Load all the necessary Libraries

Presentation breakdown:

  1. Probability

    Random number generation

    Probability calculations

  2. Statistics and Calculus

    Descriptive and Inferential Statistics

    Linear Algebra and Correlation

    Calculus-Based Probability & Statistics

  3. Modeling

Problem 1

Random number generation

Statistics


Random number generation

Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of:

\[\mu=\sigma=(N+1)/2\]

##          X        Y
## 1 3.769895 7.849050
## 2 3.319053 4.227292
## 3 5.970902 7.721962
## 4 1.507448 2.475432
## 5 5.216944 1.687728

Probability


Probability

Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable.

## [1] 5.472943
##      25% 
## 1.769673

Calculate as a minimum the below probabilities a through c. Interpret the meaning of all probabilities.

c. P(X<x | X>y)

## [1] 0.457877

The probability is 0.4579 or 45.79%


Investigate whether P(X>x and Y>y) = P(X > x) * P(Y > y) by building a table and evaluating the marginal and joint probabilities.

##              x/y <=1st quartile >1st quartile Total
## 1 <=1st quartile           1255          3745  5000
## 2  >1st quartile           1245          3755  5000
## 3          Total           2500          7500 10000
## [1] 0.3755

So P(AB) = 0.3755

## [1] 0.375

So, P(X>x and Y>y)=P(X>x)P(Y>y) is TRUE.


Check to see if independence holds by using Fisher’s Exact Test and the Chi Square Test.

## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  Matrix
## X-squared = 0.0432, df = 1, p-value = 0.8353
## 
##  Fisher's Exact Test for Count Data
## 
## data:  Matrix
## p-value = 0.8354
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  0.9222661 1.1076494
## sample estimates:
## odds ratio 
##   1.010724

What is the difference between the two?

Chi Square Test applies to approximations assuming samples are large while Fisher’s Exact Test runs an exact procedure for small sized samples.

Which is most appropriate?

In this case both have approximately equal p-values. Due to the large p-value in both tests we conclude that the independence holds.

Problem 2

. Descriptive and Inferential Statistics . Linear Algebra and Correlation. . Calculus-Based Probability & Statistics


Load Data:

You are to register for Kaggle.com (free) and compete in the House Prices: Advanced Regression Techniques competition. https://www.kaggle.com/c/house-prices-advanced-regression-techniques .
I want you to do the following.

## [1] 1460   81

Descriptive and Inferential Statistics.


Descriptive and Inferential Statistics.

Provide univariate descriptive statistics and appropriate plots for the training data set.

Descriptive statistics on LotArea

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1300    7554    9478   10517   11602  215245
##    vars    n     mean      sd median trimmed     mad  min    max  range
## X1    1 1460 10516.83 9981.26 9478.5 9563.28 2962.23 1300 215245 213945
##     skew kurtosis     se
## X1 12.18   202.26 261.22

There are 1460 obsevarions with LotArea ranging from 1300SF to 215,245SF. The average LotArea is 10,516SF.

The distribution of the LotArea is right skewed with a alot of outliers.


Descriptive statistics on SalePrice

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   34900  129975  163000  180921  214000  755000
##    vars    n     mean      sd median  trimmed     mad   min    max  range
## X1    1 1460 180921.2 79442.5 163000 170783.3 56338.8 34900 755000 720100
##    skew kurtosis      se
## X1 1.88      6.5 2079.11

There are 1460 obsevarions with SalePrice ranging from $34,900 to $755,000. The average SalePrice is $180,921.

The distribution of the SalePrice is right skewed with a couple of outliers.


Descriptive statistics on GarageArea

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0   334.5   480.0   473.0   576.0  1418.0
##    vars    n   mean    sd median trimmed    mad min  max range skew
## X1    1 1460 472.98 213.8    480  469.81 177.91   0 1418  1418 0.18
##    kurtosis  se
## X1      0.9 5.6

There are 1460 obsevarions with GarageArea ranging from 0SF to 1,418SF. The average GarageArea is 473SF.

BoxPlot and Histograms for the GarageArea

The distribution of the GarageArea is right skewed with a few observable outliers.


Provide a scatterplot matrix for at least two of the independent variables and the dependent variable.

From the observation there seem to be no correlation between the LotArea and the SalePrice but there seem to be some form of correlation between the GarageArea and the SalePrice. This is not surprising since a large garage would most likely be associated with a large house which is poised to directly affect the saleprice.


Derive a correlation matrix for any three quantitative variables in the dataset.

