5 0.0097 0.0282 0.57
SIR19 0.86 0.89 0.89 0.56 7.7 0.0095 0.0293 0.57
SIR23 0.88 0.90 0.90 0.59 8.7 0.0088 0.0368 0.67
Item statistics
n raw.r std.r r.cor r.drop mean sd
SIR4r 96 0.61 0.55 0.43 0.41 1.31 1.31
SIR6 96 0.88 0.89 0.90 0.84 0.83 0.82
SIR7 96 0.85 0.86 0.85 0.79 0.66 0.88
SIR13 96 0.81 0.83 0.80 0.74 0.64 0.85
SIR17 96 0.85 0.86 0.85 0.78 0.80 0.94
SIR19 96 0.83 0.84 0.81 0.76 0.95 0.94
SIR23 96 0.75 0.76 0.70 0.67 0.66 0.87
Non missing response frequency for each item
0 1 2 3 4 miss
SIR4r 0.35 0.27 0.18 0.10 0.09 0.83
SIR6 0.41 0.38 0.20 0.02 0.00 0.83
SIR7 0.56 0.27 0.11 0.05 0.00 0.83
SIR13 0.57 0.25 0.15 0.03 0.00 0.83
SIR17 0.47 0.32 0.17 0.02 0.02 0.83
SIR19 0.41 0.29 0.26 0.03 0.01 0.83
SIR23 0.56 0.25 0.17 0.01 0.01 0.83
SIR Discarding: Spanish
Some items ( SIR4r SIR17 ) were negatively correlated with the total scale and
probably should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), SIR4r, SIR6, SIR7,
SIR13, SIR17, SIR19, SIR23))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.4 0.49 0.75 0.12 0.94 0.047 1.4 0.52 0.097
lower alpha upper 95% confidence boundaries
0.31 0.4 0.49
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
SIR4r 0.728 0.79 0.84 0.383 3.73 0.027 0.16 0.58
SIR6 0.209 0.29 0.65 0.064 0.41 0.066 0.33 -0.13
SIR7 0.048 0.14 0.55 0.027 0.16 0.079 0.29 -0.14
SIR13 0.143 0.25 0.65 0.053 0.34 0.071 0.34 -0.13
SIR17 0.606 0.62 0.83 0.212 1.62 0.024 0.42 0.58
SIR19 0.085 0.20 0.61 0.041 0.26 0.076 0.31 -0.13
SIR23 0.133 0.24 0.64 0.051 0.32 0.072 0.32 -0.13
Item statistics
n raw.r std.r r.cor r.drop mean sd
SIR4r 91 -0.62 -0.652 -0.87 -0.76 3.16 1.06
SIR6 91 0.69 0.732 0.72 0.51 0.86 0.93
SIR7 91 0.86 0.893 0.96 0.76 0.76 0.98
SIR13 91 0.75 0.779 0.76 0.56 0.89 1.08
SIR17 91 0.21 0.089 -0.21 -0.20 2.24 1.46
SIR19 91 0.80 0.831 0.85 0.63 0.77 1.11
SIR23 91 0.76 0.790 0.79 0.59 0.79 1.05
Non missing response frequency for each item
0 1 2 3 4 miss
SIR4r 0.02 0.07 0.15 0.24 0.52 0.66
SIR6 0.43 0.35 0.16 0.04 0.01 0.66
SIR7 0.56 0.19 0.19 0.07 0.00 0.66
SIR13 0.51 0.22 0.16 0.10 0.01 0.66
SIR17 0.16 0.20 0.13 0.24 0.26 0.66
SIR19 0.60 0.14 0.15 0.08 0.02 0.66
SIR23 0.55 0.21 0.16 0.05 0.02 0.66
SIR Acquiring: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), SIR2r, SIR9, SIR11,
SIR14, SIR16, SIR18, SIR21))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.82 0.85 0.86 0.44 5.5 0.012 0.68 0.62 0.45
lower alpha upper 95% confidence boundaries
0.79 0.82 0.84
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
SIR2r 0.86 0.86 0.87 0.51 6.3 0.0091 0.018 0.59
SIR9 0.81 0.85 0.86 0.48 5.6 0.0126 0.026 0.59
SIR11 0.77 0.80 0.80 0.41 4.1 0.0155 0.027 0.41
SIR14 0.79 0.82 0.82 0.43 4.5 0.0142 0.031 0.45
SIR16 0.78 0.81 0.81 0.41 4.2 0.0148 0.029 0.44
SIR18 0.77 0.81 0.82 0.41 4.2 0.0155 0.027 0.41
SIR21 0.78 0.82 0.82 0.43 4.5 0.0146 0.029 0.44
Item statistics
n raw.r std.r r.cor r.drop mean sd
SIR2r 96 0.57 0.51 0.37 0.33 1.04 1.26
SIR9 96 0.58 0.59 0.48 0.43 0.75 0.83
SIR11 96 0.81 0.82 0.81 0.72 0.58 0.84
SIR14 96 0.73 0.76 0.73 0.66 0.34 0.61
SIR16 96 0.78 0.81 0.80 0.71 0.27 0.69
SIR18 96 0.80 0.81 0.79 0.70 0.92 0.97
SIR21 96 0.75 0.75 0.71 0.63 0.84 0.93
Non missing response frequency for each item
0 1 2 3 4 miss
SIR2r 0.43 0.34 0.08 0.05 0.09 0.83
SIR9 0.47 0.34 0.16 0.03 0.00 0.83
SIR11 0.57 0.32 0.07 0.01 0.02 0.83
SIR14 0.72 0.23 0.04 0.01 0.00 0.83
SIR16 0.82 0.11 0.04 0.01 0.01 0.83
SIR18 0.43 0.29 0.24 0.02 0.02 0.83
SIR21 0.45 0.31 0.21 0.01 0.02 0.83
SIR Acquiring: Spanish
Some items ( SIR2r ) were negatively correlated with the total scale and
probably should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), SIR2r, SIR9, SIR11,
SIR14, SIR16, SIR18, SIR21))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.75 0.74 0.85 0.29 2.8 0.017 1.2 0.66 0.6
lower alpha upper 95% confidence boundaries
0.72 0.75 0.78
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
SIR2r 0.91 0.91 0.90 0.63 10.0 0.0089 0.0061 0.63
SIR9 0.68 0.67 0.83 0.25 2.0 0.0214 0.3625 0.63
SIR11 0.65 0.63 0.80 0.22 1.7 0.0237 0.3299 0.57
SIR14 0.66 0.64 0.81 0.23 1.8 0.0221 0.3624 0.60
SIR16 0.65 0.64 0.80 0.23 1.8 0.0239 0.3364 0.57
SIR18 0.67 0.64 0.80 0.23 1.8 0.0229 0.3275 0.57
