We load and look at the data.
stock = read.table('stocks.txt')
head(stock)
## V1 V2 V3 V4 V5
## 1 0.0130338 -0.0078431 -0.0031889 -0.0447693 0.0052151
## 2 0.0084862 0.0166886 -0.0062100 0.0119560 0.0134890
## 3 -0.0179153 -0.0086393 0.0100360 0.0000000 -0.0061428
## 4 0.0215589 -0.0034858 0.0174353 -0.0285917 -0.0069534
## 5 0.0108225 0.0037167 -0.0101345 0.0291900 0.0409751
## 6 0.0101713 -0.0121978 -0.0083768 0.0137083 0.0029895
We begin factor analysis now.
First we do using covariance matrix then correlation matrix.
Calculating the covariance matrix and its EV-EV pairs.
covmat <- cov(stock)
eig = eigen(cov(stock))
To check number of factors required we plot the eigenvalues and check screeplot.
plot(eig$values, type = "l", main = "screeplot")
It looks like 2 factors is good. We check percentages of variance explained by 1, 2 or 3 factors.
100*eig$values[1]/sum(eig$values)
## [1] 52.92607
100*sum(eig$values[c(1,2)])/sum(eig$values)
## [1] 80.05936
100*sum(eig$values[1:3])/sum(eig$values)
## [1] 89.88095
So 2 factors explain 80 percent.
Next we estimate the loading matrix using the two first two principal components.That is the matrix of eigenvectors scaled by square roots of eigenvalues. This is the 5x2 L matrix.
ev <- as.matrix(eig$vectors[,1:2])
lambda <- matrix(0,2,2)
diag(lambda) <- eig$values[1:2]
L = ev%*%sqrt(lambda)
L
## [,1] [,2]
## [1,] 0.008240463 0.016555621
## [2,] 0.011364238 0.015103596
## [3,] 0.005725215 0.009122290
## [4,] 0.023630398 -0.006565506
## [5,] 0.024071832 -0.008522342
Calculating communalities
commu <- (L[,1])^2 + (L[,2])^2
commu
## [1] 0.0003419938 0.0003572645 0.0001159943 0.0006015016 0.0006520834
Calculating uniqeness
uniq <- diag(covmat - L%*%t(L))
uniq
## V1 V2 V3 V4 V5
## 9.127563e-05 8.145269e-05 1.079779e-04 1.209948e-04 1.135907e-04
Calculating the correlation matrix and its EV-EV pairs.
cormat <- cor(stock)
eig = eigen(cor(stock))
To check number of factors required we plot the eigenvalues and check screeplot.
plot(eig$values, type = "l", main = "screeplot")
It looks like 2 factors is good as only two eigenvalues larger than 1. We check percentages of variance explained by 1, 2 or 3 factors.
100*eig$values[1]/sum(eig$values)
## [1] 48.74546
100*sum(eig$values[c(1,2)])/sum(eig$values)
## [1] 76.88572
100*sum(eig$values[1:3])/sum(eig$values)
## [1] 86.89597
So 2 factors are good explaining 76%.
Next we estimate the loading matrix using the two first two principal components.That is the matrix of eigenvectors scaled by square roots of eigenvalues. This is the 5x2 L matrix.
ev <- as.matrix(eig$vectors[,1:2])
lambda <- matrix(0,2,2)
diag(lambda) <- eig$values[1:2]
L = ev%*%sqrt(lambda)
L
## [,1] [,2]
## [1,] 0.7323218 0.4365209
## [2,] 0.8311791 0.2804859
## [3,] 0.7262022 0.3738582
## [4,] 0.6047155 -0.6939569
## [5,] 0.5630885 -0.7186401
Calculating communalities
commu <- (L[,1])^2 + (L[,2])^2
commu
## [1] 0.7268458 0.7695311 0.6671396 0.8472571 0.8335122
Calculating uniqeness
uniq <- diag(cormat - L%*%t(L))
uniq
## V1 V2 V3 V4 V5
## 0.2731542 0.2304689 0.3328604 0.1527429 0.1664878
We know the number of factors should be 2. We use factanal function which uses MLE method.
stock.fa = factanal(stock, factors = 2, rotation = "none")
stock.fa
##
## Call:
## factanal(x = stock, factors = 2, rotation = "none")
##
## Uniquenesses:
## V1 V2 V3 V4 V5
## 0.417 0.275 0.542 0.005 0.530
##
## Loadings:
## Factor1 Factor2
## V1 0.121 0.754
## V2 0.328 0.786
## V3 0.188 0.650
## V4 0.997
## V5 0.685
##
## Factor1 Factor2
## SS loadings 1.622 1.610
## Proportion Var 0.324 0.322
## Cumulative Var 0.324 0.646
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 1.97 on 1 degree of freedom.