##              LotArea GarageArea SalePrice
## LotArea    1.0000000  0.1804028 0.2638434
## GarageArea 0.1804028  1.0000000 0.6234314
## SalePrice  0.2638434  0.6234314 1.0000000

From the corellation matrix we can conclude that there exist strong to weak correlation between the three variables SalePrice has a strong corellation with GarageArea and a weak corellation with LotArea with corellation coefficient of 0.62 and 0.26 respectively. LotArea and GarageArea have weak corellation with each other with a correlation coefficieant of 0.18.


Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval.

## 
##  Pearson's product-moment correlation
## 
## data:  corDF$LotArea and corDF$SalePrice
## t = 10.445, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.2323391 0.2947946
## sample estimates:
##       cor 
## 0.2638434
## 
##  Pearson's product-moment correlation
## 
## data:  corDF$GarageArea and corDF$SalePrice
## t = 30.446, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.6024756 0.6435283
## sample estimates:
##       cor 
## 0.6234314
## 
##  Pearson's product-moment correlation
## 
## data:  corDF$LotArea and corDF$GarageArea
## t = 7.0034, df = 1458, p-value = 3.803e-12
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.1477356 0.2126767
## sample estimates:
##       cor 
## 0.1804028

Discuss the meaning of your analysis.

The tests for pairwise corelation using pearson method estimated the association between the paired samples and computed a test of the value being zero. All the p-value are less than the significant level alpha = 0.08 and we thus conclude that the pairwise variables are correlated with respective correlation coefficient shown.

Would you be worried about familywise error? Why or why not?

Due to the fact that there are many variables in the train dataset that might have a huge impact on the correlation of the peirwise variables Yes i would be worried. Its possible to reject TRUE NULL Hypothesis unless all other variables are considered.


Linear Algebra and Correlation.


Linear Algebra and Correlation.

Invert your correlation matrix from above. This is known as the precision matrix and contains variance inflation factors on the diagonal.

##              LotArea GarageArea SalePrice
## LotArea    1.0000000  0.1804028 0.2638434
## GarageArea 0.1804028  1.0000000 0.6234314
## SalePrice  0.2638434  0.6234314 1.0000000
##                LotArea  GarageArea  SalePrice
## LotArea     1.07530074 -0.02799273 -0.2662594
## GarageArea -0.02799273  1.63649778 -1.0128585
## SalePrice  -0.26625940 -1.01285847  1.7016986

Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix.

##            LotArea GarageArea SalePrice
## LotArea          1          0         0
## GarageArea       0          1         0
## SalePrice        0          0         1
##            LotArea GarageArea SalePrice
## LotArea          1          0         0
## GarageArea       0          1         0
## SalePrice        0          0         1

Both of the above operations produce an identity matrix.


Conduct LU decomposition on the matrix.

Correlation Matrix

## 3 x 3 Matrix of class "dtrMatrix" (unitriangular)
##      [,1]      [,2]      [,3]     
## [1,] 1.0000000         .         .
## [2,] 0.1804028 1.0000000         .
## [3,] 0.2638434 0.5952044 1.0000000
## 3 x 3 Matrix of class "dtrMatrix"
##      [,1]      [,2]      [,3]     
## [1,] 1.0000000 0.1804028 0.2638434
## [2,]         . 0.9674548 0.5758334
## [3,]         .         . 0.5876481

Precision Matrix

## 3 x 3 Matrix of class "dtrMatrix" (unitriangular)
##      [,1]        [,2]        [,3]       
## [1,]  1.00000000           .           .
## [2,] -0.02603247  1.00000000           .
## [3,] -0.24761389 -0.62343144  1.00000000
## 3 x 3 Matrix of class "dtrMatrix"
##      [,1]        [,2]        [,3]       
## [1,]  1.07530074 -0.02799273 -0.26625940
## [2,]           .  1.63576906 -1.01978986
## [3,]           .           .  1.00000000

Multiply the Upper triangulat matrix with the lower triangular matrix

## 3 x 3 Matrix of class "dgeMatrix"
##           [,1]      [,2]      [,3]
## [1,] 1.0000000 0.1804028 0.2638434
## [2,] 0.1804028 1.0000000 0.6234314
## [3,] 0.2638434 0.6234314 1.0000000
## 3 x 3 Matrix of class "dgeMatrix"
##             [,1]        [,2]       [,3]
## [1,]  1.07530074 -0.02799273 -0.2662594
## [2,] -0.02799273  1.63649778 -1.0128585
## [3,] -0.26625940 -1.01285847  1.7016986

Multiplication of L & U returns their respective original matrix as expected.


Calculus-Based Probability & Statistics.


Calculus-Based Probability & Statistics.

Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary.

## [1] 0


Then load the MASS package and run fitdistr to fit an exponential probability density function.
(See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ).