SIR21 0.64 0.62 0.79 0.21 1.6 0.0242 0.3345 0.57
Item statistics
n raw.r std.r r.cor r.drop mean sd
SIR2r 91 -0.55 -0.55 -0.71 -0.68 3.26 0.98
SIR9 91 0.76 0.74 0.68 0.61 0.93 1.18
SIR11 91 0.84 0.84 0.82 0.75 0.92 1.00
SIR14 91 0.81 0.81 0.77 0.70 0.71 1.07
SIR16 91 0.83 0.83 0.80 0.73 0.91 1.11
SIR18 91 0.81 0.82 0.80 0.73 0.62 0.90
SIR21 91 0.87 0.87 0.86 0.79 0.74 1.05
Non missing response frequency for each item
0 1 2 3 4 miss
SIR2r 0.01 0.05 0.14 0.24 0.55 0.66
SIR9 0.52 0.21 0.13 0.11 0.03 0.66
SIR11 0.46 0.23 0.23 0.08 0.00 0.66
SIR14 0.63 0.13 0.16 0.05 0.02 0.66
SIR16 0.52 0.19 0.18 0.11 0.01 0.66
SIR18 0.63 0.18 0.15 0.04 0.00 0.66
SIR21 0.60 0.15 0.15 0.08 0.01 0.66
SIR Total: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), SIR1, SIR3, SIR5,
SIR8, SIR10, SIR12, SIR15, SIR20, SIR22, SIR4r, SIR6, SIR7,
SIR13, SIR17, SIR19, SIR23, SIR2r, SIR9, SIR11, SIR14, SIR16,
SIR18, SIR21))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.94 0.95 0.97 0.45 19 0.0036 0.65 0.57 0.45
lower alpha upper 95% confidence boundaries
0.93 0.94 0.95
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
SIR1 0.94 0.95 0.97 0.45 18 0.0037 0.025 0.45
SIR3 0.94 0.95 0.97 0.44 18 0.0037 0.025 0.45
SIR5 0.94 0.95 0.97 0.44 18 0.0037 0.024 0.45
SIR8 0.94 0.95 0.97 0.44 17 0.0038 0.024 0.44
SIR10 0.94 0.95 0.97 0.44 17 0.0038 0.024 0.45
SIR12 0.94 0.95 0.97 0.45 18 0.0037 0.025 0.45
SIR15 0.94 0.94 0.97 0.44 17 0.0038 0.024 0.44
SIR20 0.94 0.95 0.97 0.45 18 0.0038 0.025 0.45
SIR22 0.94 0.95 0.97 0.44 18 0.0038 0.026 0.44
SIR4r 0.94 0.95 0.97 0.46 19 0.0034 0.024 0.47
SIR6 0.94 0.94 0.97 0.44 17 0.0039 0.024 0.44
SIR7 0.94 0.94 0.97 0.43 17 0.0039 0.024 0.42
SIR13 0.94 0.95 0.97 0.44 17 0.0038 0.025 0.44
SIR17 0.94 0.94 0.97 0.44 17 0.0039 0.025 0.42
SIR19 0.94 0.95 0.97 0.44 17 0.0039 0.025 0.42
SIR23 0.94 0.95 0.97 0.45 18 0.0037 0.026 0.46
SIR2r 0.94 0.95 0.97 0.46 19 0.0034 0.022 0.47
SIR9 0.94 0.95 0.97 0.46 19 0.0036 0.024 0.47
SIR11 0.94 0.95 0.97 0.45 18 0.0037 0.025 0.46
SIR14 0.94 0.95 0.97 0.44 17 0.0038 0.026 0.45
SIR16 0.94 0.95 0.97 0.45 18 0.0037 0.025 0.46
SIR18 0.94 0.95 0.97 0.45 18 0.0037 0.026 0.45
SIR21 0.94 0.95 0.97 0.45 18 0.0037 0.025 0.46
Item statistics
n raw.r std.r r.cor r.drop mean sd
SIR1 96 0.62 0.64 0.62 0.59 0.90 0.66
SIR3 96 0.70 0.72 0.71 0.67 0.40 0.61
SIR5 96 0.68 0.71 0.71 0.65 0.33 0.66
SIR8 96 0.77 0.79 0.79 0.75 0.56 0.75
SIR10 96 0.71 0.73 0.73 0.68 0.35 0.68
SIR12 96 0.67 0.69 0.68 0.63 0.46 0.69
SIR15 96 0.77 0.79 0.79 0.75 0.43 0.75
SIR20 96 0.68 0.69 0.68 0.64 0.53 0.91
SIR22 96 0.69 0.71 0.69 0.66 0.43 0.78
SIR4r 96 0.55 0.50 0.49 0.48 1.31 1.31
SIR6 96 0.81 0.81 0.81 0.78 0.83 0.82
SIR7 96 0.85 0.85 0.85 0.83 0.66 0.88
SIR13 96 0.75 0.75 0.74 0.72 0.64 0.85
SIR17 96 0.80 0.80 0.80 0.77 0.80 0.94
SIR19 96 0.78 0.77 0.77 0.74 0.95 0.94
SIR23 96 0.63 0.62 0.60 0.59 0.66 0.87
SIR2r 96 0.49 0.44 0.42 0.41 1.04 1.26
SIR9 96 0.48 0.48 0.45 0.43 0.75 0.83
SIR11 96 0.66 0.65 0.65 0.62 0.58 0.84
SIR14 96 0.73 0.73 0.72 0.70 0.34 0.61
SIR16 96 0.61 0.60 0.59 0.57 0.27 0.69
SIR18 96 0.68 0.68 0.66 0.64 0.92 0.97
SIR21 96 0.62 0.61 0.60 0.58 0.84 0.93
Non missing response frequency for each item
0 1 2 3 4 miss
SIR1 0.27 0.56 0.17 0.00 0.00 0.83
SIR3 0.67 0.27 0.06 0.00 0.00 0.83
SIR5 0.74 0.21 0.04 0.00 0.01 0.83
SIR8 0.57 0.31 0.09 0.02 0.00 0.83
SIR10 0.73 0.21 0.05 0.00 0.01 0.83
SIR12 0.65 0.26 0.08 0.01 0.00 0.83
SIR15 0.71 0.18 0.09 0.02 0.00 0.83
SIR20 0.68 0.18 0.09 0.04 0.01 0.83
SIR22 0.72 0.16 0.11 0.00 0.01 0.83
SIR4r 0.35 0.27 0.18 0.10 0.09 0.83
SIR6 0.41 0.38 0.20 0.02 0.00 0.83
SIR7 0.56 0.27 0.11 0.05 0.00 0.83
SIR13 0.57 0.25 0.15 0.03 0.00 0.83
SIR17 0.47 0.32 0.17 0.02 0.02 0.83
SIR19 0.41 0.29 0.26 0.03 0.01 0.83
SIR23 0.56 0.25 0.17 0.01 0.01 0.83
SIR2r 0.43 0.34 0.08 0.05 0.09 0.83
SIR9 0.47 0.34 0.16 0.03 0.00 0.83
SIR11 0.57 0.32 0.07 0.01 0.02 0.83
SIR14 0.72 0.23 0.04 0.01 0.00 0.83
SIR16 0.82 0.11 0.04 0.01 0.01 0.83
SIR18 0.43 0.29 0.24 0.02 0.02 0.83
SIR21 0.45 0.31 0.21 0.01 0.02 0.83
SIR Total: Spanish
Some items ( SIR10 SIR4r SIR17 SIR2r ) were negatively correlated with the total scale and
probably should be reversed.