## The p-value is 0.16
We also calulate communalities
commu <- (stock.fa$loadings[,1])^2 + (stock.fa$loadings[,2])^2
commu
## V1 V2 V3 V4 V5
## 0.5834625 0.7253097 0.4579766 0.9950016 0.4701569
stock.fa = factanal(stock, factors = 2, rotation = "varimax")
stock.fa
##
## Call:
## factanal(x = stock, factors = 2, rotation = "varimax")
##
## Uniquenesses:
## V1 V2 V3 V4 V5
## 0.417 0.275 0.542 0.005 0.530
##
## Loadings:
## Factor1 Factor2
## V1 0.763
## V2 0.819 0.232
## V3 0.668 0.108
## V4 0.113 0.991
## V5 0.108 0.677
##
## Factor1 Factor2
## SS loadings 1.725 1.507
## Proportion Var 0.345 0.301
## Cumulative Var 0.345 0.646
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 1.97 on 1 degree of freedom.
## The p-value is 0.16
We also calulate communalities
commu <- (stock.fa$loadings[,1])^2 + (stock.fa$loadings[,2])^2
commu
## V1 V2 V3 V4 V5
## 0.5834625 0.7253097 0.4579766 0.9950016 0.4701569
stock.fa = factanal(stock, factors = 2, rotation = "varimax", scores = "regression")
stock.fa$scores
## Factor1 Factor2
## [1,] 0.16535864 -1.83427398
## [2,] 0.36753184 0.25550919
## [3,] -0.39519052 -0.10792854
## [4,] 0.62520403 -1.28789064
## [5,] -0.06003873 0.94945235
## [6,] -0.37607023 0.39962913
## [7,] 0.80260447 0.89563925
## [8,] 0.84651321 -0.01307322
## [9,] -0.89995399 -1.16280345
## [10,] 0.42882250 -0.95869583
## [11,] -0.32403193 -0.45354773
## [12,] 0.80088906 1.11551771
## [13,] -0.38178474 0.87939688
## [14,] -1.86615206 1.46024763
## [15,] -0.67075407 -1.04526763
## [16,] -0.70907326 0.19865391
## [17,] -1.62926480 1.19103502
## [18,] -0.42963361 -0.33251470
## [19,] 0.35399035 -0.91592798
## [20,] 0.91065169 1.07104730
## [21,] 0.15260540 -0.08971020
## [22,] 0.55035453 0.34825285
## [23,] -0.35566282 1.04861138
## [24,] -0.34547704 -0.22366635
## [25,] -0.35625414 -1.02993312
## [26,] -1.08456840 0.50813920
## [27,] -1.02216946 0.05605792
## [28,] 0.58452519 -2.07235509
## [29,] 0.55155962 0.35776843
## [30,] -1.14028640 -0.72101512
## [31,] 0.96876650 0.59001848
## [32,] 1.89079695 0.23362634
## [33,] 0.98094278 -0.24594299
## [34,] 0.12142680 0.69167953
## [35,] 0.15131130 -0.31703165
## [36,] -0.24937354 0.30538742
## [37,] -1.54674969 -0.92045439
## [38,] 0.90323075 0.49718139
## [39,] -0.34393133 0.37378690
## [40,] -0.87428582 0.03282412
## [41,] -1.91802392 0.27061568
## [42,] 2.08905617 0.61332353
## [43,] 1.72427065 0.46594471
## [44,] 0.53006979 0.73408768
## [45,] -1.99919361 -0.05697661
## [46,] 0.29316625 1.01168393
## [47,] 0.23694777 -0.37115572
## [48,] 0.16476325 -0.81271418
## [49,] 0.48927213 -0.20147260
## [50,] 1.33794035 0.76711974
## [51,] -0.48625758 0.04541153
## [52,] 0.22989070 -1.15337178
## [53,] -1.27083380 0.41734040
## [54,] -0.40334370 0.17506283
## [55,] 0.24001096 0.72409279
## [56,] 1.20380390 1.62989890
## [57,] -0.44873512 -0.26335806
## [58,] -1.20365580 1.60631036
## [59,] -0.01849556 0.41790397
## [60,] 0.21862178 