Stock Market data

We load and look at the data.

stock = read.table('stocks.txt')
head(stock)
##           V1         V2         V3         V4         V5
## 1  0.0130338 -0.0078431 -0.0031889 -0.0447693  0.0052151
## 2  0.0084862  0.0166886 -0.0062100  0.0119560  0.0134890
## 3 -0.0179153 -0.0086393  0.0100360  0.0000000 -0.0061428
## 4  0.0215589 -0.0034858  0.0174353 -0.0285917 -0.0069534
## 5  0.0108225  0.0037167 -0.0101345  0.0291900  0.0409751
## 6  0.0101713 -0.0121978 -0.0083768  0.0137083  0.0029895

We begin factor analysis now.

First we use PC method

First we do using covariance matrix then correlation matrix.

First we use Covariance matrix

Calculating the covariance matrix and its EV-EV pairs.

covmat <- cov(stock)
eig = eigen(cov(stock))

To check number of factors required we plot the eigenvalues and check screeplot.

plot(eig$values, type = "l", main = "screeplot")

It looks like 2 factors is good. We check percentages of variance explained by 1, 2 or 3 factors.

100*eig$values[1]/sum(eig$values)
## [1] 52.92607
100*sum(eig$values[c(1,2)])/sum(eig$values)
## [1] 80.05936
100*sum(eig$values[1:3])/sum(eig$values)
## [1] 89.88095

So 2 factors explain 80 percent.

Next we estimate the loading matrix using the two first two principal components.That is the matrix of eigenvectors scaled by square roots of eigenvalues. This is the 5x2 L matrix.

ev <- as.matrix(eig$vectors[,1:2])
lambda <- matrix(0,2,2)
diag(lambda) <- eig$values[1:2]
L = ev%*%sqrt(lambda)
L
##             [,1]         [,2]
## [1,] 0.008240463  0.016555621
## [2,] 0.011364238  0.015103596
## [3,] 0.005725215  0.009122290
## [4,] 0.023630398 -0.006565506
## [5,] 0.024071832 -0.008522342

Calculating communalities

commu <- (L[,1])^2 + (L[,2])^2
commu
## [1] 0.0003419938 0.0003572645 0.0001159943 0.0006015016 0.0006520834

Calculating uniqeness

uniq <- diag(covmat - L%*%t(L))
uniq
##           V1           V2           V3           V4           V5 
## 9.127563e-05 8.145269e-05 1.079779e-04 1.209948e-04 1.135907e-04

Next we use Correlation matrix

Calculating the correlation matrix and its EV-EV pairs.

cormat <- cor(stock)
eig = eigen(cor(stock))

To check number of factors required we plot the eigenvalues and check screeplot.

plot(eig$values, type = "l", main = "screeplot")

It looks like 2 factors is good as only two eigenvalues larger than 1. We check percentages of variance explained by 1, 2 or 3 factors.

100*eig$values[1]/sum(eig$values)
## [1] 48.74546
100*sum(eig$values[c(1,2)])/sum(eig$values)
## [1] 76.88572
100*sum(eig$values[1:3])/sum(eig$values)
## [1] 86.89597

So 2 factors are good explaining 76%.

Next we estimate the loading matrix using the two first two principal components.That is the matrix of eigenvectors scaled by square roots of eigenvalues. This is the 5x2 L matrix.

ev <- as.matrix(eig$vectors[,1:2])
lambda <- matrix(0,2,2)
diag(lambda) <- eig$values[1:2]
L = ev%*%sqrt(lambda)
L
##           [,1]       [,2]
## [1,] 0.7323218  0.4365209
## [2,] 0.8311791  0.2804859
## [3,] 0.7262022  0.3738582
## [4,] 0.6047155 -0.6939569
## [5,] 0.5630885 -0.7186401

Calculating communalities

commu <- (L[,1])^2 + (L[,2])^2
commu
## [1] 0.7268458 0.7695311 0.6671396 0.8472571 0.8335122

Calculating uniqeness

uniq <- diag(cormat - L%*%t(L))
uniq
##        V1        V2        V3        V4        V5 
## 0.2731542 0.2304689 0.3328604 0.1527429 0.1664878

Next we use MLE method

We know the number of factors should be 2. We use factanal function which uses MLE method.