To do this, run the function again with the 'check.keys=TRUE' option
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), SIR1, SIR3, SIR5,
SIR8, SIR10, SIR12, SIR15, SIR20, SIR22, SIR4r, SIR6, SIR7,
SIR13, SIR17, SIR19, SIR23, SIR2r, SIR9, SIR11, SIR14, SIR16,
SIR18, SIR21))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.9 0.92 0.97 0.32 11 0.0065 1.2 0.61 0.58
lower alpha upper 95% confidence boundaries
0.89 0.9 0.92
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
SIR1 0.90 0.91 0.97 0.32 10.2 0.0070 0.25 0.58
SIR3 0.90 0.91 0.97 0.31 9.9 0.0072 0.24 0.57
SIR5 0.90 0.91 0.97 0.31 10.0 0.0071 0.25 0.58
SIR8 0.89 0.91 0.97 0.31 9.8 0.0073 0.24 0.57
SIR10 0.92 0.92 0.97 0.36 12.2 0.0052 0.24 0.59
SIR12 0.89 0.91 0.97 0.31 9.8 0.0073 0.24 0.57
SIR15 0.89 0.91 0.97 0.31 9.8 0.0073 0.24 0.57
SIR20 0.90 0.91 0.97 0.31 9.8 0.0072 0.24 0.57
SIR22 0.89 0.91 0.97 0.31 9.7 0.0073 0.24 0.57
SIR4r 0.93 0.94 0.98 0.40 14.7 0.0055 0.18 0.59
SIR6 0.90 0.91 0.97 0.31 9.9 0.0071 0.24 0.58
SIR7 0.89 0.91 0.97 0.31 9.7 0.0073 0.24 0.57
SIR13 0.90 0.91 0.97 0.31 10.0 0.0071 0.25 0.58
SIR17 0.92 0.93 0.97 0.36 12.5 0.0051 0.24 0.59
SIR19 0.89 0.91 0.97 0.31 9.7 0.0073 0.24 0.57
SIR23 0.89 0.91 0.97 0.31 9.7 0.0073 0.24 0.57
SIR2r 0.92 0.93 0.97 0.40 14.4 0.0056 0.19 0.59
SIR9 0.90 0.91 0.97 0.31 10.1 0.0071 0.25 0.58
SIR11 0.89 0.91 0.97 0.31 9.7 0.0073 0.24 0.57
SIR14 0.90 0.91 0.97 0.31 10.1 0.0071 0.25 0.58
SIR16 0.90 0.91 0.97 0.31 9.9 0.0072 0.24 0.57
SIR18 0.90 0.91 0.97 0.31 9.9 0.0072 0.24 0.57
SIR21 0.89 0.91 0.97 0.31 9.7 0.0073 0.24 0.57
Item statistics
n raw.r std.r r.cor r.drop mean sd
SIR1 91 0.675 0.686 0.676 0.634 0.97 0.97
SIR3 91 0.790 0.797 0.798 0.762 0.76 0.96
SIR5 91 0.741 0.744 0.736 0.707 0.90 1.00
SIR8 91 0.818 0.825 0.821 0.793 0.95 1.00
SIR10 91 0.029 -0.017 -0.046 -0.072 2.10 1.43
SIR12 91 0.818 0.823 0.819 0.791 0.71 1.07
SIR15 91 0.823 0.825 0.819 0.794 1.02 1.14
SIR20 91 0.815 0.825 0.825 0.788 0.68 1.01
SIR22 91 0.838 0.851 0.851 0.815 0.80 1.01
SIR4r 91 -0.747 -0.754 -0.781 -0.777 3.16 1.06
SIR6 91 0.773 0.779 0.775 0.744 0.86 0.93
SIR7 91 0.856 0.862 0.863 0.835 0.76 0.98
SIR13 91 0.730 0.736 0.721 0.691 0.89 1.08
SIR17 91 -0.047 -0.094 -0.123 -0.149 2.24 1.46
SIR19 91 0.835 0.842 0.845 0.809 0.77 1.11
SIR23 91 0.834 0.844 0.844 0.809 0.79 1.05
SIR2r 91 -0.645 -0.655 -0.680 -0.683 3.26 0.98
SIR9 91 0.707 0.707 0.696 0.661 0.93 1.18
SIR11 91 0.854 0.859 0.857 0.833 0.92 1.00
SIR14 91 0.719 0.729 0.714 0.679 0.71 1.07
SIR16 91 0.767 0.773 0.760 0.731 0.91 1.11
SIR18 91 0.788 0.799 0.797 0.762 0.62 0.90
SIR21 91 0.836 0.848 0.850 0.811 0.74 1.05
Non missing response frequency for each item
0 1 2 3 4 miss
SIR1 0.38 0.35 0.19 0.07 0.01 0.66
SIR3 0.53 0.25 0.16 0.04 0.01 0.66
SIR5 0.45 0.27 0.22 0.03 0.02 0.66
SIR8 0.44 0.26 0.21 0.09 0.00 0.66
SIR10 0.18 0.20 0.22 0.16 0.24 0.66
SIR12 0.63 0.13 0.16 0.05 0.02 0.66
SIR15 0.43 0.29 0.16 0.08 0.04 0.66
SIR20 0.63 0.15 0.13 0.09 0.00 0.66
SIR22 0.55 0.18 0.20 0.08 0.00 0.66
SIR4r 0.02 0.07 0.15 0.24 0.52 0.66
SIR6 0.43 0.35 0.16 0.04 0.01 0.66
SIR7 0.56 0.19 0.19 0.07 0.00 0.66
SIR13 0.51 0.22 0.16 0.10 0.01 0.66
SIR17 0.16 0.20 0.13 0.24 0.26 0.66
SIR19 0.60 0.14 0.15 0.08 0.02 0.66
SIR23 0.55 0.21 0.16 0.05 0.02 0.66
SIR2r 0.01 0.05 0.14 0.24 0.55 0.66
SIR9 0.52 0.21 0.13 0.11 0.03 0.66
SIR11 0.46 0.23 0.23 0.08 0.00 0.66
SIR14 0.63 0.13 0.16 0.05 0.02 0.66
SIR16 0.52 0.19 0.18 0.11 0.01 0.66
SIR18 0.63 0.18 0.15 0.04 0.00 0.66
SIR21 0.60 0.15 0.15 0.08 0.01 0.66
OCIR: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), OCIR1, OCIR2,
OCIR3, OCIR4, OCIR5, OCIR6, OCIR7, OCIR8, OCIR9, OCIR10,
OCIR11, OCIR12, OCIR13, OCIR14, OCIR15, OCIR16, OCIR17, OCIR18))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.91 0.91 0.95 0.37 11 0.0051 0.52 0.54 0.38
lower alpha upper 95% confidence boundaries
0.9 0.91 0.92
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
OCIR1 0.91 0.91 0.95 0.38 10.3 0.0052 0.028 0.39
OCIR2 0.91 0.91 0.95 0.37 9.8 0.0055 0.029 0.38
OCIR3 0.91 0.91 0.95 0.37 9.8 0.0056 0.028 0.38
OCIR4 0.91 0.91 0.95 0.37 9.9 0.0054 0.030 0.38
OCIR5 0.92 0.92 0.95 0.39 11.0 0.0050 0.025 0.40
OCIR6 0.91 0.91 0.95 0.37 9.9 0.0055 0.027 0.38
OCIR7 0.91 0.91 0.95 0.38 10.2 0.0053 0.028 0.38
OCIR8 0.91 0.91 0.95 0.36 9.5 0.0056 0.028 0.38
OCIR9 0.91 0.91 0.95 0.36 9.7 0.0056 0.028 0.38
OCIR10 0.91 0.91 0.95 0.37 9.8 0.0054 0.029 0.38
OCIR11 0.91 0.91 0.95 0.37 9.9 0.0054 0.029 0.38
OCIR12 0.91 0.91 0.95 0.36 9.7 0.0056 0.027 0.38
OCIR13 0.92 0.92 0.95 0.39 10.9 0.0049 0.026 0.40
OCIR14 0.91 0.91 0.95 0.38 10.3 0.0052 0.029 0.39
OCIR15 0.91 0.91 0.95 0.36 9.6 0.0057 0.027 0.38
OCIR16 0.91 0.91 0.95 0.38 10.4 0.0052 0.028 0.39
OCIR17 0.91 0.91 0.95 0.39 10.7 0.0051 0.027 0.39
OCIR18 0.91 0.91 0.95 0.37 9.8 0.0055 0.027 0.38
Item statistics
n raw.r std.r r.cor r.drop mean sd
OCIR1 96 0.58 0.56 0.54 0.51 0.56 0.83
OCIR2 96 0.70 0.70 0.69 0.66 0.62 0.80
OCIR3 96 0.73 0.72 0.71 0.68 0.85 0.95
OCIR4 96 0.68 0.68 0.66 0.63 0.42 0.71
OCIR5 96 0.37 0.39 0.36 0.30 0.28 0.72
OCIR6 96 0.70 0.68 0.67 0.64 0.62 0.99
OCIR7 96 0.61 0.60 0.59 0.56 0.66 0.82
OCIR8 96 0.77 0.79 0.79 0.74 0.49 0.79
OCIR9 96 0.76 0.74 0.73 0.71 0.93 1.08
OCIR10 96 0.68 0.70 0.69 0.64 0.25 0.62
OCIR11 96 0.68 0.69 0.68 0.63 0.38 0.78
OCIR12 96 0.75 0.73 0.73 0.70 0.53 0.93
OCIR13 96 0.43 0.42 0.39 0.35 0.78 0.93
OCIR14 96 0.55 0.57 0.54 0.49 0.38 0.76
OCIR15 96 0.77 0.76 0.76 0.73 0.72 1.01
OCIR16 96 0.54 0.55 0.52 0.48 0.31 0.77
OCIR17 96 0.43 0.47 0.45 0.38 0.21 0.52
OCIR18 96 0.73 0.72 0.72 0.69 0.45 0.88
Non missing response frequency for each item
