library(readxl)
webinarium <- read_excel("webinarium.xlsx")
str(webinarium)
## Classes 'tbl_df', 'tbl' and 'data.frame': 82 obs. of 8 variables:
## $ student : chr "Айлана Смагулова" "Алина Аухадиева " "Алина Климентьева" "Алина Морозова" ...
## $ scores1_max31 : num 7 0 9 5 9 3 11 9 12 12 ...
## $ quizlet : chr "yes" "no" "yes" "yes" ...
## $ nastavnik : chr "Лина Сергиенко" "Дмитрий Бушин" "Даша Фрасова" "Дарья Курбанова" ...
## $ scores2_max31 : num 29 23 24 13 17 15 25 24 28 24 ...
## $ perindex : num 22 23 15 8 8 12 14 15 16 12 ...
## $ testsavg_max31: num 21 25 17 16 19.5 22.5 26 14 0 19 ...
## $ openavg_max25 : num 16 13 10 5 8.5 10 11 15 0 10.5 ...
webinarium$perindex[webinarium$quizlet == "no"] <- webinarium$perindex[webinarium$quizlet == "no"] * 1.41
webinarium$testsavg_max31[webinarium$quizlet == "no"] <- webinarium$testsavg_max31[webinarium$quizlet == "no"] * 1.41
webinarium$openavg_max25[webinarium$quizlet == "no"] <- webinarium$openavg_max25[webinarium$quizlet == "no"] * 1.41
webinarium$perindex[webinarium$quizlet == "yes"] <- webinarium$perindex[webinarium$quizlet == "yes"] * 0.77
webinarium$testsavg_max31[webinarium$quizlet == "yes"] <- webinarium$testsavg_max31[webinarium$quizlet == "yes"] * 0.77
webinarium$openavg_max25[webinarium$quizlet == "yes"] <- webinarium$openavg_max25[webinarium$quizlet == "yes"] * 0.77
library(ggplot2)
ggplot(webinarium, aes(y = perindex, x = quizlet)) +
geom_boxplot(fill = c("skyblue", "salmon")) +
stat_summary(fun.y = mean, geom = "point", shape = 4, size = 4) +
theme_classic()

ggplot(webinarium, aes(y = testsavg_max31, x = quizlet)) +
geom_boxplot(fill = c("skyblue", "salmon")) +
stat_summary(fun.y = mean, geom = "point", shape = 4, size = 4) +
theme_classic()

ggplot(webinarium, aes(y = openavg_max25, x = quizlet)) +
geom_boxplot(fill = c("skyblue", "salmon")) +
stat_summary(fun.y = mean, geom = "point", shape = 4, size = 4) +
theme_classic()

tper <- t.test(perindex~quizlet, data=webinarium)
tper
##
## Welch Two Sample t-test
##
## data: perindex by quizlet
## t = 5.4204, df = 36.945, p-value = 3.842e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 5.829307 12.789561
## sample estimates:
## mean in group no mean in group yes
## 21.15000 11.84057
tnotopen <- t.test(testsavg_max31~quizlet, data=webinarium)
tnotopen
##
## Welch Two Sample t-test
##
## data: testsavg_max31 by quizlet
## t = 6.9508, df = 37.05, p-value = 3.274e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 9.312979 16.976045
## sample estimates:
## mean in group no mean in group yes
## 28.37017 15.22566
topen <- t.test(openavg_max25~quizlet, data=webinarium)
topen
##
## Welch Two Sample t-test
##
## data: openavg_max25 by quizlet
## t = 4.8072, df = 37.819, p-value = 2.444e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 4.30239 10.56382
## sample estimates:
## mean in group no mean in group yes
## 17.55207 10.11896