We try without rotation and check

stock.fa = factanal(stock, factors = 2, rotation = "none")
stock.fa
## 
## Call:
## factanal(x = stock, factors = 2, rotation = "none")
## 
## Uniquenesses:
##    V1    V2    V3    V4    V5 
## 0.417 0.275 0.542 0.005 0.530 
## 
## Loadings:
##    Factor1 Factor2
## V1  0.121   0.754 
## V2  0.328   0.786 
## V3  0.188   0.650 
## V4  0.997         
## V5  0.685         
## 
##                Factor1 Factor2
## SS loadings      1.622   1.610
## Proportion Var   0.324   0.322
## Cumulative Var   0.324   0.646
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 1.97 on 1 degree of freedom.
## The p-value is 0.16

We also calulate communalities

commu <- (stock.fa$loadings[,1])^2 + (stock.fa$loadings[,2])^2
commu
##        V1        V2        V3        V4        V5 
## 0.5834625 0.7253097 0.4579766 0.9950016 0.4701569

We use varimax rotation and check

stock.fa = factanal(stock, factors = 2, rotation = "varimax")
stock.fa
## 
## Call:
## factanal(x = stock, factors = 2, rotation = "varimax")
## 
## Uniquenesses:
##    V1    V2    V3    V4    V5 
## 0.417 0.275 0.542 0.005 0.530 
## 
## Loadings:
##    Factor1 Factor2
## V1 0.763          
## V2 0.819   0.232  
## V3 0.668   0.108  
## V4 0.113   0.991  
## V5 0.108   0.677  
## 
##                Factor1 Factor2
## SS loadings      1.725   1.507
## Proportion Var   0.345   0.301
## Cumulative Var   0.345   0.646
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 1.97 on 1 degree of freedom.
## The p-value is 0.16

We also calulate communalities

commu <- (stock.fa$loadings[,1])^2 + (stock.fa$loadings[,2])^2
commu
##        V1        V2        V3        V4        V5 
## 0.5834625 0.7253097 0.4579766 0.9950016 0.4701569