0 1 2 3 4 miss
OCIR1 0.61 0.24 0.12 0.01 0.01 0.83
OCIR2 0.54 0.32 0.10 0.03 0.00 0.83
OCIR3 0.44 0.35 0.14 0.06 0.01 0.83
OCIR4 0.69 0.23 0.06 0.02 0.00 0.83
OCIR5 0.83 0.08 0.06 0.01 0.01 0.83
OCIR6 0.62 0.22 0.08 0.05 0.02 0.83
OCIR7 0.52 0.33 0.12 0.01 0.01 0.83
OCIR8 0.67 0.21 0.09 0.03 0.00 0.83
OCIR9 0.48 0.23 0.20 0.07 0.02 0.83
OCIR10 0.83 0.09 0.06 0.01 0.00 0.83
OCIR11 0.77 0.11 0.09 0.01 0.01 0.83
OCIR12 0.69 0.17 0.08 0.05 0.01 0.83
OCIR13 0.51 0.25 0.19 0.05 0.00 0.83
OCIR14 0.74 0.19 0.04 0.02 0.01 0.83
OCIR15 0.57 0.23 0.12 0.05 0.02 0.83
OCIR16 0.82 0.09 0.03 0.05 0.00 0.83
OCIR17 0.83 0.14 0.02 0.01 0.00 0.83
OCIR18 0.74 0.14 0.07 0.04 0.01 0.83
OCIR: Spanish
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), OCIR1, OCIR2,
OCIR3, OCIR4, OCIR5, OCIR6, OCIR7, OCIR8, OCIR9, OCIR10,
OCIR11, OCIR12, OCIR13, OCIR14, OCIR15, OCIR16, OCIR17, OCIR18))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.95 0.95 0.97 0.52 19 0.0044 0.86 0.82 0.52
lower alpha upper 95% confidence boundaries
0.94 0.95 0.96
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
OCIR1 0.95 0.95 0.96 0.52 19 0.0046 0.0140 0.53
OCIR2 0.95 0.95 0.96 0.52 18 0.0047 0.0144 0.52
OCIR3 0.95 0.95 0.96 0.54 20 0.0043 0.0083 0.54
OCIR4 0.95 0.95 0.96 0.52 18 0.0047 0.0140 0.52
OCIR5 0.95 0.95 0.96 0.52 18 0.0047 0.0140 0.53
OCIR6 0.95 0.95 0.96 0.51 18 0.0048 0.0139 0.52
OCIR7 0.95 0.95 0.96 0.51 18 0.0049 0.0132 0.51
OCIR8 0.95 0.95 0.96 0.51 18 0.0048 0.0128 0.51
OCIR9 0.95 0.95 0.96 0.52 19 0.0046 0.0139 0.53
OCIR10 0.95 0.95 0.96 0.51 18 0.0048 0.0128 0.51
OCIR11 0.95 0.95 0.96 0.51 18 0.0048 0.0139 0.51
OCIR12 0.95 0.95 0.96 0.52 18 0.0047 0.0135 0.51
OCIR13 0.95 0.95 0.96 0.51 18 0.0048 0.0134 0.51
OCIR14 0.95 0.95 0.96 0.51 18 0.0049 0.0125 0.51
OCIR15 0.95 0.95 0.96 0.52 19 0.0046 0.0143 0.53
OCIR16 0.95 0.95 0.96 0.52 19 0.0046 0.0129 0.53
OCIR17 0.95 0.95 0.96 0.53 19 0.0045 0.0130 0.53
OCIR18 0.95 0.95 0.96 0.52 18 0.0047 0.0132 0.52
Item statistics
n raw.r std.r r.cor r.drop mean sd
OCIR1 122 0.71 0.71 0.69 0.67 0.87 1.10
OCIR2 122 0.75 0.75 0.73 0.71 1.02 1.11
OCIR3 122 0.51 0.50 0.48 0.44 1.26 1.17
OCIR4 122 0.72 0.72 0.71 0.68 0.83 1.13
OCIR5 122 0.73 0.72 0.71 0.69 0.87 1.16
OCIR6 122 0.80 0.80 0.79 0.77 0.96 1.13
OCIR7 122 0.83 0.83 0.82 0.81 0.91 1.11
OCIR8 122 0.79 0.79 0.79 0.76 0.73 1.14
OCIR9 122 0.69 0.68 0.67 0.64 0.98 1.19
OCIR10 122 0.79 0.79 0.78 0.76 0.63 1.01
OCIR11 122 0.79 0.79 0.79 0.76 0.77 0.97
OCIR12 122 0.76 0.77 0.75 0.73 0.83 1.07
OCIR13 122 0.80 0.80 0.79 0.77 0.87 1.09
OCIR14 122 0.84 0.84 0.84 0.82 0.72 1.06
OCIR15 122 0.70 0.69 0.67 0.65 1.10 1.21
OCIR16 122 0.70 0.70 0.69 0.66 0.66 1.06
OCIR17 122 0.65 0.65 0.64 0.61 0.73 1.12
OCIR18 122 0.75 0.75 0.74 0.71 0.75 1.09
Non missing response frequency for each item
0 1 2 3 4 miss
OCIR1 0.52 0.24 0.12 0.11 0.02 0.55
OCIR2 0.43 0.25 0.20 0.07 0.03 0.55
OCIR3 0.33 0.28 0.25 0.08 0.06 0.55
OCIR4 0.56 0.20 0.12 0.08 0.03 0.55
OCIR5 0.54 0.21 0.11 0.10 0.03 0.55
OCIR6 0.48 0.24 0.17 0.08 0.03 0.55
OCIR7 0.50 0.22 0.17 0.08 0.02 0.55
OCIR8 0.63 0.15 0.12 0.06 0.04 0.55
OCIR9 0.48 0.24 0.15 0.08 0.05 0.55
OCIR10 0.64 0.18 0.11 0.04 0.02 0.55
OCIR11 0.52 0.25 0.16 0.06 0.01 0.55
OCIR12 0.53 0.22 0.16 0.07 0.02 0.55
OCIR13 0.50 0.26 0.14 0.07 0.03 0.55
OCIR14 0.60 0.19 0.14 0.04 0.03 0.55
OCIR15 0.44 0.22 0.16 0.14 0.03 0.55
OCIR16 0.64 0.17 0.10 0.07 0.02 0.55
OCIR17 0.61 0.17 0.13 0.03 0.05 0.55
OCIR18 0.60 0.16 0.16 0.05 0.03 0.55
OCIR Total Non-Hoarding: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), OCIR2, OCIR3,
OCIR4, OCIR5, OCIR6, OCIR8, OCIR9, OCIR10, OCIR11, OCIR12,
OCIR14, OCIR15, OCIR16, OCIR17, OCIR18))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.91 0.91 0.95 0.41 11 0.0051 0.5 0.56 0.43
lower alpha upper 95% confidence boundaries
0.9 0.91 0.92
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
OCIR2 0.91 0.91 0.94 0.41 9.8 0.0055 0.027 0.42
OCIR3 0.91 0.91 0.94 0.41 9.6 0.0056 0.025 0.43
OCIR4 0.91 0.91 0.95 0.41 9.8 0.0055 0.028 0.43
OCIR5 0.92 0.92 0.95 0.44 11.0 0.0050 0.022 0.44
OCIR6 0.91 0.91 0.94 0.41 9.9 0.0055 0.025 0.43
OCIR8 0.90 0.90 0.94 0.40 9.3 0.0057 0.027 0.41
OCIR9 0.91 0.91 0.94 0.41 9.6 0.0057 0.026 0.42
OCIR10 0.91 0.91 0.94 0.41 9.6 0.0055 0.028 0.42
OCIR11 0.91 0.91 0.94 0.41 9.6 0.0055 0.028 0.42
OCIR12 0.90 0.91 0.94 0.41 9.6 0.0057 0.024 0.42
OCIR14 0.91 0.91 0.95 0.42 10.3 0.0052 0.027 0.44
OCIR15 0.90 0.90 0.94 0.40 9.5 0.0058 0.025 0.42
OCIR16 0.91 0.91 0.95 0.42 10.3 0.0053 0.026 0.44
OCIR17 0.91 0.91 0.95 0.43 10.7 0.0052 0.024 0.44
OCIR18 0.91 0.91 0.94 0.41 9.6 0.0056 0.024 0.42
Item statistics
n raw.r std.r r.cor r.drop mean sd
OCIR2 96 0.69 0.69 0.67 0.63 0.62 0.80
OCIR3 96 0.74 0.72 0.72 0.68 0.85 0.95
OCIR4 96 0.68 0.68 0.66 0.63 0.42 0.71
OCIR5 96 0.40 0.43 0.38 0.32 0.28 0.72
OCIR6 96 0.70 0.67 0.66 0.63 0.62 0.99
OCIR8 96 0.78 0.79 0.79 0.74 0.49 0.79
OCIR9 96 0.76 0.73 0.72 0.70 0.93 1.08
OCIR10 96 0.72 0.74 0.72 0.68 0.25 0.62
OCIR11 96 0.72 0.74 0.72 0.67 0.38 0.78
OCIR12 96 0.76 0.74 0.74 0.71 0.53 0.93
OCIR14 96 0.57 0.58 0.55 0.50 0.38 0.76
OCIR15 96 0.79 0.77 0.76 0.73 0.72 1.01
OCIR16 96 0.57 0.58 0.55 0.50 0.31 0.77
OCIR17 96 0.45 0.50 0.47 0.40 0.21 0.52
OCIR18 96 0.75 0.73 0.72 0.69 0.45 0.88
Non missing response frequency for each item
0 1 2 3 4 miss
OCIR2 0.54 0.32 0.10 0.03 0.00 0.83
OCIR3 0.44 0.35 0.14 0.06 0.01 0.83
OCIR4 0.69 0.23 0.06 0.02 0.00 0.83
OCIR5 0.83 0.08 0.06 0.01 0.01 0.83
OCIR6 0.62 0.22 0.08 0.05 0.02 0.83
OCIR8 0.67 0.21 0.09 0.03 0.00 0.83
OCIR9 0.48 0.23 0.20 0.07 0.02 0.83
OCIR10 0.83 0.09 0.06 0.01 0.00 0.83
OCIR11 0.77 0.11 0.09 0.01 0.01 0.83
