Detalles:
Descripción:
Grafico de lineas
Describe
Tabla PM por sensor:
| Sensor | Media | Desviacion Estandar | Mediana | PM Minimo | PM Maximo | Rango | Asimetria | Kurtosis | SE |
|---|---|---|---|---|---|---|---|---|---|
| D15 | 3.40 | 0.879 | 3 | 1 | 6 | 5 | 0.0964 | -0.5593 | 0.0197 |
| D16 | 3.03 | 0.873 | 3 | 1 | 6 | 5 | 0.2467 | -0.0713 | 0.0196 |
| D17 | 2.49 | 0.947 | 2 | 1 | 5 | 4 | 0.4054 | -0.3426 | 0.0212 |
| REF | 3.20 | 1.040 | 3 | 1 | 6 | 5 | -0.0186 | -0.4179 | 0.0233 |
Correlacion entre sensores
Descomposicion de series de tiempo aditivas
Descomposicion de series de tiempo aditivas
Descomposicion de series de tiempo aditivas
Descomposicion de series de tiempo aditivas
La función de autocorrelación se define como la correlación cruzada de la señal consigo misma. La función de autocorrelación resulta de gran utilidad para encontrar patrones repetitivos dentro de una señal, como la periodicidad de una señal enmascarada bajo el ruido o para identificar la frecuencia fundamental de una señal que no contiene dicha componente, pero aparecen numerosas frecuencias armónicas de esta.
Los procesos de raíz unitaria, autorregresivos, de tendencia estacionaria y los Modelos de Medias Móviles; son ejemplos de procesos con autocorrelación
Autocorrelation, also known as serial correlation, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals.
Different fields of study define autocorrelation differently, and not all of these definitions are equivalent. In some fields, the term is used interchangeably with autocovariance.
Unit root processes, trend stationary processes, autoregressive processes, and moving average processes are specific forms of processes with autocorrelation.