##        rate    
##   2.114254e-03 
##  (5.533255e-05)

Find the optimal value of lambda for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, lambda)).

##        rate 
## 0.002114254

Plot a histogram and compare it with a histogram of your original variable.

Visually from the histograms the simulated data is more heavily skewed to the right while the observed data is more concentrated to the centre.


Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF).

##         5%        95% 
##   23.98491 1369.76609

Also generate a 95% confidence interval from the empirical data, assuming normality.

## [1] 468.7896
## [1] 477.1706

The 95% confidence interval lies between 468.79 and 477.17.


Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.

##    5%   95% 
##   0.0 850.1

Modeling.

Build some type of multiple regression model and submit your model to the competition board.
Provide your complete model summary and results with analysis.

Training Data and Model Generation

##        Id           MSSubClass       MSZoning     LotFrontage    
##  Min.   :   1.0   Min.   : 20.0   C (all):  10   Min.   : 21.00  
##  1st Qu.: 365.8   1st Qu.: 20.0   FV     :  65   1st Qu.: 59.00  
##  Median : 730.5   Median : 50.0   RH     :  16   Median : 69.00  
##  Mean   : 730.5   Mean   : 56.9   RL     :1151   Mean   : 70.05  
##  3rd Qu.:1095.2   3rd Qu.: 70.0   RM     : 218   3rd Qu.: 80.00  
##  Max.   :1460.0   Max.   :190.0                  Max.   :313.00  
##                                                  NA's   :259     
##     LotArea        Street      Alley      LotShape  LandContour
##  Min.   :  1300   Grvl:   6   Grvl:  50   IR1:484   Bnk:  63   
##  1st Qu.:  7554   Pave:1454   Pave:  41   IR2: 41   HLS:  50   
##  Median :  9478               NA's:1369   IR3: 10   Low:  36   
##  Mean   : 10517                           Reg:925   Lvl:1311   
##  3rd Qu.: 11602                                                
##  Max.   :215245                                                
##                                                                
##   Utilities      LotConfig    LandSlope   Neighborhood   Condition1  
##  AllPub:1459   Corner : 263   Gtl:1382   NAmes  :225   Norm   :1260  
##  NoSeWa:   1   CulDSac:  94   Mod:  65   CollgCr:150   Feedr  :  81  
##                FR2    :  47   Sev:  13   OldTown:113   Artery :  48  
##                FR3    :   4              Edwards:100   RRAn   :  26  
##                Inside :1052              Somerst: 86   PosN   :  19  
##                                          Gilbert: 79   RRAe   :  11  
##                                          (Other):707   (Other):  15  
##    Condition2     BldgType      HouseStyle   OverallQual    
##  Norm   :1445   1Fam  :1220   1Story :726   Min.   : 1.000  
##  Feedr  :   6   2fmCon:  31   2Story :445   1st Qu.: 5.000  
##  Artery :   2   Duplex:  52   1.5Fin :154   Median : 6.000  
##  PosN   :   2   Twnhs :  43   SLvl   : 65   Mean   : 6.099  
##  RRNn   :   2   TwnhsE: 114   SFoyer : 37   3rd Qu.: 7.000  
##  PosA   :   1                 1.5Unf : 14   Max.   :10.000  
##  (Other):   2                 (Other): 19                   
##   OverallCond      YearBuilt     YearRemodAdd    RoofStyle   
##  Min.   :1.000   Min.   :1872   Min.   :1950   Flat   :  13  
##  1st Qu.:5.000   1st Qu.:1954   1st Qu.:1967   Gable  :1141  
##  Median :5.000   Median :1973   Median :1994   Gambrel:  11  
##  Mean   :5.575   Mean   :1971   Mean   :1985   Hip    : 286  
##  3rd Qu.:6.000   3rd Qu.:2000   3rd Qu.:2004   Mansard:   7  
##  Max.   :9.000   Max.   :2010   Max.   :2010   Shed   :   2  
##                                                              
##     RoofMatl     Exterior1st   Exterior2nd    MasVnrType    MasVnrArea    
##  CompShg:1434   VinylSd:515   VinylSd:504   BrkCmn : 15   Min.   :   0.0  
##  Tar&Grv:  11   HdBoard:222   MetalSd:214   BrkFace:445   1st Qu.:   0.0  
##  WdShngl:   6   MetalSd:220   HdBoard:207   None   :864   Median :   0.0  
##  WdShake:   5   Wd Sdng:206   Wd Sdng:197   Stone  :128   Mean   : 103.7  
##  ClyTile:   1   Plywood:108   Plywood:142   NA's   :  8   3rd Qu.: 166.0  
##  Membran:   1   CemntBd: 61   CmentBd: 60                 Max.   :1600.0  
##  (Other):   2   (Other):128   (Other):136                 NA's   :8       
##  ExterQual ExterCond  Foundation  BsmtQual   BsmtCond    BsmtExposure
##  Ex: 52    Ex:   3   BrkTil:146   Ex  :121   Fa  :  45   Av  :221    
##  Fa: 14    Fa:  28   CBlock:634   Fa  : 35   Gd  :  65   Gd  :134    
##  Gd:488    Gd: 146   PConc :647   Gd  :618   Po  :   2   Mn  :114    
##  TA:906    Po:   1   Slab  : 24   TA  :649   TA  :1311   No  :953    
##            TA:1282   Stone :  6   NA's: 37   NA's:  37   NA's: 38    
##                      Wood  :  3                                      
##                                                                      
##  BsmtFinType1   BsmtFinSF1     BsmtFinType2   BsmtFinSF2     
##  ALQ :220     Min.   :   0.0   ALQ :  19    Min.   :   0.00  
##  BLQ :148     1st Qu.:   0.0   BLQ :  33    1st Qu.:   0.00  
##  GLQ :418     Median : 383.5   GLQ :  14    Median :   0.00  
##  LwQ : 74     Mean   : 443.6   LwQ :  46    Mean   :  46.55  
##  Rec :133     3rd Qu.: 712.2   Rec :  54    3rd Qu.:   0.00  
##  Unf :430     Max.   :5644.0   Unf :1256    Max.   :1474.00  
##  NA's: 37                      NA's:  38                     
##    BsmtUnfSF       TotalBsmtSF      Heating     HeatingQC CentralAir
##  Min.   :   0.0   Min.   :   0.0   Floor:   1   Ex:741    N:  95    
##  1st Qu.: 223.0   1st Qu.: 795.8   GasA :1428   Fa: 49    Y:1365    
##  Median : 477.5   Median : 991.5   GasW :  18   Gd:241              
##  Mean   : 567.2   Mean   :1057.4   Grav :   7   Po:  1              
##  3rd Qu.: 808.0   3rd Qu.:1298.2   OthW :   2   TA:428              
##  Max.   :2336.0   Max.   :6110.0   Wall :   4                       
##                                                                     
##  Electrical     X1stFlrSF      X2ndFlrSF     LowQualFinSF    
##  FuseA:  94   Min.   : 334   Min.   :   0   Min.   :  0.000  
##  FuseF:  27   1st Qu.: 882   1st Qu.:   0   1st Qu.:  0.000  
##  FuseP:   3   Median :1087   Median :   0   Median :  0.000  
##  Mix  :   1   Mean   :1163   Mean   : 347   Mean   :  5.845  
##  SBrkr:1334   3rd Qu.:1391   3rd Qu.: 728   3rd Qu.:  0.000  
##  NA's :   1   Max.   :4692   Max.   :2065   Max.   :572.000  
##                                                              
##    GrLivArea     BsmtFullBath     BsmtHalfBath        FullBath    
##  Min.   : 334   Min.   :0.0000   Min.   :0.00000   Min.   :0.000  
##  1st Qu.:1130   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:1.000  
##  Median :1464   Median :0.0000   Median :0.00000   Median :2.000  
##  Mean   :1515   Mean   :0.4253   Mean   :0.05753   Mean   :1.565  
##  3rd Qu.:1777   3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:2.000  
##  Max.   :5642   Max.   :3.0000   Max.   :2.00000   Max.   :3.000  
##                                                                   
##     HalfBath       BedroomAbvGr    KitchenAbvGr   KitchenQual
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Ex:100     