We calculate factor scores with varimax using regression

stock.fa = factanal(stock, factors = 2, rotation = "varimax", scores = "regression")
stock.fa$scores
##            Factor1     Factor2
##   [1,]  0.16535864 -1.83427398
##   [2,]  0.36753184  0.25550919
##   [3,] -0.39519052 -0.10792854
##   [4,]  0.62520403 -1.28789064
##   [5,] -0.06003873  0.94945235
##   [6,] -0.37607023  0.39962913
##   [7,]  0.80260447  0.89563925
##   [8,]  0.84651321 -0.01307322
##   [9,] -0.89995399 -1.16280345
##  [10,]  0.42882250 -0.95869583
##  [11,] -0.32403193 -0.45354773
##  [12,]  0.80088906  1.11551771
##  [13,] -0.38178474  0.87939688
##  [14,] -1.86615206  1.46024763
##  [15,] -0.67075407 -1.04526763
##  [16,] -0.70907326  0.19865391
##  [17,] -1.62926480  1.19103502
##  [18,] -0.42963361 -0.33251470
##  [19,]  0.35399035 -0.91592798
##  [20,]  0.91065169  1.07104730
##  [21,]  0.15260540 -0.08971020
##  [22,]  0.55035453  0.34825285
##  [23,] -0.35566282  1.04861138
##  [24,] -0.34547704 -0.22366635
##  [25,] -0.35625414 -1.02993312
##  [26,] -1.08456840  0.50813920
##  [27,] -1.02216946  0.05605792
##  [28,]  0.58452519 -2.07235509
##  [29,]  0.55155962  0.35776843
##  [30,] -1.14028640 -0.72101512
##  [31,]  0.96876650  0.59001848
##  [32,]  1.89079695  0.23362634
##  [33,]  0.98094278 -0.24594299
##  [34,]  0.12142680  0.69167953
##  [35,]  0.15131130 -0.31703165
##  [36,] -0.24937354  0.30538742
##  [37,] -1.54674969 -0.92045439
##  [38,]  0.90323075  0.49718139
##  [39,] -0.34393133  0.37378690
##  [40,] -0.87428582  0.03282412
##  [41,] -1.91802392  0.27061568
##  [42,]  2.08905617  0.61332353
##  [43,]  1.72427065  0.46594471
##  [44,]  0.53006979  0.73408768
##  [45,] -1.99919361 -0.05697661
##  [46,]  0.29316625  1.01168393
##  [47,]  0.23694777 -0.37115572
##  [48,]  0.16476325 -0.81271418
##  [49,]  0.48927213 -0.20147260
##  [50,]  1.33794035  0.76711974
##  [51,] -0.48625758  0.04541153
##  [52,]  0.22989070 -1.15337178
##  [53,] -1.27083380  0.41734040
##  [54,] -0.40334370  0.17506283
##  [55,]  0.24001096  0.72409279
##  [56,]  1.20380390  1.62989890
##  [57,] -0.44873512 -0.26335806
##  [58,] -1.20365580  1.60631036
##  [59,] -0.01849556  0.41790397
##  [60,]  0.21862178  1.17314319
##  [61,] -0.99268886 -1.06031002
##  [62,] -0.61782578 -0.44939689
##  [63,] -1.76575905 -1.85425018
##  [64,] -0.10255476  0.44321362
##  [65,]  0.60528001  0.50408016
##  [66,] -0.04450378 -1.49284903
##  [67,]  0.51822782  0.53460927
##  [68,]  1.20489103 -0.77024224
##  [69,] -0.14068264  0.13080833
##  [70,] -0.81308704 -1.86579512
##  [71,]  2.17608899  0.17047205
##  [72,] -0.69224355  1.06506654
##  [73,]  0.16610640 -0.40750394
##  [74,] -0.08126035  0.10424234
##  [75,] -0.08605287  2.17101513
##  [76,] -0.75823328 -0.07046082
##  [77,] -0.60955093  1.36886226
##  [78,]  0.06991938 -0.33766851
##  [79,]  0.93413784 -1.40506862
##  [80,] -1.21297215 -1.94028602
##  [81,] -0.70803942  0.54642946
##  [82,] -0.26110609  1.52227979
##  [83,] -0.82333192  2.24389360
##  [84,]  0.70419227 -1.79976830
##  [85,] -1.39547480 -0.77399584
##  [86,]  0.47921505  1.91765860
##  [87,]  0.97954714 -1.10773682
##  [88,]  0.48614059  0.25414120
##  [89,] -0.76251065 -0.42179171
##  [90,] -0.12336256  0.36290942
##  [91,]  0.25514110 -1.79263378
##  [92,]  0.03541405 -0.85993239
##  [93,]  0.36140969 -2.21335606
##  [94,]  1.53278476  1.84296537
##  [95,]  0.26525280  0.27950060
##  [96,]  2.45286948 -1.60666185
##  [97,] -0.05597037  1.51916992
##  [98,]  1.28414412  0.02525961
##  [99,] -0.71641574 -0.13816356
## [100,]  0.04719622 -0.20425006
## [101,]  0.82432694 -0.84767865
## [102,]  0.13434943 -0.26347004
## [103,] -0.85866218 -0.24362687

