## Loading required package: ggplot2
## Loading required package: forecast
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Loading required package: fma
## Loading required package: expsmooth
Do the exercises 8.1, 8.2, 8.3, 8.5., 8.6, 8.7 in Hyndman.
Please submit both your Rpubs link as well as attach the .rmd file with your code.
The figures indicate that the data are white noise because the ACF plots appear to fall inside the critical bands (though for X2, some of the extreme points might be touching the bands.)
The blue lines represent the 9% confidence interval, which differ depending upon the amount of data. A larger number observations gives a smaller critical value (series X3) while a smaller number of observations gives a larger critical value (X1).
Because it is white noise, there should be no discernable pattern. The values on each lag fall below the critical values, which differ based upon the amount of data.
ibmclose).The ACF plot indicates very high autocorrelation values, well above the critical value. Thus is because, barring unusual market behavior, the absolute price of a stock tomorrow is somewhat close to the price today (lag 1), and a bit less close on each succeeding day (higher lags.) This is why the ACF values are all high, and slowly declining.
What is interesting in finance is whether the price of the stock will go up or go down from one day to the next. Thus, the net change (which is obrainable by differencing) will result in a series which does not exhibit the strong autocorrelation as the raw price series.
Because the first lag on the PACF chart is nearly 1, this indicates a non-stationary process which should be differenced in order to obtain a stationarity.
ibmclose_ndiffs <- ndiffs(ibmclose)
print(paste("Number of differences suggested for ibmclose:", ibmclose_ndiffs))## [1] "Number of differences suggested for ibmclose: 1"
Stationarity can be achieved through such differencing. Sometimes only a single difference is necessary; sometimes additional differencing is required.
We can see that we are now close to achieving stationarity because the lags on the ACF and PACF plots are inside the critical value bands (narrowly exceeding in in a few cases.)
##
## Box-Ljung test
##
## data: usnetelec
## X-squared = 52.549, df = 1, p-value = 4.196e-13
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
usnetelec_lambda <- round(BoxCox.lambda(usnetelec),5)
print(paste("Lambda for usnetelec: ", usnetelec_lambda))## [1] "Lambda for usnetelec: 0.51677"
usnetelec_BC <- BoxCox(usnetelec, usnetelec_lambda)
ggtsdisplay(usnetelec_BC, main = paste("usnetelec - BoxCox lambda = ",
usnetelec_lambda))The graph of the Box-Cox transformed data shows strong autocorrelation.
##
## Box-Ljung test
##
## data: usnetelec_BC
## X-squared = 52.191, df = 1, p-value = 5.035e-13
Because the p-value is still low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
usnetelec_BC_ndiffs <- ndiffs(usnetelec_BC)
print(paste("Number of differences suggested for usnetelec_BC:", usnetelec_BC_ndiffs))## [1] "Number of differences suggested for usnetelec_BC: 2"
ggtsdisplay(diff(usnetelec_BC), main=paste("usnetelec - BoxCox lambda = ",
usnetelec_lambda," - first difference"))ggtsdisplay(diff(diff(usnetelec_BC)), main=paste("usnetelec - BoxCox lambda = ",
usnetelec_lambda," - second difference"))#### Diff data series
usnetelec_BC %>% diff() -> usnetelec_BC_d1
ggtsdisplay(usnetelec_BC_d1, main = paste("usnetelec - BoxCox lambda = ",
usnetelec_lambda, "first difference"))##
## Box-Ljung test
##
## data: usnetelec_BC_d1
## X-squared = 2.6132, df = 1, p-value = 0.106
Because the p-value is high, we FAIL TO REJECT the null hypothesis, which is that the data are independent (i.e., no serial correlation.) So, first-differenced usnetelec data can be thought of as a white noise series.
##
## KPSS Test for Level Stationarity
##
## data: usnetelec
## KPSS Level = 0.6153, Truncation lag parameter = 10, p-value = 0.02125
## Warning in kpss.test(usnetelec, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: usnetelec
## KPSS Trend = 0.098058, Truncation lag parameter = 10, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 10 lags.
##
## Value of test-statistic is: 0.6153
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 10 lags.
##
## Value of test-statistic is: 0.0981
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
##
## KPSS Test for Level Stationarity
##
## data: usnetelec_BC
## KPSS Level = 0.61487, Truncation lag parameter = 10, p-value = 0.02128
##
## KPSS Test for Trend Stationarity
##
## data: usnetelec_BC
## KPSS Trend = 0.15177, Truncation lag parameter = 10, p-value = 0.04519
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 10 lags.
##
## Value of test-statistic is: 0.6149
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 10 lags.
##
## Value of test-statistic is: 0.1518
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(usnetelec_BC_d1, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: usnetelec_BC_d1
## KPSS Level = 0.33954, Truncation lag parameter = 10, p-value = 0.1
## Warning in kpss.test(usnetelec_BC_d1, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: usnetelec_BC_d1
## KPSS Trend = 0.074231, Truncation lag parameter = 10, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 10 lags.
##
## Value of test-statistic is: 0.3395
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 10 lags.
##
## Value of test-statistic is: 0.0742
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
##
## Box-Ljung test
##
## data: usgdp
## X-squared = 233.07, df = 1, p-value < 2.2e-16
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
## [1] "Lambda for usgdp: 0.36635"
usgdp_BC <- BoxCox(usgdp, usgdp_lambda)
ggtsdisplay(usgdp_BC, main = paste("usgdp - BoxCox lambda = ",usgdp_lambda))The graph of the Box-Cox transformed data shows strong autocorrelation.