OCIR12 0.69 0.17 0.08 0.05 0.01 0.83
OCIR14 0.74 0.19 0.04 0.02 0.01 0.83
OCIR15 0.57 0.23 0.12 0.05 0.02 0.83
OCIR16 0.82 0.09 0.03 0.05 0.00 0.83
OCIR17 0.83 0.14 0.02 0.01 0.00 0.83
OCIR18 0.74 0.14 0.07 0.04 0.01 0.83
OCIR Total Non-Hoarding: Spanish
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), OCIR2, OCIR3,
OCIR4, OCIR5, OCIR6, OCIR8, OCIR9, OCIR10, OCIR11, OCIR12,
OCIR14, OCIR15, OCIR16, OCIR17, OCIR18))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.94 0.94 0.96 0.51 15 0.0056 0.86 0.81 0.51
lower alpha upper 95% confidence boundaries
0.93 0.94 0.95
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
OCIR2 0.93 0.93 0.95 0.51 14 0.0060 0.0162 0.51
OCIR3 0.94 0.94 0.95 0.54 16 0.0053 0.0081 0.53
OCIR4 0.93 0.94 0.95 0.51 14 0.0060 0.0156 0.51
OCIR5 0.93 0.94 0.95 0.51 14 0.0059 0.0156 0.51
OCIR6 0.93 0.93 0.95 0.50 14 0.0061 0.0157 0.51
OCIR8 0.93 0.93 0.95 0.50 14 0.0062 0.0138 0.50
OCIR9 0.93 0.94 0.95 0.51 15 0.0058 0.0155 0.51
OCIR10 0.93 0.93 0.95 0.50 14 0.0061 0.0138 0.51
OCIR11 0.93 0.93 0.95 0.50 14 0.0061 0.0153 0.50
OCIR12 0.93 0.93 0.95 0.50 14 0.0061 0.0149 0.51
OCIR14 0.93 0.93 0.95 0.49 14 0.0062 0.0137 0.50
OCIR15 0.93 0.94 0.95 0.51 15 0.0058 0.0162 0.53
OCIR16 0.93 0.94 0.95 0.51 14 0.0059 0.0141 0.51
OCIR17 0.94 0.94 0.95 0.51 15 0.0058 0.0145 0.52
OCIR18 0.93 0.93 0.95 0.50 14 0.0060 0.0142 0.51
Item statistics
n raw.r std.r r.cor r.drop mean sd
OCIR2 122 0.74 0.74 0.72 0.70 1.02 1.11
OCIR3 122 0.50 0.49 0.46 0.42 1.26 1.17
OCIR4 122 0.73 0.73 0.71 0.68 0.83 1.13
OCIR5 122 0.72 0.72 0.70 0.67 0.87 1.16
OCIR6 122 0.79 0.79 0.78 0.75 0.96 1.13
OCIR8 122 0.80 0.80 0.80 0.77 0.73 1.14
OCIR9 122 0.70 0.69 0.67 0.64 0.98 1.19
OCIR10 122 0.79 0.79 0.79 0.76 0.63 1.01
OCIR11 122 0.79 0.79 0.78 0.76 0.77 0.97
OCIR12 122 0.77 0.77 0.76 0.73 0.83 1.07
OCIR14 122 0.83 0.83 0.83 0.80 0.72 1.06
OCIR15 122 0.70 0.70 0.67 0.65 1.10 1.21
OCIR16 122 0.72 0.73 0.71 0.68 0.66 1.06
OCIR17 122 0.67 0.67 0.65 0.62 0.73 1.12
OCIR18 122 0.75 0.76 0.74 0.71 0.75 1.09
Non missing response frequency for each item
0 1 2 3 4 miss
OCIR2 0.43 0.25 0.20 0.07 0.03 0.55
OCIR3 0.33 0.28 0.25 0.08 0.06 0.55
OCIR4 0.56 0.20 0.12 0.08 0.03 0.55
OCIR5 0.54 0.21 0.11 0.10 0.03 0.55
OCIR6 0.48 0.24 0.17 0.08 0.03 0.55
OCIR8 0.63 0.15 0.12 0.06 0.04 0.55
OCIR9 0.48 0.24 0.15 0.08 0.05 0.55
OCIR10 0.64 0.18 0.11 0.04 0.02 0.55
OCIR11 0.52 0.25 0.16 0.06 0.01 0.55
OCIR12 0.53 0.22 0.16 0.07 0.02 0.55
OCIR14 0.60 0.19 0.14 0.04 0.03 0.55
OCIR15 0.44 0.22 0.16 0.14 0.03 0.55
OCIR16 0.64 0.17 0.10 0.07 0.02 0.55
OCIR17 0.61 0.17 0.13 0.03 0.05 0.55
OCIR18 0.60 0.16 0.16 0.05 0.03 0.55
OCIR Hoarding: English
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 0), OCIR1, OCIR7,
OCIR13))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.79 0.8 0.76 0.57 4 0.016 0.67 0.73 0.51
lower alpha upper 95% confidence boundaries
0.76 0.79 0.83
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
OCIR1 0.67 0.67 0.51 0.51 2.1 0.028 NA 0.51
OCIR7 0.63 0.63 0.46 0.46 1.7 0.031 NA 0.46
OCIR13 0.86 0.86 0.75 0.75 6.0 0.012 NA 0.75
Item statistics
n raw.r std.r r.cor r.drop mean sd
OCIR1 96 0.86 0.87 0.81 0.69 0.56 0.83
OCIR7 96 0.88 0.89 0.84 0.73 0.66 0.82
OCIR13 96 0.79 0.78 0.56 0.52 0.78 0.93
Non missing response frequency for each item
0 1 2 3 4 miss
OCIR1 0.61 0.24 0.12 0.01 0.01 0.83
OCIR7 0.52 0.33 0.12 0.01 0.01 0.83
OCIR13 0.51 0.25 0.19 0.05 0.00 0.83
OCIR Hoarding: Spanish
Reliability analysis
Call: alpha(x = select(filter(HRSdat, HRSlang == 1), OCIR1, OCIR7,
OCIR13))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.84 0.84 0.8 0.64 5.3 0.017 0.88 0.96 0.64
lower alpha upper 95% confidence boundaries
0.81 0.84 0.87
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
OCIR1 0.85 0.85 0.74 0.74 5.6 0.018 NA 0.74
OCIR7 0.69 0.69 0.53 0.53 2.3 0.037 NA 0.53
OCIR13 0.78 0.78 0.64 0.64 3.6 0.026 NA 0.64
Item statistics
n raw.r std.r r.cor r.drop mean sd
OCIR1 122 0.83 0.83 0.68 0.63 0.87 1.1
OCIR7 122 0.91 0.91 0.86 0.79 0.91 1.1
OCIR13 122 0.87 0.87 0.78 0.70 0.87 1.1
Non missing response frequency for each item
0 1 2 3 4 miss
OCIR1 0.52 0.24 0.12 0.11 0.02 0.55
OCIR7 0.50 0.22 0.17 0.08 0.02 0.55
OCIR13 0.50 0.26 0.14 0.07 0.03 0.55
corstarsl(select(filter(HRSdat, HRSlang==0), HRStot, SIRtot, CIRtot, OCIRhoard, OCIRtotNH, DASSdep, DASSanx, DASSstress))
corstarsl(select(filter(HRSdat, HRSlang==1), HRStot, SIRtot, CIRtot, OCIRhoard, OCIRtotNH, DASSdep, DASSanx, DASSstress))
HRS.SIR.mod.Eng <- lm(scale(HRStot) ~ scale(SIRtot) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==0))
tab_model(HRS.SIR.mod.Eng, digits = 3, show.std=T)
| Â | scale(HRStot) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | -0.065 | 0.000 | -0.159 – 0.028 | -0.121 – 0.121 | 0.169 |
| SIRtot | 0.573 | 0.756 | 0.454 – 0.692 | 0.599 – 0.914 | <0.001 |
| DASSdep | 0.020 | 0.026 | -0.124 – 0.163 | -0.163 – 0.214 | 0.786 |
| DASSanx | 0.112 | 0.145 | -0.024 – 0.248 | -0.031 – 0.321 | 0.105 |
| DASSstress | -0.028 | -0.036 | -0.224 – 0.168 | -0.285 – 0.214 | 0.778 |
| OCIRtotNH | 0.000 | 0.000 | -0.124 – 0.125 | -0.164 – 0.165 | 0.998 |
| Observations | 96 | ||||
| R2 / R2 adjusted | 0.660 / 0.641 | ||||
modelEffectSizes(HRS.SIR.mod.Eng)
lm(formula = scale(HRStot) ~ scale(SIRtot) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 0))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 0.3964 1 0.0209 NA
scale(SIRtot) 18.8002 1 0.5035 0.3449
scale(DASSdep) 0.0153 1 0.0008 0.0003
scale(DASSanx) 0.5523 1 0.0289 0.0101
scale(DASSstress) 0.0165 1 0.0009 0.0003
scale(OCIRtotNH) 0.0000 1 0.0000 0.0000