We calculate factor scores with varimax using WLS

stock.fa = factanal(stock, factors = 2, rotation = "varimax", scores = "Bartlett")
stock.fa$scores
##            Factor1      Factor2
##   [1,]  0.25089936 -1.853670704
##   [2,]  0.44303382  0.247877831
##   [3,] -0.48078772 -0.098356805
##   [4,]  0.79921292 -1.314978954
##   [5,] -0.09859658  0.958816349
##   [6,] -0.47081640  0.412851650
##   [7,]  0.95854964  0.881739462
##   [8,]  1.03632812 -0.035576617
##   [9,] -1.07061981 -1.148516016
##  [10,]  0.55016716 -0.977892504
##  [11,] -0.38455811 -0.448689098
##  [12,]  0.95063293  1.103464002
##  [13,] -0.49050325  0.896699647
##  [14,] -2.32247360  1.521579416
##  [15,] -0.79322937 -1.036081606
##  [16,] -0.87303590  0.219040848
##  [17,] -2.02544295  1.243894726
##  [18,] -0.51699805 -0.323870948
##  [19,]  0.45745434 -0.932794556
##  [20,]  1.08613951  1.055725397
##  [21,]  0.18913545 -0.094482385
##  [22,]  0.66432269  0.336544054
##  [23,] -0.46301158  1.066608820
##  [24,] -0.41688513 -0.216357723
##  [25,] -0.40874286 -1.028942294
##  [26,] -1.34076354  0.540995211
##  [27,] -1.25243750  0.083560710
##  [28,]  0.77018393 -2.104791538
##  [29,]  0.66554575  0.346105681
##  [30,] -1.37643257 -0.696751143
##  [31,]  1.16998840  0.569219630
##  [32,]  2.30781949  0.185514511
##  [33,]  1.20700718 -0.273910102
##  [34,]  0.13030502  0.694131438
##  [35,]  0.19356598 -0.323631250
##  [36,] -0.31326873  0.314486112
##  [37,] -1.86859506 -0.887069856
##  [38,]  1.09224046  0.477356145
##  [39,] -0.43080038  0.385947479
##  [40,] -1.07083942  0.056224054
##  [41,] -2.35448128  0.323577356
##  [42,]  2.54040794  0.563075854
##  [43,]  2.09787430  0.424141269
##  [44,]  0.62928967  0.726075360
##  [45,] -2.44515145 -0.004550238
##  [46,]  0.33201728  1.012212775
##  [47,]  0.29980182 -0.380464269
##  [48,]  0.22314315 -0.823729074
##  [49,]  0.60411282 -0.216067308