##
## Box-Ljung test
##
## data: usgdp_BC
## X-squared = 233.76, df = 1, p-value < 2.2e-16
Because the p-value is still low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
usgdp_nsdiffs <- nsdiffs(usgdp)
print(paste("Number of SEASONAL differences suggested for usgdp (raw data):", usgdp_nsdiffs))## [1] "Number of SEASONAL differences suggested for usgdp (raw data): 0"
usgdp_ndiffs <- ndiffs(usgdp)
print(paste("Number of differences suggested for usgdp (raw data):", usgdp_ndiffs))## [1] "Number of differences suggested for usgdp (raw data): 2"
usgdp_BC_nsdiffs <- nsdiffs(usgdp_BC)
print(paste("Number of SEASONAL differences suggested for usgdp_BC:", usgdp_BC_nsdiffs))## [1] "Number of SEASONAL differences suggested for usgdp_BC: 0"
usgdp_BC_ndiffs <- ndiffs(usgdp_BC)
print(paste("Number of differences suggested for usgdp_BC:", usgdp_BC_ndiffs))## [1] "Number of differences suggested for usgdp_BC: 1"
ggtsdisplay(diff(usgdp_BC), main=paste("usgdp - BoxCox lambda = ",
usgdp_lambda," - first difference"))The “nsdiffs” and “ndiffs” functions suggest that no seasonal differencing is required, while the raw data series requires 2 diffs and the Box-Cox transformed series requires 1 diff. However, the plots do not agree, as there still appears to be evidence of autocorrelation.
In particular, there does seem to be autocorrelation at lag 12, suggesting that seasonality does exist.
ggtsdisplay(diff(diff(usgdp_BC)), main=paste("usgdp - BoxCox lambda = ",
usgdp_lambda," - second difference"))This shows autocorrelation, too.
usgdp_BC %>% diff() -> usgdp_BC_d1
ggtsdisplay(usgdp_BC_d1, main = paste("usgdp - BoxCox lambda = ",
usgdp_lambda, "first difference"))The first differenced series shows autocorrelation on lags 1, 2, 12
##
## Box-Ljung test
##
## data: usgdp_BC_d1
## X-squared = 23.874, df = 1, p-value = 1.029e-06
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
usgdp_BC_d1 %>% diff() -> usgdp_BC_d2
ggtsdisplay(usgdp_BC_d2, main = paste("usgdp - BoxCox lambda = ",
usgdp_lambda, "second difference"))The second differenced series shows autocorrelation on lags 1, 2, 12
##
## Box-Ljung test
##
## data: usgdp_BC_d2
## X-squared = 41.715, df = 1, p-value = 1.056e-10
Because the p-value is low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
usgdp_BC_d2 %>% diff() -> usgdp_BC_d3
ggtsdisplay(usgdp_BC_d3, main = paste("usgdp - BoxCox lambda = ",
usgdp_lambda, "third difference"))The third differenced series still shows some autocorrelation
##
## Box-Ljung test
##
## data: usgdp_BC_d3
## X-squared = 105.37, df = 1, p-value < 2.2e-16
Because the p-value is low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
## Warning in kpss.test(usgdp, "Level", lshort = F): p-value smaller than printed
## p-value
##
## KPSS Test for Level Stationarity
##
## data: usgdp
## KPSS Level = 1.6321, Truncation lag parameter = 14, p-value = 0.01
## Warning in kpss.test(usgdp, "Trend", lshort = F): p-value smaller than printed
## p-value
##
## KPSS Test for Trend Stationarity
##
## data: usgdp
## KPSS Trend = 0.39501, Truncation lag parameter = 14, p-value = 0.01
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 14 lags.
##
## Value of test-statistic is: 1.6321
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 14 lags.
##
## Value of test-statistic is: 0.395
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(usgdp_BC, "Level", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: usgdp_BC
## KPSS Level = 1.68, Truncation lag parameter = 14, p-value = 0.01
## Warning in kpss.test(usgdp_BC, "Trend", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: usgdp_BC
## KPSS Trend = 0.24107, Truncation lag parameter = 14, p-value = 0.01
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 14 lags.
##
## Value of test-statistic is: 1.68
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 14 lags.
##
## Value of test-statistic is: 0.2411
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(usgdp_BC_d1, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: usgdp_BC_d1
## KPSS Level = 0.23949, Truncation lag parameter = 14, p-value = 0.1
## Warning in kpss.test(usgdp_BC_d1, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: usgdp_BC_d1
## KPSS Trend = 0.034928, Truncation lag parameter = 14, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 14 lags.
##
## Value of test-statistic is: 0.2395
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 14 lags.
##
## Value of test-statistic is: 0.0349
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(usgdp_BC_d2, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: usgdp_BC_d2
## KPSS Level = 0.035084, Truncation lag parameter = 14, p-value = 0.1
## Warning in kpss.test(usgdp_BC_d2, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: usgdp_BC_d2
## KPSS Trend = 0.034844, Truncation lag parameter = 14, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 14 lags.
##
## Value of test-statistic is: 0.0351
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 14 lags.
##
## Value of test-statistic is: 0.0348
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(usgdp_BC_d3, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: usgdp_BC_d3
## KPSS Level = 0.043205, Truncation lag parameter = 14, p-value = 0.1
## Warning in kpss.test(usgdp_BC_d3, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: usgdp_BC_d3
## KPSS Trend = 0.03361, Truncation lag parameter = 14, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 14 lags.
##
## Value of test-statistic is: 0.0432
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 14 lags.
##
## Value of test-statistic is: 0.0336
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
##
## Box-Ljung test
##
## data: mcopper
## X-squared = 539.54, df = 1, p-value < 2.2e-16
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
mcopper_lambda <- round(BoxCox.lambda(mcopper),5)
print(paste("Lambda for mcopper: ", mcopper_lambda))## [1] "Lambda for mcopper: 0.1919"
mcopper_BC <- BoxCox(mcopper, mcopper_lambda)
ggtsdisplay(mcopper_BC, main = paste("mcopper - BoxCox lambda = ",mcopper_lambda))The graph of the Box-Cox transformed data shows strong autocorrelation.