Sum of squared errors (SSE): 18.5
Sum of squared total (SST): 54.5
HRS.SIR.mod.clutter.Eng <- lm(scale(HRS1) ~ scale(SIRclutter) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==0))
tab_model(HRS.SIR.mod.clutter.Eng, digits = 3, show.std=T)
| Â | scale(HRS1) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | -0.079 | -0.000 | -0.196 – 0.038 | -0.151 – 0.151 | 0.184 |
| SIRclutter | 0.500 | 0.655 | 0.364 – 0.635 | 0.477 – 0.834 | <0.001 |
| DASSdep | -0.083 | -0.108 | -0.261 – 0.096 | -0.342 – 0.125 | 0.359 |
| DASSanx | 0.182 | 0.234 | 0.012 – 0.352 | 0.015 – 0.452 | 0.036 |
| DASSstress | 0.053 | 0.067 | -0.188 – 0.294 | -0.238 – 0.372 | 0.665 |
| OCIRtotNH | -0.111 | -0.146 | -0.262 – 0.040 | -0.344 – 0.053 | 0.149 |
| Observations | 96 | ||||
| R2 / R2 adjusted | 0.477 / 0.448 | ||||
modelEffectSizes(HRS.SIR.mod.clutter.Eng)
lm(formula = scale(HRS1) ~ scale(SIRclutter) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 0))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 0.5753 1 0.0196 NA
scale(SIRclutter) 17.1074 1 0.3723 0.3099
scale(DASSdep) 0.2723 1 0.0094 0.0049
scale(DASSanx) 1.4488 1 0.0478 0.0262
scale(DASSstress) 0.0603 1 0.0021 0.0011
scale(OCIRtotNH) 0.6799 1 0.0230 0.0123
Sum of squared errors (SSE): 28.8
Sum of squared total (SST): 55.2
HRS.SIR.mod.discarding.Eng <- lm(scale(HRS2) ~ scale(SIRdiscarding) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==0))
tab_model(HRS.SIR.mod.discarding.Eng, digits = 3, show.std=T)
| Â | scale(HRS2) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | -0.010 | -0.000 | -0.131 – 0.110 | -0.140 – 0.140 | 0.865 |
| SIRdiscarding | 0.668 | 0.793 | 0.525 – 0.812 | 0.623 – 0.964 | <0.001 |
| DASSdep | -0.013 | -0.016 | -0.196 – 0.170 | -0.232 – 0.201 | 0.887 |
| DASSanx | -0.038 | -0.045 | -0.213 – 0.136 | -0.248 – 0.158 | 0.663 |
| DASSstress | 0.017 | 0.019 | -0.228 – 0.261 | -0.261 – 0.300 | 0.892 |
| OCIRtotNH | -0.086 | -0.102 | -0.245 – 0.073 | -0.291 – 0.086 | 0.284 |
| Observations | 96 | ||||
| R2 / R2 adjusted | 0.548 / 0.522 | ||||
modelEffectSizes(HRS.SIR.mod.discarding.Eng)
lm(formula = scale(HRS2) ~ scale(SIRdiscarding) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 0))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 0.0098 1 0.0003 NA
scale(SIRdiscarding) 28.9653 1 0.4869 0.4293
scale(DASSdep) 0.0069 1 0.0002 0.0001
scale(DASSanx) 0.0649 1 0.0021 0.0010
scale(DASSstress) 0.0063 1 0.0002 0.0001
scale(OCIRtotNH) 0.3942 1 0.0127 0.0058
Sum of squared errors (SSE): 30.5
Sum of squared total (SST): 67.5
HRS.SIR.mod.acquiring.Eng <- lm(scale(HRS3) ~ scale(SIRacquiring) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==0))
tab_model(HRS.SIR.mod.acquiring.Eng, digits = 3, show.std=T)
| Â | scale(HRS3) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | -0.077 | -0.000 | -0.195 – 0.040 | -0.132 – 0.132 | 0.195 |
| SIRacquiring | 0.621 | 0.711 | 0.478 – 0.765 | 0.547 – 0.875 | <0.001 |
| DASSdep | 0.023 | 0.026 | -0.157 – 0.203 | -0.179 – 0.231 | 0.802 |
| DASSanx | -0.034 | -0.039 | -0.204 – 0.135 | -0.229 – 0.152 | 0.687 |
| DASSstress | 0.128 | 0.141 | -0.113 – 0.370 | -0.125 – 0.408 | 0.295 |
| OCIRtotNH | -0.027 | -0.031 | -0.181 – 0.127 | -0.207 – 0.145 | 0.728 |
| Observations | 96 | ||||
| R2 / R2 adjusted | 0.599 / 0.576 | ||||
modelEffectSizes(HRS.SIR.mod.acquiring.Eng)
lm(formula = scale(HRS3) ~ scale(SIRacquiring) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 0))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 0.5521 1 0.0186 NA
scale(SIRacquiring) 24.0155 1 0.4520 0.3312
scale(DASSdep) 0.0204 1 0.0007 0.0003
scale(DASSanx) 0.0528 1 0.0018 0.0007
scale(DASSstress) 0.3590 1 0.0122 0.0050
scale(OCIRtotNH) 0.0393 1 0.0013 0.0005
Sum of squared errors (SSE): 29.1
Sum of squared total (SST): 72.5
HRS.SIR.mod.Span <- lm(scale(HRStot) ~ scale(SIRtot) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==1))
tab_model(HRS.SIR.mod.Span, digits = 3, show.std=T)
| Â | scale(HRStot) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | 0.146 | -0.000 | 0.024 – 0.268 | -0.120 – 0.120 | 0.020 |
| SIRtot | 0.320 | 0.316 | 0.110 – 0.530 | 0.109 – 0.522 | 0.003 |
| DASSdep | -0.006 | -0.006 | -0.258 – 0.247 | -0.256 – 0.245 | 0.965 |
| DASSanx | 0.120 | 0.119 | -0.159 – 0.398 | -0.158 – 0.396 | 0.395 |
| DASSstress | 0.200 | 0.198 | -0.048 – 0.447 | -0.047 – 0.444 | 0.112 |
| OCIRtotNH | 0.280 | 0.289 | 0.063 – 0.497 | 0.065 – 0.514 | 0.012 |
| Observations | 91 | ||||
| R2 / R2 adjusted | 0.687 / 0.668 | ||||
modelEffectSizes(HRS.SIR.mod.Span)
lm(formula = scale(HRStot) ~ scale(SIRtot) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 1))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 1.9277 1 0.0624 NA
scale(SIRtot) 3.1420 1 0.0978 0.0340
scale(DASSdep) 0.0007 1 0.0000 0.0000
scale(DASSanx) 0.2495 1 0.0085 0.0027
scale(DASSstress) 0.8780 1 0.0294 0.0095
scale(OCIRtotNH) 2.2391 1 0.0717 0.0242
Sum of squared errors (SSE): 29.0
Sum of squared total (SST): 92.5
HRS.SIR.mod.clutter.Span <- lm(scale(HRS1) ~ scale(SIRclutter) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==1))
tab_model(HRS.SIR.mod.clutter.Span, digits = 3, show.std=T)
| Â | scale(HRS1) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | 0.128 | -0.000 | -0.026 – 0.282 | -0.147 – 0.147 | 0.101 |
| SIRclutter | 0.312 | 0.299 | 0.056 – 0.568 | 0.053 – 0.544 | 0.018 |
| DASSdep | 0.126 | 0.121 | -0.191 – 0.443 | -0.184 – 0.427 | 0.432 |
| DASSanx | 0.196 | 0.190 | -0.159 – 0.552 | -0.154 – 0.534 | 0.276 |
| DASSstress | -0.095 | -0.092 | -0.408 – 0.217 | -0.394 – 0.210 | 0.545 |
| OCIRtotNH | 0.272 | 0.273 | 0.004 – 0.539 | 0.004 – 0.541 | 0.047 |