##  [50,]  1.61710621  0.738003971
##  [51,] -0.59629461  0.058648422
##  [52,]  0.31186044 -1.168899577
##  [53,] -1.56631713  0.454380859
##  [54,] -0.49825292  0.187167836
##  [55,]  0.27457347  0.723672748
##  [56,]  1.43012026  1.611397733
##  [57,] -0.54220460 -0.253642581
##  [58,] -1.51555992  1.651310560
##  [59,] -0.03369184  0.421815741
##  [60,]  0.23651630  1.176966545
##  [61,] -1.18682255 -1.042729714
##  [62,] -0.74421957 -0.436731312
##  [63,] -2.11191814 -1.822718609
##  [64,] -0.13723503  0.449556626
##  [65,]  0.72741900  0.492194343
##  [66,] -0.01496820 -1.503897281
##  [67,]  0.62007483  0.525276622
##  [68,]  1.49495164 -0.808428134
##  [69,] -0.17563145  0.135601649
##  [70,] -0.94571088 -1.859563091
##  [71,]  2.65863729  0.114295004
##  [72,] -0.87536213  1.092103711
##  [73,]  0.21406621 -0.415235898
##  [74,] -0.10220623  0.107245952
##  [75,] -0.16275236  2.191071384
##  [76,] -0.92607905 -0.050977159
##  [77,] -0.78219858  1.396199553
##  [78,]  0.09450269 -0.342283715
##  [79,]  1.18039339 -1.441290076
##  [80,] -1.43312862 -1.924084212
##  [81,] -0.88097181  0.569637161
##  [82,] -0.35982281  1.541654635
##  [83,] -1.06697949  2.284053007
##  [84,]  0.90942337 -1.833138440
##  [85,] -1.68733626 -0.743414181
##  [86,]  0.53573854  1.920684612
##  [87,]  1.22809978 -1.142724675
##  [88,]  0.58822613  0.243360596
##  [89,] -0.92201857 -0.405072109
##  [90,] -0.16057547  0.369145289
##  [91,]  0.35967551 -1.814064875
##  [92,]  0.06609189 -0.867911766
##  [93,]  0.50086056 -2.241044227
##  [94,]  1.82709743  1.817505223
##  [95,]  0.31722765  0.274771739
##  [96,]  3.04438550 -1.684715573
##  [97,] -0.10869074  1.533091989
##  [98,]  1.57089666 -0.008508333
##  [99,] -0.87311056 -0.120340723
## [100,]  0.06316369 -0.207171446
## [101,]  1.03125734 -0.876430074
## [102,]  0.17139057 -0.269182237
## [103,] -1.04440475 -0.222904296

