Statistical Methods for Reliability Data

Chapter 2 - Models, Censoring, and Likelihood for Failure-Time Data

W. Q. Meeker and L. A. Escobar

20 May 2020

OVERVIEW

This Chapter Explains…

2.1.1 - Failure Time Distribution Functions

Overview of Probability Functions

install.packages('teachingApps')
if(!'devtools'%in%installed.packages()[,1]) {
  
   install.packages('devtools')

  }

devtools::install_github('Auburngrads/teachingApps')
teachingApps::teachingApp('probability_functions')

Figure 2.1 Distribution Plots For \(T \sim WEIB(1.7,1)\)

par(family = 'serif',font = 2)

library(package = SMRD)

distribution.plot('Weibull',
                  shape = c(1.7), 
                  scale = 1,
                  prob.range = c(.000001,.99))

2.2 - MODELS FOR DISCRETE DATA FROM A CONTINUOUS PROCESS

Understanding failure

2.2.1 - Multinomial Failure Time Model

Real world reliability data

Multinomial Reliability Estimation

Figure 2.5 - Relationship between \(\pi_{i}\) and \(F(t)\)

par(family = 'serif', font = 2)

y <- function(t) { pweibull(t,shape = 1.7,scale = 1) }

curve(pweibull(x,shape=1.7,scale=1),lwd = 2,
      xlab = 't', ylab = 'f(t)', 
      from = 0, to = 3,
      las = 1)

segments(c(0,.5,1,1.5,2,rep(0,5)),
         c(rep(0,5),y(c(0.01,.5,1,1.5,2))),
         c(0,.5,1,1.5,2,rep(2.2,5)),
         rep(y(c(0.01,.5,1,1.5,2)),2),
         lty=rep(2,10),col=rep(1,10))

text(2.3,(y(0.5)+y(.01))/2,expression(pi[1]),cex=1.25)
text(2.3,(y(1.0)+y(0.5))/2,expression(pi[2]),cex=1.25)
text(2.3,(y(1.5)+y(1.0))/2,expression(pi[3]),cex=1.25)
text(2.3,(y(2.0)+y(1.5))/2,expression(pi[4]),cex=1.25)

mtext(side = 3,
      expression('Figure 2.5 - Graphical interpretation of the relationship between the '*pi[i]*' values and F('*t[i]*')'),
      font = 2,line = 2)
Figure 2.5 - Graphical interpretation of the relationship between the $\pi_{i}$ values and $F(t_{i})$

Figure 2.5 - Graphical interpretation of the relationship between the \(\pi_{i}\) values and \(F(t_{i})\)

Multinomial Survival Function

\[ S(t_i)=P(T>t_i)=1-F(t_i)=\sum_{j=i+1}^{m+1}\pi_j \]

Multinomial Failure Time Model - In-Class Example

Conditional Multinomial Distribution Function

2.2.2 - Multinomial CDF

Multinomial Survival Function and CDF

2.2.2 - Multinomial CDF - Example 2.8

Computing of \(F(t_i), S(t_i), \pi_i\) and \(p_i\)

\(i\) \(t_{i}\) \(F(t_{i})\) \(S(t_{i})\) \(\pi_{i}\) \(p_{i}\) \(1-p_{i}\)
0 0.0 0.000 1.000
1 0.5 0.265 0.735 0.265 0.265 0.735
2 1.0 0.632 0.368 0.367 0.500 0.500
3 1.5 0.864 0.136 0.231 0.629 0.371
4 2.0 0.961 .0388 .0967 0.715 0.285
5 \(\infty\) 1.000 .0000 .0388 1.000 0.000
1.000

2.3 - CENSORING

Types of censoring

library(SMRD)

lfp1370.ld <- 
frame.to.ld(SMRD::lfp1370,
            response.column = 1, 
            censor.column = 2, 
            case.weight.column = 3,
            time.units = 'Hours')

turbine.ld <- 
frame.to.ld(SMRD::turbine,
            response.column = 1, 
            censor.column = 2,
            case.weight.column = 3,
            time.units = 'Hundreds of Hours')

par(mfrow = c(1,2),family = 'serif',font = 2)

event.plot(lfp1370.ld)
event.plot(turbine.ld) 
Event plots for the `lfp1370` (left) and `turbine` (right) datasets

Event plots for the lfp1370 (left) and turbine (right) datasets

2.3.1 - Censoring Mechanisms

Types of Right Censoring

Time censored data may be further divided according to

2.3.2 - Important Assumptions On Censoring Mechanisms

Independent vs. Dependent Censoring

2.3.2 - Important Assumptions On Censoring Mechanisms - Example

Independent vs. Dependent Censoring

2.4 - LIKELIHOOD

The Likelihood Function \(\mathscr{L}(\theta|\mathbf{y})\) And The PDF \(f(\mathbf{y}|\theta)\)

Observing data patterns

teachingApps::teachingApp('data_patterns')

What’s The Point?

2.4.1 - Likelihood-Based Statistical Methods

Background

\[ \begin{aligned} \boldsymbol{\hat{\theta^*}} &= \underset{\boldsymbol{\theta} \in \boldsymbol \Theta}{\text{arg}\;\min} \bigg(-\log\bigg[\prod_{i=1}^{n}\Pr(y_{i}|\boldsymbol{\theta})\bigg]\bigg)\\\\ &= \underset{\boldsymbol{\theta} \in \boldsymbol \Theta}{\text{arg}\;\min} \bigg(-\sum_{i=1}^{n}\log\bigg[\Pr(y_{i}|\boldsymbol{\theta})\bigg]\bigg)\\\\ \end{aligned} \]

Maximum likelihood estimation

2.4.3 - Contributions To The Likelihood Function

par(family = 'serif', font = 2)

curve(dweibull(x, shape = 1.7, scale = 1),
      lwd = 2,
      las = 1, 
      xlim = c(0,2.5),
      xlab = 'Time (t)',
      ylab = 'f(t)',
      main = 'Figure 2.6 - Likelihood contributions for different kids of censoring')

polygon(x = c(seq(0,.5,.01),.5),
        y = c(dweibull(seq(0,.5,.01),shape = 1.7,scale = 1),0),
        col = 1)
polygon(x = c(1,seq(1,1.5,.01),1.5),
        y = c(0,dweibull(seq(1,1.5,.01),shape = 1.7,scale = 1),0),
        col = 1)
polygon(x = c(2,seq(2,2.4,.01),2.4),
        y = c(0,dweibull(seq(2,2.4,.01),shape = 1.7,scale = 1),0),
        col = 1)

text(x = c(.16,1.3,2.2),
     y = c(.75,.65,.15),
     labels = c('Left Censoring',
                'Interval Censoring',
                'Right Censoring'))

Censoring type Range Likelihood
\(d_{i}\) observations interval censored in \(t_{i-1}\) and \(t_{i}\) \(t_{i-1}<T\le t_{i}\) \([F(t_{i})-F(t_{i-1})]^{d_{i}}\)
\(l_{i}\) observations left censored at \(t_{i}\) \(T\le t_{i}\) \([F(t_{i})]^{l_{i}}\)
\(r_{i}\) observations right censored at \(t_{i}\) \(T>t_{i}\) \([1-F(t_{i})]^{r_{i}}\)

2.4.4 - Form Of The Constant Term \(C\)

2.4.5 - Likelihood Terms For General Reliability Data

2.4.6 - Other Likelihood Terms