| Observations | 91 | ||||
| R2 / R2 adjusted | 0.528 / 0.501 | ||||
modelEffectSizes(HRS.SIR.mod.clutter.Span)
lm(formula = scale(HRS1) ~ scale(SIRclutter) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 1))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 1.4956 1 0.0314 NA
scale(SIRclutter) 3.1873 1 0.0645 0.0325
scale(DASSdep) 0.3384 1 0.0073 0.0035
scale(DASSanx) 0.6547 1 0.0140 0.0067
scale(DASSstress) 0.2007 1 0.0043 0.0020
scale(OCIRtotNH) 2.2130 1 0.0457 0.0226
Sum of squared errors (SSE): 46.2
Sum of squared total (SST): 98.0
HRS.SIR.mod.discarding.Span <- lm(scale(HRS2) ~ scale(SIRdiscarding) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==1))
tab_model(HRS.SIR.mod.discarding.Span, digits = 3, show.std=T)
| Â | scale(HRS2) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | 0.136 | -0.000 | -0.013 – 0.285 | -0.141 – 0.141 | 0.073 |
| SIRdiscarding | 0.259 | 0.246 | 0.050 – 0.469 | 0.048 – 0.445 | 0.016 |
| DASSdep | -0.171 | -0.164 | -0.480 – 0.137 | -0.458 – 0.131 | 0.273 |
| DASSanx | 0.260 | 0.249 | -0.077 – 0.596 | -0.073 – 0.572 | 0.128 |
| DASSstress | 0.425 | 0.406 | 0.123 – 0.728 | 0.117 – 0.695 | 0.006 |
| OCIRtotNH | 0.103 | 0.102 | -0.153 – 0.359 | -0.152 – 0.357 | 0.425 |
| Observations | 91 | ||||
| R2 / R2 adjusted | 0.567 / 0.541 | ||||
modelEffectSizes(HRS.SIR.mod.discarding.Span)
lm(formula = scale(HRS2) ~ scale(SIRdiscarding) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 1))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 1.6807 1 0.0373 NA
scale(SIRdiscarding) 3.1000 1 0.0667 0.0310
scale(DASSdep) 0.6209 1 0.0141 0.0062
scale(DASSanx) 1.2018 1 0.0270 0.0120
scale(DASSstress) 3.9813 1 0.0841 0.0398
scale(OCIRtotNH) 0.3271 1 0.0075 0.0033
Sum of squared errors (SSE): 43.3
Sum of squared total (SST): 100.0
HRS.SIR.mod.acquiring.Span <- lm(scale(HRS3) ~ scale(SIRacquiring) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==1))
tab_model(HRS.SIR.mod.acquiring.Span, digits = 3, show.std=T)
| Â | scale(HRS3) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | 0.133 | 0.000 | -0.020 – 0.286 | -0.145 – 0.145 | 0.087 |
| SIRacquiring | 0.298 | 0.282 | 0.053 – 0.542 | 0.050 – 0.514 | 0.018 |
| DASSdep | -0.144 | -0.137 | -0.464 – 0.175 | -0.441 – 0.167 | 0.372 |
| DASSanx | 0.155 | 0.148 | -0.192 – 0.503 | -0.184 – 0.481 | 0.377 |
| DASSstress | 0.322 | 0.307 | 0.011 – 0.632 | 0.011 – 0.603 | 0.042 |
| OCIRtotNH | 0.221 | 0.219 | -0.047 – 0.489 | -0.047 – 0.485 | 0.105 |
| Observations | 91 | ||||
| R2 / R2 adjusted | 0.545 / 0.518 | ||||
modelEffectSizes(HRS.SIR.mod.acquiring.Span)
lm(formula = scale(HRS3) ~ scale(SIRacquiring) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 1))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 1.6114 1 0.0340 NA
scale(SIRacquiring) 3.1398 1 0.0643 0.0313
scale(DASSdep) 0.4328 1 0.0094 0.0043
scale(DASSanx) 0.4237 1 0.0092 0.0042
scale(DASSstress) 2.2853 1 0.0476 0.0228
scale(OCIRtotNH) 1.4464 1 0.0307 0.0144
Sum of squared errors (SSE): 45.7
Sum of squared total (SST): 100.4
HRS.CIR.mod.Eng <- lm(scale(HRStot) ~ scale(CIRtot) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==0))
tab_model(HRS.CIR.mod.Eng, digits = 3, show.std=T)
| Â | scale(HRStot) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | -0.051 | 0.000 | -0.157 – 0.056 | -0.138 – 0.138 | 0.350 |
| CIRtot | 0.428 | 0.546 | 0.307 – 0.548 | 0.392 – 0.700 | <0.001 |
| DASSdep | -0.050 | -0.065 | -0.212 – 0.113 | -0.280 – 0.149 | 0.546 |
| DASSanx | 0.051 | 0.066 | -0.103 – 0.205 | -0.133 – 0.266 | 0.511 |
| DASSstress | 0.156 | 0.199 | -0.058 – 0.369 | -0.073 – 0.470 | 0.150 |
| OCIRtotNH | 0.127 | 0.167 | -0.009 – 0.263 | -0.012 – 0.347 | 0.067 |
| Observations | 96 | ||||
| R2 / R2 adjusted | 0.559 / 0.534 | ||||
modelEffectSizes(HRS.CIR.mod.Eng)
lm(formula = scale(HRStot) ~ scale(CIRtot) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 0))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 0.2365 1 0.0097 NA
scale(CIRtot) 13.2765 1 0.3555 0.2436
scale(DASSdep) 0.0982 1 0.0041 0.0018
scale(DASSanx) 0.1167 1 0.0048 0.0021
scale(DASSstress) 0.5628 1 0.0229 0.0103
scale(OCIRtotNH) 0.9177 1 0.0367 0.0168
Sum of squared errors (SSE): 24.1
Sum of squared total (SST): 54.5
HRS.CIR.mod.Span <- lm(scale(HRStot) ~ scale(CIRtot) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==1))
tab_model(HRS.CIR.mod.Span, digits = 3, show.std=T)
| Â | scale(HRStot) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | 0.153 | 0.000 | 0.024 – 0.283 | -0.128 – 0.128 | 0.021 |
| CIRtot | -0.005 | -0.005 | -0.163 – 0.153 | -0.163 – 0.153 | 0.950 |
| DASSdep | 0.017 | 0.017 | -0.253 – 0.287 | -0.251 – 0.284 | 0.902 |
| DASSanx | 0.183 | 0.182 | -0.112 – 0.478 | -0.112 – 0.475 | 0.222 |
| DASSstress | 0.246 | 0.243 | -0.018 – 0.509 | -0.018 – 0.504 | 0.067 |
| OCIRtotNH | 0.417 | 0.430 | 0.200 – 0.634 | 0.206 – 0.655 | <0.001 |
| Observations | 92 | ||||
| R2 / R2 adjusted | 0.639 / 0.618 | ||||
modelEffectSizes(HRS.CIR.mod.Span)
lm(formula = scale(HRStot) ~ scale(CIRtot) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 1))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 2.1580 1 0.0603 NA
scale(CIRtot) 0.0016 1 0.0000 0.0000
scale(DASSdep) 0.0060 1 0.0002 0.0001
scale(DASSanx) 0.5927 1 0.0173 0.0064
scale(DASSstress) 1.3447 1 0.0384 0.0144
scale(OCIRtotNH) 5.7037 1 0.1450 0.0612
Sum of squared errors (SSE): 33.6
Sum of squared total (SST): 93.2
HRS.CIR.item.Eng <- lm(scale(HRS1) ~ scale(CIRtot) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==0))
tab_model(HRS.CIR.item.Eng, digits = 3, show.std=T)