##  1st Qu.:0.0000   1st Qu.:2.000   1st Qu.:1.000   Fa: 39     
##  Median :0.0000   Median :3.000   Median :1.000   Gd:586     
##  Mean   :0.3829   Mean   :2.866   Mean   :1.047   TA:735     
##  3rd Qu.:1.0000   3rd Qu.:3.000   3rd Qu.:1.000              
##  Max.   :2.0000   Max.   :8.000   Max.   :3.000              
##                                                              
##   TotRmsAbvGrd    Functional    Fireplaces    FireplaceQu   GarageType 
##  Min.   : 2.000   Maj1:  14   Min.   :0.000   Ex  : 24    2Types :  6  
##  1st Qu.: 5.000   Maj2:   5   1st Qu.:0.000   Fa  : 33    Attchd :870  
##  Median : 6.000   Min1:  31   Median :1.000   Gd  :380    Basment: 19  
##  Mean   : 6.518   Min2:  34   Mean   :0.613   Po  : 20    BuiltIn: 88  
##  3rd Qu.: 7.000   Mod :  15   3rd Qu.:1.000   TA  :313    CarPort:  9  
##  Max.   :14.000   Sev :   1   Max.   :3.000   NA's:690    Detchd :387  
##                   Typ :1360                               NA's   : 81  
##   GarageYrBlt   GarageFinish   GarageCars      GarageArea     GarageQual 
##  Min.   :1900   Fin :352     Min.   :0.000   Min.   :   0.0   Ex  :   3  
##  1st Qu.:1961   RFn :422     1st Qu.:1.000   1st Qu.: 334.5   Fa  :  48  
##  Median :1980   Unf :605     Median :2.000   Median : 480.0   Gd  :  14  
##  Mean   :1979   NA's: 81     Mean   :1.767   Mean   : 473.0   Po  :   3  
##  3rd Qu.:2002                3rd Qu.:2.000   3rd Qu.: 576.0   TA  :1311  
##  Max.   :2010                Max.   :4.000   Max.   :1418.0   NA's:  81  
##  NA's   :81                                                              
##  GarageCond  PavedDrive   WoodDeckSF      OpenPorchSF     EnclosedPorch   
##  Ex  :   2   N:  90     Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  Fa  :  35   P:  30     1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Gd  :   9   Y:1340     Median :  0.00   Median : 25.00   Median :  0.00  
##  Po  :   7              Mean   : 94.24   Mean   : 46.66   Mean   : 21.95  
##  TA  :1326              3rd Qu.:168.00   3rd Qu.: 68.00   3rd Qu.:  0.00  
##  NA's:  81              Max.   :857.00   Max.   :547.00   Max.   :552.00  
##                                                                           
##    X3SsnPorch      ScreenPorch        PoolArea        PoolQC    
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.000   Ex  :   2  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000   Fa  :   2  
##  Median :  0.00   Median :  0.00   Median :  0.000   Gd  :   3  
##  Mean   :  3.41   Mean   : 15.06   Mean   :  2.759   NA's:1453  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000              
##  Max.   :508.00   Max.   :480.00   Max.   :738.000              
##                                                                 
##    Fence      MiscFeature    MiscVal             MoSold      
##  GdPrv:  59   Gar2:   2   Min.   :    0.00   Min.   : 1.000  
##  GdWo :  54   Othr:   2   1st Qu.:    0.00   1st Qu.: 5.000  
##  MnPrv: 157   Shed:  49   Median :    0.00   Median : 6.000  
##  MnWw :  11   TenC:   1   Mean   :   43.49   Mean   : 6.322  
##  NA's :1179   NA's:1406   3rd Qu.:    0.00   3rd Qu.: 8.000  
##                           Max.   :15500.00   Max.   :12.000  
##                                                              
##      YrSold        SaleType    SaleCondition    SalePrice     
##  Min.   :2006   WD     :1267   Abnorml: 101   Min.   : 34900  
##  1st Qu.:2007   New    : 122   AdjLand:   4   1st Qu.:129975  
##  Median :2008   COD    :  43   Alloca :  12   Median :163000  
##  Mean   :2008   ConLD  :   9   Family :  20   Mean   :180921  
##  3rd Qu.:2009   ConLI  :   5   Normal :1198   3rd Qu.:214000  
##  Max.   :2010   ConLw  :   5   Partial: 125   Max.   :755000  
##                 (Other):   9