1.17314319
## [61,] -0.99268886 -1.06031002
## [62,] -0.61782578 -0.44939689
## [63,] -1.76575905 -1.85425018
## [64,] -0.10255476 0.44321362
## [65,] 0.60528001 0.50408016
## [66,] -0.04450378 -1.49284903
## [67,] 0.51822782 0.53460927
## [68,] 1.20489103 -0.77024224
## [69,] -0.14068264 0.13080833
## [70,] -0.81308704 -1.86579512
## [71,] 2.17608899 0.17047205
## [72,] -0.69224355 1.06506654
## [73,] 0.16610640 -0.40750394
## [74,] -0.08126035 0.10424234
## [75,] -0.08605287 2.17101513
## [76,] -0.75823328 -0.07046082
## [77,] -0.60955093 1.36886226
## [78,] 0.06991938 -0.33766851
## [79,] 0.93413784 -1.40506862
## [80,] -1.21297215 -1.94028602
## [81,] -0.70803942 0.54642946
## [82,] -0.26110609 1.52227979
## [83,] -0.82333192 2.24389360
## [84,] 0.70419227 -1.79976830
## [85,] -1.39547480 -0.77399584
## [86,] 0.47921505 1.91765860
## [87,] 0.97954714 -1.10773682
## [88,] 0.48614059 0.25414120
## [89,] -0.76251065 -0.42179171
## [90,] -0.12336256 0.36290942
## [91,] 0.25514110 -1.79263378
## [92,] 0.03541405 -0.85993239
## [93,] 0.36140969 -2.21335606
## [94,] 1.53278476 1.84296537
## [95,] 0.26525280 0.27950060
## [96,] 2.45286948 -1.60666185
## [97,] -0.05597037 1.51916992
## [98,] 1.28414412 0.02525961
## [99,] -0.71641574 -0.13816356
## [100,] 0.04719622 -0.20425006
## [101,] 0.82432694 -0.84767865
## [102,] 0.13434943 -0.26347004
## [103,] -0.85866218 -0.24362687
stock.fa = factanal(stock, factors = 2, rotation = "varimax", scores = "Bartlett")
stock.fa$scores
## Factor1 Factor2
## [1,] 0.25089936 -1.853670704
## [2,] 0.44303382 0.247877831
## [3,] -0.48078772 -0.098356805
## [4,] 0.79921292 -1.314978954
## [5,] -0.09859658 0.958816349
## [6,] -0.47081640 0.412851650
## [7,] 0.95854964 0.881739462
## [8,] 1.03632812 -0.035576617
## [9,] -1.07061981 -1.148516016
## [10,] 0.55016716 -0.977892504
## [11,] -0.38455811 -0.448689098
## [12,] 0.95063293 1.103464002
## [13,] -0.49050325 0.896699647
## [14,] -2.32247360 1.521579416
## [15,] -0.79322937 -1.036081606
## [16,] -0.87303590 0.219040848
## [17,] -2.02544295 1.243894726
## [18,] -0.51699805 -0.323870948
## [19,] 0.45745434 -0.932794556
## [20,] 1.08613951 1.055725397
## [21,] 0.18913545 -0.094482385
## [22,] 0.66432269 0.336544054
## [23,] -0.46301158 1.066608820
## [24,] -0.41688513 -0.216357723
## [25,] -0.40874286 -1.028942294
## [26,] -1.34076354 0.540995211
## [27,] -1.25243750 0.083560710
## [28,] 0.77018393 -2.104791538
## [29,] 0.66554575 0.346105681
## [30,] -1.37643257 -0.696751143
## [31,] 1.16998840 0.569219630
## [32,] 2.30781949 0.185514511
## [33,] 1.20700718 -0.273910102
## [34,] 0.13030502 0.694131438
## [35,] 0.19356598 -0.323631250
## [36,] -0.31326873 0.314486112
## [37,] -1.86859506 -0.887069856
## [38,] 1.09224046 0.477356145
## [39,] -0.43080038 0.385947479
## [40,] -1.07083942 0.056224054
## [41,] -2.35448128 0.323577356
## [42,] 2.54040794 0.563075854
## [43,] 2.09787430 0.424141269
## [44,] 