CORRELACION
corrm <- cor(cat[,3:56])
catnum <- cat[,3:56]
#write.xlsx(corrm, file = "corr.xlsx")
HIER
hh <- dist(catnum, method = "euclidean")
hc <- hclust(hh, method = "ward.D2")
hc5 <- cutree(hc, k = 5)
table(hc5)
## hc5
## 1 2 3 4 5
## 119 66 130 229 61
cat$hc5 <- hc5
#write_xlsx(cat, "catK.xlsx")
K1 <- subset(cat, hc5 == "1")
K1[,1:2]
## # A tibble: 119 x 2
## CIUDAD BARRIO
## <chr> <chr>
## 1 Austin Barton Hills
## 2 Austin East Riverside
## 3 Austin Galindo
## 4 Austin Travis Heights
## 5 Austin Zilker
## 6 Bangkok Chinatown
## 7 Bangkok Din Daeng/Huai Khwang
## 8 Bangkok Monumento a la Victoria
## 9 Bangkok Phra Khanong
## 10 Bangkok Thonburi
## # ... with 109 more rows
K2 <- subset(cat, hc5 == "2")
K2[,1:2]
## # A tibble: 66 x 2
## CIUDAD BARRIO
## <chr> <chr>
## 1 Austin Bouldin Creek
## 2 Austin South Lamar
## 3 Bangkok Bang Na
## 4 Bangkok Chatuchak
## 5 Bangkok Klong Toey
## 6 Bangkok Ratchathewi/Phaya Thai
## 7 Bangkok Siam
## 8 Barcelona Nou Barris
## 9 Barcelona Sant Pere/Santa Caterina
## 10 BerlÃn Mitte
## # ... with 56 more rows
K3 <- subset(cat, hc5 == "3")
K3[,1:2]
## # A tibble: 130 x 2
## CIUDAD BARRIO
## <chr> <chr>
## 1 Austin Centro
## 2 Austin Clarksville
## 3 Austin East Downtown
## 4 Austin North Loop
## 5 Austin Old West Austin
## 6 Bangkok Aree
## 7 Bangkok Thong Lo
## 8 Barcelona El Poble-sec
## 9 Barcelona El Raval
## 10 Boston Brookline
## # ... with 120 more rows
K4 <- subset(cat, hc5 == "4")
K4[,1:2]
## # A tibble: 229 x 2
## CIUDAD BARRIO
## <chr> <chr>
## 1 Austin Dawson
## 2 Austin Hyde Park
## 3 Austin Parker Lane
## 4 Austin South Congress
## 5 Austin St. Edwards
## 6 Austin Upper Boggy Creek
## 7 Bangkok Banglampoo
## 8 Bangkok Dusit
## 9 Bangkok Pathum Wan
## 10 Bangkok Sathorn
## # ... with 219 more rows
K5 <- subset(cat, hc5 == "5")
K5[,1:2]
## # A tibble: 61 x 2
## CIUDAD BARRIO
## <chr> <chr>
## 1 Austin Hancock
## 2 Austin Universidad de Texas
## 3 Bangkok Upper Sukhumvit
## 4 Barcelona El Born
## 5 Barcelona L'Antiga Esquerra de l'Eixample
## 6 Barcelona Les Corts
## 7 Barcelona Sant Andreu
## 8 BerlÃn Prenzlauer Berg
## 9 Boston Allston-Brighton
## 10 Boston Cambridge
## # ... with 51 more rows
fviz_cluster(list(data = cat[,3:57], cluster = hc5))
plot(hc, cex = 0.6)
rect.hclust(hc, k = 5, border = 2:5)