Load the selected variables into a dataframe and perform data cleanup operations.

## 
## Call:
## lm(formula = SalePrice ~ ., data = hd_train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -344189  -11532       0   10881  211337 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4.434e+05  1.283e+06   0.346 0.729647    
## MSSubClass           -1.102e+02  1.010e+02  -1.091 0.275645    
## MSZoningFV            2.985e+04  1.468e+04   2.033 0.042284 *  
## MSZoningRH            1.971e+04  1.461e+04   1.349 0.177597    
## MSZoningRL            2.334e+04  1.241e+04   1.881 0.060260 .  
## MSZoningRM            2.360e+04  1.161e+04   2.033 0.042245 *  
## LotArea               4.435e-01  1.036e-01   4.282 1.99e-05 ***
## LotShapeIR2           8.458e+03  5.179e+03   1.633 0.102682    
## LotShapeIR3          -3.270e+04  1.050e+04  -3.114 0.001888 ** 
## LotShapeReg           1.593e+03  1.975e+03   0.806 0.420183    
## LotConfigCulDSac      1.134e+04  3.955e+03   2.867 0.004217 ** 
## LotConfigFR2         -9.935e+03  5.001e+03  -1.987 0.047184 *  
## LotConfigFR3         -2.174e+04  1.546e+04  -1.407 0.159797    
## LotConfigInside      -1.358e+03  2.158e+03  -0.629 0.529412    
## NeighborhoodBlueste  -1.309e+02  2.353e+04  -0.006 0.995561    
## NeighborhoodBrDale    5.567e+03  1.323e+04   0.421 0.674005    
## NeighborhoodBrkSide  -3.007e+03  1.140e+04  -0.264 0.792074    
## NeighborhoodClearCr  -6.810e+03  1.121e+04  -0.608 0.543542    
## NeighborhoodCollgCr  -6.176e+03  8.749e+03  -0.706 0.480382    
## NeighborhoodCrawfor   2.075e+04  1.029e+04   2.017 0.043902 *  
## NeighborhoodEdwards  -2.309e+04  9.730e+03  -2.373 0.017784 *  
## NeighborhoodGilbert  -4.705e+03  9.461e+03  -0.497 0.619084    
## NeighborhoodIDOTRR   -1.306e+04  1.294e+04  -1.009 0.313128    
## NeighborhoodMeadowV  -5.162e+03  1.355e+04  -0.381 0.703306    
## NeighborhoodMitchel  -1.729e+04  9.970e+03  -1.734 0.083119 .  
## NeighborhoodNAmes    -1.207e+04  9.448e+03  -1.277 0.201842    
## NeighborhoodNoRidge   4.720e+04  1.004e+04   4.702 2.86e-06 ***
## NeighborhoodNPkVill   1.483e+04  1.602e+04   0.925 0.354910    
## NeighborhoodNridgHt   3.011e+04  8.908e+03   3.380 0.000748 ***
## NeighborhoodNWAmes   -1.001e+04  9.689e+03  -1.033 0.301954    
## NeighborhoodOldTown  -1.838e+04  1.169e+04  -1.573 0.116086    
## NeighborhoodSawyer   -8.708e+03  9.942e+03  -0.876 0.381251    
## NeighborhoodSawyerW   8.269e+02  9.545e+03   0.087 0.930975    
## NeighborhoodSomerst   8.598e+03  1.096e+04   0.784 0.432908    
## NeighborhoodStoneBr   4.906e+04  9.975e+03   4.918 9.91e-07 ***
## NeighborhoodSWISU    -1.419e+04  1.166e+04  -1.217 0.223713    
## NeighborhoodTimber   -4.617e+03  9.837e+03  -0.469 0.638922    
## NeighborhoodVeenker   1.228e+04  1.283e+04   0.957 0.338585    
## Condition1Feedr      -8.740e+03  6.004e+03  -1.456 0.145740    
## Condition1Norm        4.573e+03  4.919e+03   0.930 0.352700    
## Condition1PosA       -1.313e+03  1.204e+04  -0.109 0.913180    
## Condition1PosN       -1.349e+04  8.558e+03  -1.576 0.115237    
## Condition1RRAe       -1.920e+04  1.166e+04  -1.647 0.099780 .  
## Condition1RRAn        3.161e+03  7.894e+03   0.400 0.688856    
## Condition1RRNe       -1.199e+04  2.171e+04  -0.552 0.580848    
## Condition1RRNn       -2.010e+03  1.538e+04  -0.131 0.896057    
## StreetPave            2.758e+04  1.452e+04   1.899 0.057794 .  
## BldgType2fmCon        4.228e+03  1.504e+04   0.281 0.778738    
## BldgTypeDuplex       -8.633e+03  8.797e+03  -0.981 0.326619    
## BldgTypeTwnhs        -1.839e+04  1.215e+04  -1.514 0.130227    
## BldgTypeTwnhsE       -1.318e+04  1.093e+04  -1.205 0.228245    
## HouseStyle1.5Unf      1.512e+04  9.181e+03   1.647 0.099903 .  
