setwd('D:/Rml')
library('BMA')
## Loading required package: survival
## Loading required package: leaps
## Loading required package: robustbase
##
## Attaching package: 'robustbase'
## The following object is masked from 'package:survival':
##
## heart
## Loading required package: inline
## Loading required package: rrcov
## Scalable Robust Estimators with High Breakdown Point (version 1.5-2)
q = read.csv('diamonds.csv')
head(q)
## X carat cut color clarity depth table price x y z
## 1 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 4 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
## 5 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
attach(q)
t = cbind(carat,cut,color,clarity,depth,table,x,y,z)
p = price
s = bicreg(t,p, strict=FALSE, OR=20)
## Warning in model.matrix.default(formula(cdf), data = cdf): the response appeared
## on the right-hand side and was dropped
## Warning in model.matrix.default(formula(cdf), data = cdf): problem with term 8
## in model.matrix: no columns are assigned
summary(s)
##
## Call:
## bicreg(x = t, y = p, strict = FALSE, OR = 20)
##
##
## 1 models were selected
## Best 1 models (cumulative posterior probability = 1 ):
##
## p!=0 EV SD model 1
## Intercept 100 15948.10 386.849 15948.10
## carat 100 10982.14 57.559 10982.14
## cut 100 70.99 5.810 70.99
## color 100 -266.47 3.590 -266.47
## clarity 100 287.88 3.488 287.88
## depth 100 -154.70 4.456 -154.70
## table 100 -93.55 2.805 -93.55
## x 100 -1140.54 24.245 -1140.54
## z 0 0.00 0.000 .
##
## nVar 7
## r2 0.885
## BIC -116614.56
## post prob 1
Select model 1
=> model1: price = 15948.1 + 10982.14.carat + 70.99.cut - 266.47.color + 287.88.clarity - 154.7.depth - 93.55.table - 1140.54.x
With the first observation, we have: price = 141.1092
CONCLUSION:
The model can explain 88.3% the differences of price in reality.
Khong tinh duoc cac so: carat.1, cut.1, v.vā¦
Mo hinh tien doan khong dung voi thuc te
Tai sao tren Output chi chon 1 mo hinh nhung khong giong voi cac mo hinh tren RMarkdown?