0.62928967 0.726075360
## [45,] -2.44515145 -0.004550238
## [46,] 0.33201728 1.012212775
## [47,] 0.29980182 -0.380464269
## [48,] 0.22314315 -0.823729074
## [49,] 0.60411282 -0.216067308
## [50,] 1.61710621 0.738003971
## [51,] -0.59629461 0.058648422
## [52,] 0.31186044 -1.168899577
## [53,] -1.56631713 0.454380859
## [54,] -0.49825292 0.187167836
## [55,] 0.27457347 0.723672748
## [56,] 1.43012026 1.611397733
## [57,] -0.54220460 -0.253642581
## [58,] -1.51555992 1.651310560
## [59,] -0.03369184 0.421815741
## [60,] 0.23651630 1.176966545
## [61,] -1.18682255 -1.042729714
## [62,] -0.74421957 -0.436731312
## [63,] -2.11191814 -1.822718609
## [64,] -0.13723503 0.449556626
## [65,] 0.72741900 0.492194343
## [66,] -0.01496820 -1.503897281
## [67,] 0.62007483 0.525276622
## [68,] 1.49495164 -0.808428134
## [69,] -0.17563145 0.135601649
## [70,] -0.94571088 -1.859563091
## [71,] 2.65863729 0.114295004
## [72,] -0.87536213 1.092103711
## [73,] 0.21406621 -0.415235898
## [74,] -0.10220623 0.107245952
## [75,] -0.16275236 2.191071384
## [76,] -0.92607905 -0.050977159
## [77,] -0.78219858 1.396199553
## [78,] 0.09450269 -0.342283715
## [79,] 1.18039339 -1.441290076
## [80,] -1.43312862 -1.924084212
## [81,] -0.88097181 0.569637161
## [82,] -0.35982281 1.541654635
## [83,] -1.06697949 2.284053007
## [84,] 0.90942337 -1.833138440
## [85,] -1.68733626 -0.743414181
## [86,] 0.53573854 1.920684612
## [87,] 1.22809978 -1.142724675
## [88,] 0.58822613 0.243360596
## [89,] -0.92201857 -0.405072109
## [90,] -0.16057547 0.369145289
## [91,] 0.35967551 -1.814064875
## [92,] 0.06609189 -0.867911766
## [93,] 0.50086056 -2.241044227
## [94,] 1.82709743 1.817505223
## [95,] 0.31722765 0.274771739
## [96,] 3.04438550 -1.684715573
## [97,] -0.10869074 1.533091989
## [98,] 1.57089666 -0.008508333
## [99,] -0.87311056 -0.120340723
## [100,] 0.06316369 -0.207171446
## [101,] 1.03125734 -0.876430074
## [102,] 0.17139057 -0.269182237
## [103,] -1.04440475 -0.222904296
stock.fa = factanal(stock, factors = 2, rotation = "none", scores = "Bartlett")
stock.fa$scores
## Factor1 Factor2
## [1,] -1.81015485 0.47157713
## [2,] 0.29926209 0.41007876
## [3,] -0.15535353 -0.46550636
## [4,] -1.20954479 0.95126882
## [5,] 0.94005033 -0.21296820
## [6,] 0.35335600 -0.51696625
## [7,] 0.99041738 0.84578680
## [8,] 0.08906855 1.03310622
## [9,] -1.26871680 -0.92502622
## [10,] -0.90478765 0.66356384
## [11,] -0.49160291 -0.32792290
## [12,] 1.20958875 0.81131426
## [13,] 0.83134309 -0.59458588
## [14,] 1.23181833 -2.48831492
## [15,] -1.12380072 -0.66313639
## [16,] 0.11266891 -0.89301528
## [17,] 0.99179302 -2.16010181
## [18,] -0.38358357 -0.47438699
## [19,] -0.87114383 0.56610828
## [20,] 1.17845980 0.95157115
## [21,] -0.07109786 0.19910860
## [22,] 0.41384808 0.61912543
## [23,] 1.00332367 -0.58768675
## [24,] -0.26483129 -0.38790239
## [25,] -1.07056403 -0.28228641
## [26,] 0.37615550 -1.39600492
## [27,] -0.06737044 -1.25341267
## [28,] -1.99713174 1.01724899
## [29,] 0.42348738 0.61919199
## [30,] -0.85692391 -1.28285237
## [31,] 0.70553538 1.09320798
## [32,] 0.46117536 2.26886837
## [33,] -0.12705572 1.23115796
## [34,] 0.70475345 0.04604807
## [35,] -0.29805832 0.23101129
## [36,] 0.27461166 -0.34875098
## [37,] -1.10493980 -1.74861330
## [38,] 0.60500412 1.02704826
## [39,] 0.33144936 -0.47401027
## [40,] -0.07271269 -1.06984629
## [41,] 0.03863536 -2.37629790
## [42,] 0.86392417 2.45445757
## [43,] 0.67287776 2.03179918
## [44,] 0.79635836 0.53759118
## [45,] -0.29800298 -2.42692822
## [46,] 1.04474627 0.20812352
## [47,] -0.34172923 0.34330063
## [48,] -0.79099064 0.32040016
## [49,] -0.14199506 0.62567946
## [50,] 0.92676597 1.51683459
## [51,] -0.01334738 -0.59902316
## [52,] -1.12301723 0.44990606
## [53,] 0.26309467 -1.60953176
## [54,] 0.12601062 -0.51711613
## [55,] 0.75139739 0.18572776
## [56,] 1.77140211 1.22636910
## [57,] -0.31688840 -0.50784066
## [58,] 1.45746350 -1.70280609
## [59,] 0.41472230 -0.08407779
## [60,] 1.19684621 0.09353796
## [61,] -1.17764281 -1.05308615
## [62,] -0.52290087 -0.68641947
## [63,] -2.06302981 -1.87787363
## [64,] 0.42983459 -0.19020210
## [65,] 0.57594640 0.66308326
## [66,] -1.49482154 0.16564917
## [67,] 0.59590525 0.55254434
## [68,] -0.62314821 1.58117765
## [69,] 0.11354071 -0.19063767
## [70,] -1.95963088 -0.71567504
## [71,] 0.43257854 2.62569827
## [72,] 0.97914080 -1.00011633
## [73,] -0.38654012 0.26235840
## [74,] 0.09420306 -0.11433981
## [75,] 2.15569638 -0.42456477
## [76,] -0.16176366 -0.91326535
## [77,] 1.29222040 -0.94412618
## [78,] -0.32846626 0.13490297
## [79,] -1.28919058 1.34485438
## [80,] -2.08218913 -1.19182470
## [81,] 0.45977808 -0.94297505
## [82,] 1.48732067 -0.54226258
## [83,] 2.13947360 -1.33341520
## [84,] -1.71072997 1.12287594
## [85,] -0.94056662 -1.58590755
## [86,] 1.97110254 0.30133030
## [87,] -0.98705755 1.35637979
## [88,] 0.31220460 0.55476359
## [89,] -0.51281133 -0.86673306
## [90,] 0.34720309 -0.20372222
## [91,] -1.75777921 0.57481309
## [92,] -0.85370440 0.16978744
## [93,] -2.16472564 0.76622676
## [94,] 2.02366777 1.59573776
## [95,] 0.31086136 0.28195408
## [96,] -1.30712576 3.22458864
## [97,] 1.50896270 -0.29191830
## [98,] 0.18010412 1.56056119
## [99,] -0.22426808 -0.85235425
## [100,] -0.19809233 0.08757334
## [101,] -0.74631464 1.12899771
## [102,] -0.24666460 0.20246081
## [103,] -0.34665021 -1.01009961
stock.fa = factanal(stock, factors = 2, rotation = "none", scores = "regression")
stock.fa$scores