##
## Box-Ljung test
##
## data: mcopper_BC
## X-squared = 550.42, df = 1, p-value < 2.2e-16
Because the p-value is still low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
mcopper_nsdiffs <- nsdiffs(mcopper)
print(paste("Number of SEASONAL differences suggested for mcopper (raw data):", mcopper_nsdiffs))## [1] "Number of SEASONAL differences suggested for mcopper (raw data): 0"
mcopper_ndiffs <- ndiffs(mcopper)
print(paste("Number of differences suggested for mcopper (raw data):", mcopper_ndiffs))## [1] "Number of differences suggested for mcopper (raw data): 1"
The graphs show that differencing without the Box-Cox transformation is not adequate to achieve stationarity.
mcopper_BC_nsdiffs <- nsdiffs(mcopper_BC)
print(paste("Number of SEASONAL differences suggested for mcopper_BC:", mcopper_BC_nsdiffs))## [1] "Number of SEASONAL differences suggested for mcopper_BC: 0"
mcopper_BC_ndiffs <- ndiffs(mcopper_BC)
print(paste("Number of differences suggested for mcopper_BC:", mcopper_BC_ndiffs))## [1] "Number of differences suggested for mcopper_BC: 1"
ggtsdisplay(diff(mcopper_BC), main=paste("mcopper - BoxCox lambda = ",
mcopper_lambda," - first difference"))The “nsdiffs” and “ndiffs” functions suggest that no seasonal differencing is required. The raw data series and the Box-Cox transformed series each require 1 diff.
However, the plots do not agree, as there still appears to be evidence of autocorrelation, but the result following the Box-Cox transformation looks better.
ggtsdisplay(diff(diff(mcopper_BC)), main=paste("mcopper - BoxCox lambda = ",
mcopper_lambda," - second difference"))This looks worse than the result of first differences.
mcopper_BC %>% diff() -> mcopper_BC_d1
ggtsdisplay(mcopper_BC_d1, main = paste("mcopper - BoxCox lambda = ",
mcopper_lambda, "first difference"))The first differenced series shows autocorrelation on lags 1, and a few of the subsequent lags breach the critical value.
##
## Box-Ljung test
##
## data: mcopper_BC_d1
## X-squared = 57.518, df = 1, p-value = 3.353e-14
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
mcopper_BC_d1 %>% diff() -> mcopper_BC_d2
ggtsdisplay(mcopper_BC_d2, main = paste("mcopper - BoxCox lambda = ",
mcopper_lambda, "second difference"))The second differenced series shows autocorrelation on lags 1 and 2
##
## Box-Ljung test
##
## data: mcopper_BC_d2
## X-squared = 37.178, df = 1, p-value = 1.078e-09
Because the p-value is low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
mcopper_BC_d2 %>% diff() -> mcopper_BC_d3
ggtsdisplay(mcopper_BC_d3, main = paste("mcopper - BoxCox lambda = ",
mcopper_lambda, "third difference"))The third differenced series still shows some autocorrelation
##
## Box-Ljung test
##
## data: mcopper_BC_d3
## X-squared = 140.77, df = 1, p-value < 2.2e-16
Because the p-value is low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
## Warning in kpss.test(mcopper, "Level", lshort = F): p-value smaller than printed
## p-value
##
## KPSS Test for Level Stationarity
##
## data: mcopper
## KPSS Level = 2.1648, Truncation lag parameter = 18, p-value = 0.01
## Warning in kpss.test(mcopper, "Trend", lshort = F): p-value greater than printed
## p-value
##
## KPSS Test for Trend Stationarity
##
## data: mcopper
## KPSS Trend = 0.068656, Truncation lag parameter = 18, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 18 lags.
##
## Value of test-statistic is: 2.1648
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 18 lags.
##
## Value of test-statistic is: 0.0687
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(mcopper_BC, "Level", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: mcopper_BC
## KPSS Level = 2.5113, Truncation lag parameter = 18, p-value = 0.01
## Warning in kpss.test(mcopper_BC, "Trend", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: mcopper_BC
## KPSS Trend = 0.2472, Truncation lag parameter = 18, p-value = 0.01
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 18 lags.
##
## Value of test-statistic is: 2.5113
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 18 lags.
##
## Value of test-statistic is: 0.2472
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(mcopper_BC_d1, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: mcopper_BC_d1
## KPSS Level = 0.062912, Truncation lag parameter = 18, p-value = 0.1
## Warning in kpss.test(mcopper_BC_d1, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: mcopper_BC_d1
## KPSS Trend = 0.057247, Truncation lag parameter = 18, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 18 lags.
##
## Value of test-statistic is: 0.0629
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 18 lags.
##
## Value of test-statistic is: 0.0572
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
mcopper data stationary.##
## Box-Ljung test
##
## data: enplanements
## X-squared = 249.22, df = 1, p-value < 2.2e-16
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
enplanements_lambda <- round(BoxCox.lambda(enplanements),5)
print(paste("Lambda for enplanements: ", enplanements_lambda))## [1] "Lambda for enplanements: -0.22695"
enplanements_BC <- BoxCox(enplanements, enplanements_lambda)
ggtsdisplay(enplanements_BC, main = paste("enplanements - BoxCox lambda = ",
enplanements_lambda))The graph of the Box-Cox transformed data still shows strong autocorrelation and seasonality, but the variance has been dampened.