| Â | scale(HRS1) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | -0.071 | -0.000 | -0.181 – 0.040 | -0.143 – 0.143 | 0.208 |
| CIRtot | 0.526 | 0.667 | 0.401 – 0.651 | 0.508 – 0.826 | <0.001 |
| DASSdep | -0.143 | -0.188 | -0.312 – 0.025 | -0.408 – 0.033 | 0.095 |
| DASSanx | 0.112 | 0.144 | -0.048 – 0.272 | -0.062 – 0.349 | 0.168 |
| DASSstress | 0.154 | 0.194 | -0.068 – 0.375 | -0.086 – 0.475 | 0.171 |
| OCIRtotNH | -0.061 | -0.080 | -0.202 – 0.080 | -0.265 – 0.105 | 0.392 |
| Observations | 96 | ||||
| R2 / R2 adjusted | 0.531 / 0.505 | ||||
modelEffectSizes(HRS.CIR.item.Eng)
lm(formula = scale(HRS1) ~ scale(CIRtot) + scale(DASSdep) + scale(DASSanx) +
scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 0))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 0.4616 1 0.0175 NA
scale(CIRtot) 20.0778 1 0.4369 0.3637
scale(DASSdep) 0.8211 1 0.0308 0.0149
scale(DASSanx) 0.5550 1 0.0210 0.0101
scale(DASSstress) 0.5468 1 0.0207 0.0099
scale(OCIRtotNH) 0.2124 1 0.0081 0.0038
Sum of squared errors (SSE): 25.9
Sum of squared total (SST): 55.2
HRS.CIR.item.Span <- lm(scale(HRS1) ~ scale(CIRtot) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==1))
tab_model(HRS.CIR.item.Span, digits = 3, show.std=T)
| Â | scale(HRS1) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | 0.130 | 0.000 | -0.028 – 0.287 | -0.151 – 0.151 | 0.105 |
| CIRtot | 0.080 | 0.077 | -0.112 – 0.272 | -0.109 – 0.264 | 0.410 |
| DASSdep | 0.113 | 0.109 | -0.214 – 0.440 | -0.207 – 0.425 | 0.495 |
| DASSanx | 0.297 | 0.288 | -0.060 – 0.654 | -0.058 – 0.634 | 0.102 |
| DASSstress | -0.067 | -0.064 | -0.386 – 0.252 | -0.372 – 0.243 | 0.678 |
| OCIRtotNH | 0.364 | 0.366 | 0.101 – 0.627 | 0.102 – 0.631 | 0.007 |
| Observations | 92 | ||||
| R2 / R2 adjusted | 0.497 / 0.467 | ||||
modelEffectSizes(HRS.CIR.item.Span)
lm(formula = scale(HRS1) ~ scale(CIRtot) + scale(DASSdep) + scale(DASSanx) +
scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 1))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 1.5413 1 0.0303 NA
scale(CIRtot) 0.3927 1 0.0079 0.0040
scale(DASSdep) 0.2690 1 0.0054 0.0027
scale(DASSanx) 1.5654 1 0.0308 0.0160
scale(DASSstress) 0.0994 1 0.0020 0.0010
scale(OCIRtotNH) 4.3395 1 0.0809 0.0443
Sum of squared errors (SSE): 49.3
Sum of squared total (SST): 98.0
HRS.OCIR.mod.Eng <- lm(scale(HRStot) ~ scale(OCIRhoard) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==0))
tab_model(HRS.OCIR.mod.Eng, digits = 3, show.std=T)
| Â | scale(HRStot) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | -0.059 | 0.000 | -0.159 – 0.042 | -0.130 – 0.130 | 0.250 |
| OCIRhoard | 0.502 | 0.662 | 0.380 – 0.623 | 0.502 – 0.822 | <0.001 |
| DASSdep | -0.008 | -0.011 | -0.161 – 0.145 | -0.212 – 0.191 | 0.918 |
| DASSanx | 0.142 | 0.184 | -0.005 – 0.289 | -0.006 – 0.374 | 0.058 |
| DASSstress | 0.012 | 0.015 | -0.197 – 0.221 | -0.250 – 0.281 | 0.908 |
| OCIRtotNH | 0.047 | 0.063 | -0.084 – 0.179 | -0.111 – 0.236 | 0.475 |
| Observations | 96 | ||||
| R2 / R2 adjusted | 0.609 / 0.587 | ||||
modelEffectSizes(HRS.OCIR.mod.Eng)
lm(formula = scale(HRStot) ~ scale(OCIRhoard) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 0))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 0.3170 1 0.0147 NA
scale(OCIRhoard) 16.0240 1 0.4291 0.2940
scale(DASSdep) 0.0026 1 0.0001 0.0000
scale(DASSanx) 0.8734 1 0.0394 0.0160
scale(DASSstress) 0.0032 1 0.0001 0.0001
scale(OCIRtotNH) 0.1217 1 0.0057 0.0022
Sum of squared errors (SSE): 21.3
Sum of squared total (SST): 54.5
HRS.OCIR.mod.Span <- lm(scale(HRStot) ~ scale(OCIRhoard) + scale(DASSdep) + scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data=filter(HRSdat, HRSlang==1))
tab_model(HRS.OCIR.mod.Span, digits = 3, show.std=T)
| Â | scale(HRStot) | ||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Beta | CI | standardized CI | p |
| (Intercept) | 0.164 | -0.000 | 0.039 – 0.289 | -0.123 – 0.123 | 0.011 |
| OCIRhoard | 0.323 | 0.329 | 0.088 – 0.558 | 0.089 – 0.569 | 0.008 |
| DASSdep | 0.009 | 0.009 | -0.248 – 0.266 | -0.246 – 0.263 | 0.947 |
| DASSanx | 0.226 | 0.225 | -0.058 – 0.511 | -0.058 – 0.507 | 0.118 |
| DASSstress | 0.200 | 0.198 | -0.054 – 0.455 | -0.053 – 0.450 | 0.121 |
| OCIRtotNH | 0.145 | 0.150 | -0.134 – 0.425 | -0.139 – 0.439 | 0.305 |
| Observations | 92 | ||||
| R2 / R2 adjusted | 0.668 / 0.649 | ||||
modelEffectSizes(HRS.OCIR.mod.Span)
lm(formula = scale(HRStot) ~ scale(OCIRhoard) + scale(DASSdep) +
scale(DASSanx) + scale(DASSstress) + scale(OCIRtotNH), data = filter(HRSdat,
HRSlang == 1))
Coefficients
SSR df pEta-sqr dR-sqr
(Intercept) 2.4631 1 0.0737 NA
scale(OCIRhoard) 2.6814 1 0.0797 0.0288
scale(DASSdep) 0.0016 1 0.0001 0.0000
scale(DASSanx) 0.8999 1 0.0282 0.0097
scale(DASSstress) 0.8827 1 0.0277 0.0095
scale(OCIRtotNH) 0.3837 1 0.0122 0.0041
Sum of squared errors (SSE): 31.0
Sum of squared total (SST): 93.2
HRSdif.beta <- lordif(HRSdat[c(108:112)], HRSdat[,25], criterion = "Beta",beta.change = .05, minCell = 5)
datatable(HRSdif.beta$stats, extensions = c('FixedColumns','FixedHeader'), options = list(pageLength=10, dom = 'tip', scrollX = TRUE, scrollY=TRUE, fixedHeader=TRUE, fixedColumns = list(leftColumns = 2),
initComplete = JS("
function(settings, json) {
$(this.api().table().header()).css({
'background-color': '#000',
'color': '#fff'
});
}")
))
The McFadden’s beta of .0686 indicates the presence of DIF for item 1. Examining the chi square and pseudo-R2 values, it appears that there is a trend toward uniform DIF for this item.
Notably, all items had the number of reponse options reduced from 9 to 7 due to sparseness.
plot.lordif(HRSdif.beta, labels = c("English", "Spanish"))