## Factor1 Factor2
## [1,] -1.80116560 0.38432667
## [2,] 0.29777596 0.33420663
## [3,] -0.15458204 -0.37937911
## [4,] -1.20353818 0.77526656
## [5,] 0.93538203 -0.17356516
## [6,] 0.35160124 -0.42131797
## [7,] 0.98549896 0.68930066
## [8,] 0.08862623 0.84196254
## [9,] -1.26241634 -0.75387933
## [10,] -0.90029446 0.54079231
## [11,] -0.48916160 -0.26725112
## [12,] 1.20358192 0.66120618
## [13,] 0.82721463 -0.48457654
## [14,] 1.22570111 -2.02793082
## [15,] -1.11821992 -0.54044394
## [16,] 0.11210939 -0.72779101
## [17,] 0.98686777 -1.76044319
## [18,] -0.38167869 -0.38661666
## [19,] -0.86681772 0.46136782
## [20,] 1.17260755 0.77551296
## [21,] -0.07074478 0.16226984
## [22,] 0.41179291 0.50457582
## [23,] 0.99834115 -0.47895387
## [24,] -0.26351614 -0.31613330
## [25,] -1.06524760 -0.23005823
## [26,] 0.37428751 -1.13771829
## [27,] -0.06703588 -1.02150824
## [28,] -1.98721397 0.82903919
## [29,] 0.42138434 0.50463007
## [30,] -0.85266841 -1.04550105
## [31,] 0.70203168 0.89094437
## [32,] 0.45888515 1.84908593
## [33,] -0.12642476 1.00337106
## [34,] 0.70125364 0.03752833
## [35,] -0.29657816 0.18826994
## [36,] 0.27324794 -0.28422563
## [37,] -1.09945266 -1.42508763
## [38,] 0.60199966 0.83702541
## [39,] 0.32980338 -0.38630964
## [40,] -0.07235160 -0.87190502
## [41,] 0.03844349 -1.93663902
## [42,] 0.85963392 2.00033771
## [43,] 0.66953624 1.65587891
## [44,] 0.79240364 0.43812691
## [45,] -0.29652309 -1.97790179
## [46,] 1.03955805 0.16961683
## [47,] -0.34003220 0.27978369
## [48,] -0.78706257 0.26112023
## [49,] -0.14128991 0.50991723
## [50,] 0.92216365 1.23619225
## [51,] -0.01328110 -0.48819284
## [52,] -1.11744031 0.36666516
## [53,] 0.26178814 -1.31173874
## [54,] 0.12538485 -0.42144012
## [55,] 0.74766594 0.15136470
## [56,] 1.76260531 0.99946823
## [57,] -0.31531473 -0.41388078
## [58,] 1.45022572 -1.38775560
## [59,] 0.41266278 -0.06852185
## [60,] 1.19090266 0.07623171
## [61,] -1.17179462 -0.85824581
## [62,] -0.52030414 -0.55941922
## [63,] -2.05278479 -1.53043241
## [64,] 0.42770003 -0.15501120
## [65,] 0.57308625 0.54040064
## [66,] -1.48739824 0.13500103
## [67,] 0.59294598 0.45031346
## [68,] -0.62005365 1.28863066
## [69,] 0.11297686 -0.15536619
## [70,] -1.94989934 -0.58326198
## [71,] 0.43043035 2.13989572
## [72,] 0.97427838 -0.81507638
## [73,] -0.38462056 0.21381726
## [74,] 0.09373524 -0.09318484
## [75,] 2.14499118 -0.34601247
## [76,] -0.16096034 -0.74429443
## [77,] 1.28580322 -0.76944545
## [78,] -0.32683510 0.10994344
## [79,] -1.28278844 1.09603155
## [80,] -2.07184896 -0.97131518
## [81,] 0.45749482 -0.76850730
## [82,] 1.47993462 -0.44193401
## [83,] 2.12884895 -1.08670883
## [84,] -1.70223447 0.91512321
## [85,] -0.93589575 -1.29248544
## [86,] 1.96131402 0.24557865
## [87,] -0.98215582 1.10542454
## [88,] 0.31065419 0.45212211
## [89,] -0.51026470 -0.70637148
## [90,] 0.34547887 -0.16602986
## [91,] -1.74905006 0.46846208
## [92,] -0.84946489 0.13837364
## [93,] -2.15397559 0.62446069
## [94,] 2.01361822 1.30049688
## [95,] 0.30931762 0.22978738
## [96,] -1.30063456 2.62798035
## [97,] 1.50146918 -0.23790804
## [98,] 0.17920972 1.27182862
## [99,] -0.22315437 -0.69465302
## [100,] -0.19710860 0.07137066
## [101,] -0.74260843 0.92011234
## [102,] -0.24543966 0.16500183
## [103,] -0.34492874 -0.82321258