##
## Box-Ljung test
##
## data: enplanements_BC
## X-squared = 253.7, df = 1, p-value < 2.2e-16
Because the p-value is still low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
enplanements_nsdiffs <- nsdiffs(enplanements)
print(paste("Number of SEASONAL differences suggested for enplanements (raw data):",
enplanements_nsdiffs))## [1] "Number of SEASONAL differences suggested for enplanements (raw data): 1"
enplanements_ndiffs <- ndiffs(enplanements)
print(paste("Number of differences suggested for enplanements (raw data):",
enplanements_ndiffs))## [1] "Number of differences suggested for enplanements (raw data): 1"
ggtsdisplay(diff(enplanements,lag=3),
main=paste("enplanements (raw) - quarterly seasonal difference"))ggtsdisplay(diff(enplanements,lag=12),
main=paste("enplanements (raw) - annual seasonal difference"))ggtsdisplay(diff(diff(enplanements,lag=3),lag=1),
main=paste("enplanements (raw) - quarterly seasonal difference + first diff"))ggtsdisplay(diff(diff(enplanements,lag=12),lag=1),
main=paste("enplanements (raw) - annual seasonal difference + first diff"))The graphs show that differencing without the Box-Cox transformation is not adequate to achieve stationarit
enplanements_BC_nsdiffs <- nsdiffs(enplanements_BC)
print(paste("Number of SEASONAL differences suggested for enplanements_BC:", enplanements_BC_nsdiffs))## [1] "Number of SEASONAL differences suggested for enplanements_BC: 1"
enplanements_BC_ndiffs <- ndiffs(enplanements_BC)
print(paste("Number of differences suggested for enplanements_BC:",
enplanements_BC_ndiffs))## [1] "Number of differences suggested for enplanements_BC: 1"
ggtsdisplay(diff(enplanements_BC),
main=paste("enplanements - BoxCox lambda = ",
enplanements_lambda," - first difference"))ggtsdisplay(diff(enplanements,lag=3),
main=paste("enplanements - BoxCox lambda = ",
enplanements_lambda," - quarterly seasonal diff"))ggtsdisplay(diff(enplanements,lag=12),
main=paste("enplanements - BoxCox lambda = ",
enplanements_lambda," - annual seasonal diff"))ggtsdisplay(diff(diff(enplanements,lag=3),lag=1),
main=paste("enplanements - BoxCox lambda = ",
enplanements_lambda," - quarterly seasonal diff + first diff"))ggtsdisplay(diff(diff(enplanements,lag=12),lag=1),
main=paste("enplanements - BoxCox lambda = ",
enplanements_lambda," - annual seasonal diff + first diff"))The “nsdiffs” and “ndiffs” functions indicate that seasonal differencing is required.
Above, both quarterly and annual seasonality have been examined.
The raw data series and the Box-Cox transformed series each require 1 diff.
The result of Box-Cox transformation, annual seasonal differencing, plus regular differencing, seems to provide the best result.
enplanements_BC %>% diff(lag=12) %>% diff(lag=1) -> enplanements_BC_s1_d1
ggtsdisplay(enplanements_BC_s1_d1,
main = paste("enplanements - BoxCox lambda = ",
enplanements_lambda, "annual seasonal diff + first diff"))The first differenced series shows autocorrelation on lags 1, and a few of the subsequent lags breach the critical value.
##
## Box-Ljung test
##
## data: enplanements_BC_s1_d1
## X-squared = 29.562, df = 1, p-value = 5.417e-08
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
## Warning in kpss.test(enplanements, "Level", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: enplanements
## KPSS Level = 1.7486, Truncation lag parameter = 15, p-value = 0.01
## Warning in kpss.test(enplanements, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: enplanements
## KPSS Trend = 0.070584, Truncation lag parameter = 15, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 15 lags.
##
## Value of test-statistic is: 1.7486
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 15 lags.
##
## Value of test-statistic is: 0.0706
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(enplanements_BC, "Level", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: enplanements_BC
## KPSS Level = 1.714, Truncation lag parameter = 15, p-value = 0.01
##
## KPSS Test for Trend Stationarity
##
## data: enplanements_BC
## KPSS Trend = 0.18061, Truncation lag parameter = 15, p-value = 0.02327
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 15 lags.
##
## Value of test-statistic is: 1.714
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 15 lags.
##
## Value of test-statistic is: 0.1806
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(enplanements_BC_s1_d1, "Level", lshort = F): p-value
## greater than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: enplanements_BC_s1_d1
## KPSS Level = 0.074682, Truncation lag parameter = 15, p-value = 0.1
## Warning in kpss.test(enplanements_BC_s1_d1, "Trend", lshort = F): p-value
## greater than printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: enplanements_BC_s1_d1
## KPSS Trend = 0.03852, Truncation lag parameter = 15, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 15 lags.
##
## Value of test-statistic is: 0.0747
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 15 lags.
##
## Value of test-statistic is: 0.0385
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
##
## Box-Ljung test
##
## data: visitors
## X-squared = 195.64, df = 1, p-value < 2.2e-16
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
visitors_lambda <- round(BoxCox.lambda(visitors),5)
print(paste("Lambda for visitors: ", visitors_lambda))## [1] "Lambda for visitors: 0.27752"
visitors_BC <- BoxCox(visitors, visitors_lambda)
ggtsdisplay(visitors_BC, main = paste("visitors - BoxCox lambda = ",
visitors_lambda))The graph of the Box-Cox transformed data still shows strong autocorrelation and seasonality, but the variance has been dampened.
##
## Box-Ljung test
##
## data: visitors_BC
## X-squared = 205.74, df = 1, p-value < 2.2e-16
Because the p-value is still low, the Null hypothesis is again REJECTED in factor of the alternative (Autocorrelation exists.)