We calculate factor scores without rotation using WLS

stock.fa = factanal(stock, factors = 2, rotation = "none", scores = "Bartlett")
stock.fa$scores
##            Factor1     Factor2
##   [1,] -1.81015485  0.47157713
##   [2,]  0.29926209  0.41007876
##   [3,] -0.15535353 -0.46550636
##   [4,] -1.20954479  0.95126882
##   [5,]  0.94005033 -0.21296820
##   [6,]  0.35335600 -0.51696625
##   [7,]  0.99041738  0.84578680
##   [8,]  0.08906855  1.03310622
##   [9,] -1.26871680 -0.92502622
##  [10,] -0.90478765  0.66356384
##  [11,] -0.49160291 -0.32792290
##  [12,]  1.20958875  0.81131426
##  [13,]  0.83134309 -0.59458588
##  [14,]  1.23181833 -2.48831492
##  [15,] -1.12380072 -0.66313639
##  [16,]  0.11266891 -0.89301528
##  [17,]  0.99179302 -2.16010181
##  [18,] -0.38358357 -0.47438699
##  [19,] -0.87114383  0.56610828
##  [20,]  1.17845980  0.95157115
##  [21,] -0.07109786  0.19910860
##  [22,]  0.41384808  0.61912543
##  [23,]  1.00332367 -0.58768675
##  [24,] -0.26483129 -0.38790239
##  [25,] -1.07056403 -0.28228641
##  [26,]  0.37615550 -1.39600492
##  [27,] -0.06737044 -1.25341267
##  [28,] -1.99713174  1.01724899
##  [29,]  0.42348738  0.61919199
##  [30,] -0.85692391 -1.28285237
##  [31,]  0.70553538  1.09320798
##  [32,]  0.46117536  2.26886837
##  [33,] -0.12705572  1.23115796
##  [34,]  0.70475345  0.04604807
##  [35,] -0.29805832  0.23101129
##  [36,]  0.27461166 -0.34875098
##  [37,] -1.10493980 -1.74861330
##  [38,]  0.60500412  1.02704826
##  [39,]  0.33144936 -0.47401027
##  [40,] -0.07271269 -1.06984629
##  [41,]  0.03863536 -2.37629790
##  [42,]  0.86392417  2.45445757
##  [43,]  0.67287776  2.03179918
##  [44,]  0.79635836  0.53759118
##  [45,] -0.29800298 -2.42692822
##  [46,]  1.04474627  0.20812352
##  [47,] -0.34172923  0.34330063
##  [48,] -0.79099064  0.32040016
##  [49,] -0.14199506  0.62567946
##  [50,]  0.92676597  1.51683459
##  [51,] -0.01334738 -0.59902316
##  [52,] -1.12301723  0.44990606
##  [53,]  0.26309467 -1.60953176
##  [54,]  0.12601062 -0.51711613
##  [55,]  0.75139739  0.18572776
##  [56,]  1.77140211  1.22636910
##  [57,] -0.31688840 -0.50784066
##  [58,]  1.45746350 -1.70280609
##  [59,]  0.41472230 -0.08407779
##  [60,]  1.19684621  0.09353796
##  [61,] -1.17764281 -1.05308615
##  [62,] -0.52290087 -0.68641947
##  [63,] -2.06302981 -1.87787363
##  [64,]  0.42983459 -0.19020210
##  [65,]  0.57594640  0.66308326
##  [66,] -1.49482154  0.16564917
##  [67,]  0.59590525  0.55254434
##  [68,] -0.62314821  1.58117765
##  [69,]  0.11354071 -0.19063767
##  [70,] -1.95963088 -0.71567504
##  [71,]  0.43257854  2.62569827
##  [72,]  0.97914080 -1.00011633
##  [73,] -0.38654012  0.26235840
##  [74,]  0.09420306 -0.11433981
##  [75,]  2.15569638 -0.42456477
##  [76,] -0.16176366 -0.91326535
##  [77,]  1.29222040 -0.94412618
##  [78,] -0.32846626  0.13490297
##  [79,] -1.28919058  1.34485438
##  [80,] -2.08218913 -1.19182470
##  [81,]  0.45977808 -0.94297505
##  [82,]  1.48732067 -0.54226258
##  [83,]  2.13947360 -1.33341520
##  [84,] -1.71072997  1.12287594
##  [85,] -0.94056662 -1.58590755
##  [86,]  1.97110254  0.30133030
##  [87,] -0.98705755  1.35637979
##  [88,]  0.31220460  0.55476359
##  [89,] -0.51281133 -0.86673306
##  [90,]  0.34720309 -0.20372222
##  [91,] -1.75777921  0.57481309
##  [92,] -0.85370440  0.16978744
##  [93,] -2.16472564  0.76622676
##  [94,]  2.02366777  1.59573776
##  [95,]  0.31086136  0.28195408
##  [96,] -1.30712576  3.22458864
##  [97,]  1.50896270 -0.29191830
##  [98,]  0.18010412  1.56056119
##  [99,] -0.22426808 -0.85235425
## [100,] -0.19809233  0.08757334
## [101,] -0.74631464  1.12899771
## [102,] -0.24666460  0.20246081
## [103,] -0.34665021 -1.01009961