## HouseStyle1Story      1.716e+04  5.157e+03   3.327 0.000903 ***
## HouseStyle2.5Fin     -2.542e+04  1.252e+04  -2.030 0.042584 *  
## HouseStyle2.5Unf     -5.520e+03  1.028e+04  -0.537 0.591251    
## HouseStyle2Story     -8.261e+03  4.120e+03  -2.005 0.045136 *  
## HouseStyleSFoyer      1.243e+04  7.850e+03   1.584 0.113460    
## HouseStyleSLvl        7.320e+03  6.618e+03   1.106 0.268915    
## OverallQual           8.975e+03  1.211e+03   7.413 2.26e-13 ***
## OverallCond           4.671e+03  1.023e+03   4.567 5.43e-06 ***
## YearBuilt             1.457e+02  8.310e+01   1.753 0.079892 .  
## YearRemodAdd          4.454e+01  6.853e+01   0.650 0.515908    
## RoofStyleGable        4.008e+03  1.057e+04   0.379 0.704592    
## RoofStyleGambrel      1.078e+04  1.417e+04   0.761 0.446926    
## RoofStyleHip          7.845e+03  1.074e+04   0.731 0.465204    
## RoofStyleMansard      1.618e+04  1.600e+04   1.011 0.312346    
## RoofStyleShed         8.839e+03  2.368e+04   0.373 0.709040    
## Exterior2ndAsphShn   -9.814e+03  2.380e+04  -0.412 0.680121    
## Exterior2ndBrk Cmn   -7.949e+03  1.842e+04  -0.431 0.666219    
## Exterior2ndBrkFace    1.606e+04  9.929e+03   1.618 0.106002    
## Exterior2ndCBlock    -1.176e+04  3.314e+04  -0.355 0.722813    
## Exterior2ndCmentBd    4.709e+02  9.132e+03   0.052 0.958886    
## Exterior2ndHdBoard   -3.003e+03  7.815e+03  -0.384 0.700867    
## Exterior2ndImStucc    1.963e+04  1.233e+04   1.592 0.111633    
## Exterior2ndMetalSd   -2.496e+01  7.594e+03  -0.003 0.997378    
## Exterior2ndOther     -9.095e+03  3.090e+04  -0.294 0.768539    
## Exterior2ndPlywood   -2.116e+03  7.997e+03  -0.265 0.791332    
## Exterior2ndStone     -1.927e+04  2.289e+04  -0.842 0.400023    
## Exterior2ndStucco    -1.686e+04  9.753e+03  -1.729 0.084093 .  
## Exterior2ndVinylSd    1.837e+03  7.695e+03   0.239 0.811392    
## Exterior2ndWd Sdng   -6.857e+02  7.603e+03  -0.090 0.928155    
## Exterior2ndWd Shng   -5.614e+03  8.849e+03  -0.634 0.525895    
## MasVnrTypeBrkFace     8.857e+03  8.464e+03   1.046 0.295596    
## MasVnrTypeNone        8.718e+03  8.338e+03   1.046 0.295967    
## MasVnrTypeStone       1.242e+04  8.903e+03   1.395 0.163256    
## ExterQualFa          -7.445e+03  1.374e+04  -0.542 0.587907    
## ExterQualGd          -1.112e+04  5.806e+03  -1.916 0.055628 .  
## ExterQualTA          -1.396e+04  6.448e+03  -2.165 0.030546 *  
## BsmtQualFa           -2.391e+04  7.751e+03  -3.085 0.002078 ** 
## BsmtQualGd           -2.517e+04  4.044e+03  -6.224 6.60e-10 ***
## BsmtQualTA           -2.430e+04  4.947e+03  -4.913 1.02e-06 ***
## BsmtCondGd            3.466e+01  6.437e+03   0.005 0.995705    
## BsmtCondPo            1.329e+04  3.412e+04   0.390 0.696971    
## BsmtCondTA            6.426e+03  5.087e+03   1.263 0.206753    
## BsmtExposureGd        1.952e+04  3.625e+03   5.385 8.63e-08 ***
## BsmtExposureMn       -2.863e+03  3.699e+03  -0.774 0.439004    
## BsmtExposureNo       -7.077e+03  2.694e+03  -2.627 0.008729 ** 
## BsmtFinType1BLQ      -7.593e+02  3.369e+03  -0.225 0.821721    
## BsmtFinType1GLQ       2.217e+03  3.072e+03   0.722 0.470684    
## BsmtFinType1LwQ      -6.067e+03  4.469e+03  -1.358 0.174792    
## BsmtFinType1Rec      -2.432e+03  3.625e+03  -0.671 0.502332    
## BsmtFinType1Unf      -9.477e+03  3.503e+03  -2.705 0.006918 ** 
## BsmtFinSF1           -1.271e+00  3.565e+00  -0.356 0.721592    
## BsmtFinType2BLQ      -1.137e+04  8.978e+03  -1.267 0.205469    
## BsmtFinType2GLQ      -3.076e+03  1.112e+04  -0.277 0.782183    
## BsmtFinType2LwQ      -8.399e+03  8.746e+03  -0.960 0.337064    
## BsmtFinType2Rec      -6.727e+03  8.479e+03  -0.793 0.427704    
## BsmtFinType2Unf      -6.146e+03  7.602e+03  -0.808 0.418961    
## TotalBsmtSF          -6.353e-01  5.685e+00  -0.112 0.911039    
## HeatingQCFa          -4.060e+02  5.213e+03  -0.078 0.937937    
## HeatingQCGd          -3.087e+03  2.556e+03  -1.208 0.227300    
## HeatingQCPo          -7.300e+03  3.303e+04  -0.221 0.825093    
## HeatingQCTA          -3.077e+03  2.498e+03  -1.232 0.218211    
## ElectricalFuseF       1.090e+01  7.643e+03   0.001 0.998862    
## ElectricalFuseP       7.639e+03  2.285e+04   0.334 0.738238    
## ElectricalMix        -6.889e+03  4.743e+04  -0.145 0.884541    
## ElectricalSBrkr      -1.506e+03  3.631e+03  -0.415 0.678396    
## X1stFlrSF            -1.703e+01  8.330e+00  -2.044 0.041118 *  
## GrLivArea             6.399e+01  6.190e+00  10.339  < 2e-16 ***
## BsmtFullBath          6.960e+03  2.365e+03   2.943 0.003309 ** 
## BsmtHalfBath          3.008e+03  3.669e+03   0.820 0.412479    
## FullBath              9.400e+03  2.659e+03   3.535 0.000423 ***
## HalfBath              5.074e+03  2.540e+03   1.998 0.045948 *  
## BedroomAbvGr         -2.775e+03  1.676e+03  -1.656 0.098044 .  
## KitchenAbvGr         -1.292e+04  6.836e+03  -1.890 0.058980 .  
## KitchenQualFa        -3.008e+04  7.436e+03  -4.045 5.55e-05 ***
## KitchenQualGd        -2.811e+04  4.213e+03  -6.672 3.76e-11 ***
## KitchenQualTA        -2.695e+04  4.773e+03  -5.645 2.03e-08 ***
## TotRmsAbvGrd          2.653e+03  1.160e+03   2.286 0.022392 *  
## FunctionalMaj2       -9.594e+03  1.760e+04  -0.545 0.585848    
## FunctionalMin1        1.389e+02  1.078e+04   0.013 0.989721    
## FunctionalMin2        3.133e+03  1.071e+04   0.292 0.770035    
## FunctionalMod         8.591e+03  1.305e+04   0.658 0.510368    
## FunctionalSev        -3.481e+04  3.386e+04  -1.028 0.304040    
## FunctionalTyp         1.352e+04  9.290e+03   1.455 0.145797    
## GarageArea            2.321e+01  5.409e+00   4.290 1.92e-05 ***
## PavedDriveP          -2.064e+03  6.683e+03  -0.309 0.757486    
## PavedDriveY           2.992e+03  4.264e+03   0.702 0.483100    
## WoodDeckSF            1.658e+01  7.018e+00   2.362 0.018312 *  
## OpenPorchSF          -7.524e+00  1.380e+01  -0.545 0.585688    
## YrSold               -4.207e+02  6.317e+02  -0.666 0.505588    
## SaleTypeCon           2.352e+04  2.203e+04   1.068 0.285887    
## SaleTypeConLD         1.938e+04  1.246e+04   1.556 0.119895    
## SaleTypeConLI         1.386e+04  1.430e+04   0.969 0.332694    
## SaleTypeConLw         2.019e+03  1.485e+04   0.136 0.891830    
## SaleTypeCWD           1.157e+04  1.594e+04   0.726 0.468074    
## SaleTypeNew           3.558e+04  1.886e+04   1.886 0.059520 .  
## SaleTypeOth           1.567e+04  1.798e+04   0.871 0.383784    
## SaleTypeWD            1.542e+03  5.169e+03   0.298 0.765576    
## SaleConditionAdjLand  1.398e+04  1.921e+04   0.728 0.467035    
## SaleConditionAlloca   2.442e+04  1.195e+04   2.043 0.041233 *  
## SaleConditionFamily  -7.976e+02  7.540e+03  -0.106 0.915771    
## SaleConditionNormal   6.515e+03  3.528e+03   1.847 0.065016 .  
## SaleConditionPartial -1.804e+04  1.818e+04  -0.992 0.321186    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28670 on 1258 degrees of freedom
## Multiple R-squared:  0.8833, Adjusted R-squared:  0.8692 
## F-statistic: 62.26 on 153 and 1258 DF,  p-value: < 2.2e-16

The model produces a Multiple R-Squared of 0.8833 which is great. We can interpret this to mean that 88.33% variance in the saleprice van be explained by the predictor variables in the current model. The F-Statistic is 62.26 on 153 and 1258 degrees of freedom. The p-value is very small.