visitors_nsdiffs <- nsdiffs(visitors)
print(paste("Number of SEASONAL differences suggested for visitors (raw data):",
visitors_nsdiffs))## [1] "Number of SEASONAL differences suggested for visitors (raw data): 1"
visitors_ndiffs <- ndiffs(visitors)
print(paste("Number of differences suggested for visitors (raw data):",
visitors_ndiffs))## [1] "Number of differences suggested for visitors (raw data): 1"
ggtsdisplay(diff(diff(visitors,lag=12),lag=1),
main=paste("visitors (raw) - annual seasonal difference + first diff"))The graphs show that differencing without the Box-Cox transformation is not adequate to achieve stationarity
visitors_BC_nsdiffs <- nsdiffs(visitors_BC)
print(paste("Number of SEASONAL differences suggested for visitors_BC:", visitors_BC_nsdiffs))## [1] "Number of SEASONAL differences suggested for visitors_BC: 1"
visitors_BC_ndiffs <- ndiffs(visitors_BC)
print(paste("Number of differences suggested for visitors_BC:",
visitors_BC_ndiffs))## [1] "Number of differences suggested for visitors_BC: 1"
ggtsdisplay(diff(visitors_BC),
main=paste("visitors - BoxCox lambda = ",
visitors_lambda," - first difference"))ggtsdisplay(diff(visitors,lag=12),
main=paste("visitors - BoxCox lambda = ",
visitors_lambda," - annual seasonal diff"))ggtsdisplay(diff(diff(visitors,lag=12),lag=1),
main=paste("visitors - BoxCox lambda = ",
visitors_lambda," - annual seasonal diff + first diff"))The “nsdiffs” and “ndiffs” functions indicate that seasonal differencing is required.
The raw data series and the Box-Cox transformed series each require 1 diff.
The result of Box-Cox transformation, annual seasonal differencing, plus regular differencing, seems to provide the best result.
visitors_BC %>% diff(lag=12) %>% diff(lag=1) -> visitors_BC_s1_d1
ggtsdisplay(visitors_BC_s1_d1,
main = paste("visitors - BoxCox lambda = ",
visitors_lambda, "annual seasonal diff + first diff"))The first differenced series shows autocorrelation on lags 1, and a few of the subsequent lags breach the critical value.
##
## Box-Ljung test
##
## data: visitors_BC_s1_d1
## X-squared = 21.804, df = 1, p-value = 3.02e-06
Because the p-value is low, the Null hypothesis is REJECTED in factor of the alternative (Autocorrelation exists.)
## Warning in kpss.test(visitors, "Level", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: visitors
## KPSS Level = 1.6864, Truncation lag parameter = 14, p-value = 0.01
##
## KPSS Test for Trend Stationarity
##
## data: visitors
## KPSS Trend = 0.15852, Truncation lag parameter = 14, p-value = 0.03956
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 14 lags.
##
## Value of test-statistic is: 1.6864
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 14 lags.
##
## Value of test-statistic is: 0.1585
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(visitors_BC, "Level", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: visitors_BC
## KPSS Level = 1.652, Truncation lag parameter = 14, p-value = 0.01
## Warning in kpss.test(visitors_BC, "Trend", lshort = F): p-value smaller than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: visitors_BC
## KPSS Trend = 0.28285, Truncation lag parameter = 14, p-value = 0.01
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 14 lags.
##
## Value of test-statistic is: 1.652
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 14 lags.
##
## Value of test-statistic is: 0.2828
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
## Warning in kpss.test(visitors_BC_s1_d1, "Level", lshort = F): p-value greater
## than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: visitors_BC_s1_d1
## KPSS Level = 0.032281, Truncation lag parameter = 14, p-value = 0.1
## Warning in kpss.test(visitors_BC_s1_d1, "Trend", lshort = F): p-value greater
## than printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: visitors_BC_s1_d1
## KPSS Trend = 0.032061, Truncation lag parameter = 14, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 14 lags.
##
## Value of test-statistic is: 0.0323
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 14 lags.
##
## Value of test-statistic is: 0.0321
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
retail data (from Exercise 3 in Section 2.10), find the appropriate order of differencing (after transformation if necessary) to obtain stationary data.mycode <- "A3349396W"
mytitle <- "[Monthly Turnover;Total(State);Total(Industry)]"
mymain <- paste(mycode,mytitle)
myts <- readxl::read_excel("retail.xlsx", skip=1)[,mycode] %>%
ts(frequency=12, start=c(1982,4))
ggtsdisplay(myts,main=mymain)##
## Box-Ljung test
##
## data: myts
## X-squared = 343.06, df = 1, p-value < 2.2e-16
## Warning in kpss.test(myts, "Level", lshort = F): p-value smaller than printed p-
## value
##
## KPSS Test for Level Stationarity
##
## data: myts
## KPSS Level = 2.2987, Truncation lag parameter = 16, p-value = 0.01
## Warning in kpss.test(myts, "Trend", lshort = F): p-value smaller than printed p-
## value
##
## KPSS Test for Trend Stationarity
##
## data: myts
## KPSS Trend = 0.56755, Truncation lag parameter = 16, p-value = 0.01
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 16 lags.
##
## Value of test-statistic is: 2.2987
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 16 lags.
##
## Value of test-statistic is: 0.5676
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
myts_nsdiffs <- nsdiffs(myts)
print(paste("Number of SEASONAL differences suggested for",mymain,":", myts_nsdiffs))## [1] "Number of SEASONAL differences suggested for A3349396W [Monthly Turnover;Total(State);Total(Industry)] : 1"
myts_ndiffs <- ndiffs(myts)
print(paste("Number of SEASONAL differences suggested for",mymain,":", myts_ndiffs))## [1] "Number of SEASONAL differences suggested for A3349396W [Monthly Turnover;Total(State);Total(Industry)] : 1"
## [1] "Lambda for A3349396W [Monthly Turnover;Total(State);Total(Industry)] : 0.1919"
myts_BC <- BoxCox(myts, myts_lambda)
mymain_BC <- paste(mycode,"- BoxCox lambda = ",myts_lambda)
ggtsdisplay(myts_BC, main = mymain_BC)##
## Box-Ljung test
##
## data: myts_BC
## X-squared = 354.56, df = 1, p-value < 2.2e-16
## Warning in kpss.test(myts_BC, "Level", lshort = F): p-value smaller than printed
## p-value
##
## KPSS Test for Level Stationarity
##
## data: myts_BC
## KPSS Level = 2.3362, Truncation lag parameter = 16, p-value = 0.01
##
## KPSS Test for Trend Stationarity
##
## data: myts_BC
## KPSS Trend = 0.13707, Truncation lag parameter = 16, p-value = 0.06654
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 16 lags.