We calculate factor scores without rotation using regression

stock.fa = factanal(stock, factors = 2, rotation = "none", scores = "regression")
stock.fa$scores
##            Factor1     Factor2
##   [1,] -1.80116560  0.38432667
##   [2,]  0.29777596  0.33420663
##   [3,] -0.15458204 -0.37937911
##   [4,] -1.20353818  0.77526656
##   [5,]  0.93538203 -0.17356516
##   [6,]  0.35160124 -0.42131797
##   [7,]  0.98549896  0.68930066
##   [8,]  0.08862623  0.84196254
##   [9,] -1.26241634 -0.75387933
##  [10,] -0.90029446  0.54079231
##  [11,] -0.48916160 -0.26725112
##  [12,]  1.20358192  0.66120618
##  [13,]  0.82721463 -0.48457654
##  [14,]  1.22570111 -2.02793082
##  [15,] -1.11821992 -0.54044394
##  [16,]  0.11210939 -0.72779101
##  [17,]  0.98686777 -1.76044319
##  [18,] -0.38167869 -0.38661666
##  [19,] -0.86681772  0.46136782
##  [20,]  1.17260755  0.77551296
##  [21,] -0.07074478  0.16226984
##  [22,]  0.41179291  0.50457582
##  [23,]  0.99834115 -0.47895387
##  [24,] -0.26351614 -0.31613330
##  [25,] -1.06524760 -0.23005823
##  [26,]  0.37428751 -1.13771829
##  [27,] -0.06703588 -1.02150824
##  [28,] -1.98721397  0.82903919
##  [29,]  0.42138434  0.50463007
##  [30,] -0.85266841 -1.04550105
##  [31,]  0.70203168  0.89094437
##  [32,]  0.45888515  1.84908593
##  [33,] -0.12642476  1.00337106
##  [34,]  0.70125364  0.03752833
##  [35,] -0.29657816  0.18826994
##  [36,]  0.27324794 -0.28422563
##  [37,] -1.09945266 -1.42508763
##  [38,]  0.60199966  0.83702541
##  [39,]  0.32980338 -0.38630964
##  [40,] -0.07235160 -0.87190502
##  [41,]  0.03844349 -1.93663902
##  [42,]  0.85963392  2.00033771
##  [43,]  0.66953624  1.65587891
##  [44,]  0.79240364  0.43812691
##  [45,] -0.29652309 -1.97790179
##  [46,]  1.03955805  0.16961683
##  [47,] -0.34003220  0.27978369
##  [48,] -0.78706257  0.26112023
##  [49,] -0.14128991  0.50991723
##  [50,]  0.92216365  1.23619225
##  [51,] -0.01328110 -0.48819284
##  [52,] -1.11744031  0.36666516
##  [53,]  0.26178814 -1.31173874
##  [54,]  0.12538485 -0.42144012
##  [55,]  0.74766594  0.15136470
##  [56,]  1.76260531  0.99946823
##  [57,] -0.31531473 -0.41388078
##  [58,]  1.45022572 -1.38775560
##  [59,]  0.41266278 -0.06852185
##  [60,]  1.19090266  0.07623171
##  [61,] -1.17179462 -0.85824581
##  [62,] -0.52030414 -0.55941922
##  [63,] -2.05278479 -1.53043241
##  [64,]  0.42770003 -0.15501120
##  [65,]  0.57308625  0.54040064
##  [66,] -1.48739824  0.13500103
##  [67,]  0.59294598  0.45031346
##  [68,] -0.62005365  1.28863066
##  [69,]  0.11297686 -0.15536619
##  [70,] -1.94989934 -0.58326198
##  [71,]  0.43043035  2.13989572
##  [72,]  0.97427838 -0.81507638
##  [73,] -0.38462056  0.21381726
##  [74,]  0.09373524 -0.09318484
##  [75,]  2.14499118 -0.34601247
##  [76,] -0.16096034 -0.74429443
##  [77,]  1.28580322 -0.76944545
##  [78,] -0.32683510  0.10994344
##  [79,] -1.28278844  1.09603155
##  [80,] -2.07184896 -0.97131518
##  [81,]  0.45749482 -0.76850730
##  [82,]  1.47993462 -0.44193401
##  [83,]  2.12884895 -1.08670883
##  [84,] -1.70223447  0.91512321
##  [85,] -0.93589575 -1.29248544
##  [86,]  1.96131402  0.24557865
##  [87,] -0.98215582  1.10542454
##  [88,]  0.31065419  0.45212211
##  [89,] -0.51026470 -0.70637148
##  [90,]  0.34547887 -0.16602986
##  [91,] -1.74905006  0.46846208
##  [92,] -0.84946489  0.13837364
##  [93,] -2.15397559  0.62446069
##  [94,]  2.01361822  1.30049688
##  [95,]  0.30931762  0.22978738
##  [96,] -1.30063456  2.62798035
##  [97,]  1.50146918 -0.23790804
##  [98,]  0.17920972  1.27182862
##  [99,] -0.22315437 -0.69465302
## [100,] -0.19710860  0.07137066
## [101,] -0.74260843  0.92011234
## [102,] -0.24543966  0.16500183
## [103,] -0.34492874 -0.82321258