##
## Value of test-statistic is: 2.3362
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 16 lags.
##
## Value of test-statistic is: 0.1371
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
myts_BC_nsdiffs <- nsdiffs(myts_BC)
print(paste("Number of SEASONAL differences suggested for",mymain_BC,":", myts_BC_nsdiffs))## [1] "Number of SEASONAL differences suggested for A3349396W - BoxCox lambda = 0.21417 : 1"
myts_BC_ndiffs <- ndiffs(myts_BC)
print(paste("Number of SEASONAL differences suggested for",mymain_BC,":", myts_BC_ndiffs))## [1] "Number of SEASONAL differences suggested for A3349396W - BoxCox lambda = 0.21417 : 1"
myts_BC_s1_d1 <- myts_BC %>% diff(lag=12) %>% diff(lag=1)
mymain_BC_diffs <- paste(mymain_BC,"Seasonal diff + first diff")
ggtsdisplay(myts_BC_s1_d1,
main=mymain_BC_diffs)## Warning in kpss.test(myts_BC_s1_d1, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: myts_BC_s1_d1
## KPSS Level = 0.028024, Truncation lag parameter = 16, p-value = 0.1
## Warning in kpss.test(myts_BC_s1_d1, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: myts_BC_s1_d1
## KPSS Trend = 0.027518, Truncation lag parameter = 16, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 16 lags.
##
## Value of test-statistic is: 0.028
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 16 lags.
##
## Value of test-statistic is: 0.0275
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
with \(\phi_1=0.6\) and \(\sigma^2=1\). The process starts with \(y_1=0\).
AR1 <- function(phi)
{
y <- ts(numeric(100))
e <- rnorm(100)
for(i in 2:100)
y[i] <- phi*y[i-1] + e[i]
return(y)
}
phi_1 <- 0.60
ggtsdisplay(AR1(phi_1),main=paste("AR(1) series, phi_1=",phi_1)) ### b) Produce a time plot for the series. How does the plot change as you change \(\phi_1\)?
set.seed(12345)
AR1_stats_results = numeric()
phi_seq <- seq(from=-1,to=1,by = 0.1)
for (phi_1 in phi_seq) {
AR1_series <- AR1(phi_1)
AR1_stats <- c(Phi_1 = phi_1, summary(AR1_series),StDev=sd(AR1_series),SdDiff=sd(diff(AR1_series)))
AR1_main <- paste("AR(1) series, phi_1=",phi_1)
ggtsdisplay(AR1_series,main=AR1_main)
#print(AR1_stats)
AR1_stats_results <- rbind(AR1_stats_results,AR1_stats)
}## Phi_1 Min. 1st Qu. Median Mean 3rd Qu.
## AR1_stats -1.0 -4.810328 -1.5376074 0.025282049 0.137653162 1.7864250
## AR1_stats -0.9 -4.158772 -1.3747743 -0.028912600 0.013688760 1.2591337
## AR1_stats -0.8 -3.154382 -1.1887112 -0.077140387 -0.007503376 1.1200676
## AR1_stats -0.7 -3.410915 -0.7810173 0.084770362 0.117672941 1.0720622
## AR1_stats -0.6 -1.936819 -0.5516114 -0.103689483 -0.034933100 0.5488060
## AR1_stats -0.5 -2.776452 -0.8055119 0.046569953 0.049196008 0.8492201
## AR1_stats -0.4 -3.364833 -0.7039008 -0.008652004 0.007795845 0.8300460
## AR1_stats -0.3 -1.989033 -0.5633470 0.153928011 0.149565675 0.6968589
## AR1_stats -0.2 -2.578660 -0.7023718 0.091290686 -0.013764807 0.7590138
## AR1_stats -0.1 -2.560052 -0.6760593 -0.238899537 -0.171245734 0.4731843
## AR1_stats 0.0 -2.402710 -0.8855039 -0.268306656 -0.201570142 0.4703282
## AR1_stats 0.1 -2.357408 -0.4635547 0.150371587 0.098657753 0.8104388
## AR1_stats 0.2 -2.229606 -0.6793502 0.090601453 -0.028728454 0.7184421
## AR1_stats 0.3 -3.449043 -0.9202869 -0.307662728 -0.278832152 0.3961435
## AR1_stats 0.4 -3.509097 -0.5253735 0.078577201 0.198240741 0.8810261
## AR1_stats 0.5 -2.225483 -1.0705274 -0.020806114 -0.128432926 0.6265709
## AR1_stats 0.6 -3.656013 -0.8997050 -0.114304599 -0.099464438 0.7050210
## AR1_stats 0.7 -4.371388 -0.5770992 0.213402964 0.097913167 0.9130002
## AR1_stats 0.8 -3.470953 -1.2666898 -0.419136558 -0.417538751 0.5820123
## AR1_stats 0.9 -3.998703 -0.3161399 0.754792592 0.754857980 2.1362739
## AR1_stats 1.0 -8.094175 -4.0404369 -1.632484191 -1.463852356 1.1023804
## Max. StDev SdDiff
## AR1_stats 4.666069 2.3355689 4.532225
## AR1_stats 3.484262 1.6924696 3.223143
## AR1_stats 3.458808 1.4961145 2.826108
## AR1_stats 3.341460 1.3827348 2.563901
## AR1_stats 2.365774 0.9396446 1.577675
## AR1_stats 4.229266 1.2123269 2.077458
## AR1_stats 2.681672 1.2584885 2.275212
## AR1_stats 2.624459 0.9596337 1.427915
## AR1_stats 2.498753 0.9906810 1.612124
## AR1_stats 1.943005 0.9248660 1.306092
## AR1_stats 2.457074 0.9453084 1.400122
## AR1_stats 2.067448 1.0364809 1.282434
## AR1_stats 2.514284 1.0235093 1.263902
## AR1_stats 1.684784 0.9952520 1.273267
## AR1_stats 3.708281 1.1618359 1.192095
## AR1_stats 2.547435 1.1896935 1.214698
## AR1_stats 3.228343 1.2756715 1.097696
## AR1_stats 2.893791 1.2866680 1.150978
## AR1_stats 3.386849 1.4147713 1.026975
## AR1_stats 4.901704 1.9752239 1.046856
## AR1_stats 4.966340 3.2299537 1.005720
MA1 <- function(theta_1)
{
y <- ts(numeric(100))
e <- rnorm(100)
for(i in 2:100)
y[i] <- e[i] + theta_1*e[i-1]
return(y)
}
theta_1 <- 0.60
ggtsdisplay(MA1(theta_1),main=paste("MA(1) series, theta_1=",theta_1))set.seed(12345)
MA1_stats_results = numeric()
theta_seq <- seq(from=-1,to=1,by = 0.1)
for (theta_1 in theta_seq) {
MA1_series <- MA1(theta_1)
MA1_stats <- c(theta_1 = theta_1, summary(MA1_series),StDev=sd(MA1_series),SdDiff=sd(diff(MA1_series)))
MA1_main <- paste("MA(1) series, theta_1=",theta_1)
ggtsdisplay(MA1_series,main=MA1_main)
#print(MA1_stats)
MA1_stats_results <- rbind(MA1_stats_results,MA1_stats)
}## theta_1 Min. 1st Qu. Median Mean 3rd Qu.
## MA1_stats -1.0 -4.492009 -1.1930459 -0.008115974 -0.012800755 1.0423410
## MA1_stats -0.9 -3.438123 -0.8186108 -0.149618065 0.002403803 0.8154866
## MA1_stats -0.8 -2.984302 -0.7811010 -0.011340950 0.008833616 0.8580352
## MA1_stats -0.7 -2.963578 -0.5265045 0.004962544 0.049736692 0.8252867
## MA1_stats -0.6 -2.219001 -0.7707898 -0.073540232 -0.027025561 0.5586403
## MA1_stats -0.5 -2.956448 -0.7615168 0.202943008 0.044074542 0.8134004
## MA1_stats -0.4 -3.299380 -0.6885207 -0.015867014 0.015052916 0.7564226
## MA1_stats -0.3 -2.003957 -0.5314231 0.146578293 0.131302994 0.7055644
## MA1_stats -0.2 -2.576290 -0.7096066 0.099984501 -0.011679411 0.6775915
## MA1_stats -0.1 -2.481566 -0.6759008 -0.236799542 -0.168755851 0.4768884
## MA1_stats 0.0 -2.402710 -0.8855039 -0.268306656 -0.201570142 0.4703282
## MA1_stats 0.1 -2.363203 -0.4754717 0.151771071 0.098824380 0.8094831
## MA1_stats 0.2 -2.274544 -0.6830629 0.078845990 -0.028625444 0.7674243
## MA1_stats 0.3 -3.415573 -0.9011877 -0.258412367 -0.260718447 0.3876916
## MA1_stats 0.4 -3.381696 -0.4779428 0.080985451 0.163468653 0.7187999
## MA1_stats 0.5 -2.558856 -1.1446726 -0.146720887 -0.104500453 0.6942808
## MA1_stats 0.6 -3.771141 -0.8557957 -0.146433616 -0.056425331 0.6323674
## MA1_stats 0.7 -4.279108 -0.4368935 0.044567422 0.019592689 0.7057627
## MA1_stats 0.8 -3.745527 -0.9768702 -0.113807449 -0.125918865 0.7216140
## MA1_stats 0.9 -4.245927 -0.6990842 0.261715767 0.150833884 1.0473766
## MA1_stats 1.0 -3.493543 -1.1611192 -0.012198327 -0.123620590 0.8122150
## Max. StDev SdDiff
## MA1_stats 3.429784 1.5925282 2.743818
## MA1_stats 3.721981 1.3723823 2.386705
## MA1_stats 2.291511 1.1963768 2.047869
## MA1_stats 3.252309 1.2505515 2.180980
## MA1_stats 1.944725 0.9574078 1.554551
## MA1_stats 3.799719 1.1727331 1.957892
## MA1_stats 2.811955 1.2130408 2.134068
## MA1_stats 2.757477 0.9479098 1.396446
## MA1_stats 2.532845 0.9858267 1.598275
## MA1_stats 1.949466 0.9234721 1.303728
## MA1_stats 2.457074 0.9453084 1.400122
## MA1_stats 2.067448 1.0355752 1.281394
## MA1_stats 2.500290 1.0225437 1.272520
## MA1_stats 1.625555 1.0126370 1.303601
## MA1_stats 3.910220 1.1069485 1.186168
## MA1_stats 2.407064 1.1852027 1.301631
## MA1_stats 3.471755 1.2484914 1.253210
## MA1_stats 2.893791 1.2448962 1.329048
## MA1_stats 2.472278 1.2125560 1.258386
## MA1_stats 3.761269 1.4816009 1.518935
## MA1_stats 2.505968 1.3471470 1.426041
\(\phi_1=0.6\), \(\theta_1=0.6\), and \(\sigma^2=1\).
ARMA_1_1 <- function(phi_1, theta_1)
{
y <- ts(numeric(100))
e <- rnorm(100)
for(i in 2:100)
y[i] <- phi_1*y[i-1] + theta_1*e[i-1] + e[i]
return(y)
}
phi_1 <- 0.60
theta_1 <- 0.60
ARMA_1_1_result <- ARMA_1_1(phi_1,theta_1)
ggtsdisplay(ARMA_1_1_result,main=paste("ARMA(1,1) series, phi_1=", phi_1, ", theta_1=",theta_1))(Note that these parameters will give a non-stationary series.)
AR2 <- function(phi_1, phi_2)
{
y <- ts(numeric(100))
e <- rnorm(100)
for(i in 3:100)
y[i] <- phi_1*y[i-1] + phi_2*y[i-2] + e[i]
return(y)
}
phi_1 <- -0.80
phi_2 <- 0.30
AR2_result <- AR2(phi_1,phi_2)
ggtsdisplay(AR2_result,main=paste("AR(2) series, phi_1=", phi_1, ", phi_2=",phi_2))n=100
par(mfrow=c(2,1))
plot(ARMA_1_1_result[1:n], type="l", main="ARMA(1,1) - 100 observations",col="blue")
plot(AR2_result[1:n], type="l", main="AR(2) - 100 observations",col="red")The ARMA(1,1) model reverts to the mean (here, zero) while not wandering more than 2 or 3 units away, while the AR(2) model explodes in an oscillation around zero which grows dramatically.
While it may appear that this series initially remains very close to zero, the difference in the Y-axes masks this behavior for the AR(2) series.
By plotting just the earlier portion of the two series, it is easier to see their behavior:
n=50
par(mfrow=c(2,1))
plot(ARMA_1_1_result[1:n], type="l", main="ARMA(1,1) - 50 observations",col="blue")
plot(AR2_result[1:n], type="l", main="AR(2) - 50 observations",col="red")n=25
par(mfrow=c(2,1))
plot(ARMA_1_1_result[1:n], type="l", main="ARMA(1,1) - 25 observations",col="blue")
plot(AR2_result[1:n], type="l", main="AR(2) - 25 observations",col="red")It’s around the 25th observation when the AR(2) series begins its explosive oscillations.
wmurders, the number of women murdered each year (per 100,000 standard population) in the United States.## Warning in kpss.test(wmurders, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: wmurders
## KPSS Level = 0.28623, Truncation lag parameter = 10, p-value = 0.1
##
## KPSS Test for Trend Stationarity
##
## data: wmurders
## KPSS Trend = 0.1591, Truncation lag parameter = 10, p-value = 0.03909
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 10 lags.
##
## Value of test-statistic is: 0.2862
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 10 lags.
##
## Value of test-statistic is: 0.1591
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
Level passes, but Trend fails.
## Warning in kpss.test(wmurders_d1, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: wmurders_d1
## KPSS Level = 0.33134, Truncation lag parameter = 10, p-value = 0.1
## Warning in kpss.test(wmurders_d1, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: wmurders_d1
## KPSS Trend = 0.11631, Truncation lag parameter = 10, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 10 lags.
##
## Value of test-statistic is: 0.3313
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 10 lags.
##
## Value of test-statistic is: 0.1163
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
The tests pass, but why did ndiffs return 2?
wmurders_d2 <- wmurders_d1 %>% diff()
wmurders_d2 %>% ggtsdisplay(main="wmurders (second differences)")This looks even worse…
## Warning in kpss.test(wmurders_d2, "Level", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Level Stationarity
##
## data: wmurders_d2
## KPSS Level = 0.12299, Truncation lag parameter = 10, p-value = 0.1
## Warning in kpss.test(wmurders_d2, "Trend", lshort = F): p-value greater than
## printed p-value
##
## KPSS Test for Trend Stationarity
##
## data: wmurders_d2
## KPSS Trend = 0.10938, Truncation lag parameter = 10, p-value = 0.1
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 10 lags.
##
## Value of test-statistic is: 0.123
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: tau with 10 lags.
##
## Value of test-statistic is: 0.1094
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.119 0.146 0.176 0.216
This passes, too, but it’s unclear why we need the second difference.
Let’s assume the model is ARIMA(p,2,q).
Because of the spikes in the ACF and the PACF at lag=1, the model may be ARIMA(1,2,0) or ARIMA(0,2,1).
Alternatively, it might be ARIMA(1,2,1), but the text indicates that you can’t determine both (p,q) nonzero from looking at the graphs. However, auto.arima indicates that it should be ARIMA(1,2,1), so let’s use that.
No, because a constant would cause a drift, and there is no drift visible in the data.
In general, ARIMA(1,2,1): \((1-\phi_1B) (1-B)^2 y_{t} = c + (1 + \theta_1 B )\varepsilon_t\), but we have decided to omit the constant, so \((1-\phi_1B) (1-B)^2 y_{t} = (1 + \theta_1 B )\varepsilon_t\)
## Series: wmurders
## ARIMA(1,2,1)
##
## Coefficients:
## ar1 ma1
## -0.2434 -0.8261
## s.e. 0.1553 0.1143
##
## sigma^2 estimated as 0.04632: log likelihood=6.44
## AIC=-6.88 AICc=-6.39 BIC=-0.97
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,2,1)
## Q* = 12.419, df = 8, p-value = 0.1335
##
## Model df: 2. Total lags used: 10
Because the p-value is high, we FAIL TO REJECT the null hypothesis, which is that the data are independent (i.e., no serial correlation.)
Additionally, the ACF bars all fall within the critical bands.
Therefore, the model is satisfactory.
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 2005 2.470660 2.194836 2.746484 2.048824 2.892496
## 2006 2.363106 1.986351 2.739862 1.786908 2.939304
## 2007 2.252833 1.765391 2.740276 1.507354 2.998313
auto.arima() give the same model you have chosen? If not, which model do you think is better?## Series: wmurders
## ARIMA(1,2,1)
##
## Coefficients:
## ar1 ma1
## -0.2434 -0.8261
## s.e. 0.1553 0.1143
##
## sigma^2 estimated as 0.04632: log likelihood=6.44
## AIC=-6.88 AICc=-6.39 BIC=-0.97
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## 2005 2.470660 2.194836 2.746484 2.048824 2.892496
## 2006 2.363106 1.986351 2.739862 1.786908 2.939304
## 2007 2.252833 1.765391 2.740276 1.507354 2.998313
The model selected is the same.