library(Matrix)
#install.packages('lmerTest')
library(lmerTest)
## Loading required package: lme4
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
library(lme4)
library(broom)
library(tm)
## Loading required package: NLP
library(tidytext)
library(stringr)
library(tidyr)
##
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
##
## expand, pack, unpack
library(topicmodels)
library(tidyverse)
## ── Attaching packages ──────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.0 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.5
## ✓ readr 1.3.1 ✓ forcats 0.4.0
## ── Conflicts ─────────────────────────────────────────────────── tidyverse_conflicts() ──
## x ggplot2::annotate() masks NLP::annotate()
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x tidyr::unpack() masks Matrix::unpack()
library(broom.mixed)
## Registered S3 methods overwritten by 'broom.mixed':
## method from
## augment.lme broom
## augment.merMod broom
## glance.lme broom
## glance.merMod broom
## glance.stanreg broom
## tidy.brmsfit broom
## tidy.gamlss broom
## tidy.lme broom
## tidy.merMod broom
## tidy.rjags broom
## tidy.stanfit broom
## tidy.stanreg broom
##
## Attaching package: 'broom.mixed'
## The following object is masked from 'package:broom':
##
## tidyMCMC
library(purrr)
library(furrr)
## Loading required package: future
#install.packages("dplyr")
library(dplyr)
The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
# use this chunk to answer question 1
fit <- lmer(resp2 ~ elevation + slope + (1|stand))
options(scipen=100,digits=4)
summary(fit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: resp2 ~ elevation + slope + (1 | stand)
##
## REML criterion at convergence: 82
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6558 -0.6247 -0.0169 0.5367 1.4174
##
## Random effects:
## Groups Name Variance Std.Dev.
## stand (Intercept) 1.21 1.10
## Residual 1.36 1.17
## Number of obs: 20, groups: stand, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -21.31463 6.60205 3.00131 -3.23 0.048 *
## elevation 0.02060 0.00492 3.11348 4.19 0.023 *
## slope 0.09511 0.01644 15.86803 5.78 0.000029 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) elevtn
## elevation -0.991
## slope 0.049 -0.148
Intercept value is -21.3, elevation 0.02. Model estimated parameters are quite different from initial parameters
# use this chunk to answer question 2
library(purrr)
set.seed(16)
fitmod = function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep(rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand * nplot, 0, sd)
elevation <- rep(runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand * nplot, 2, 75)
resp2 = b0 + b1 * elevation + b2 * slope + standeff + ploteff
dat = data.frame(resp2, elevation, slope, stand)
lmer(resp2 ~ 1 + elevation + slope + (1|stand), data = dat)
}
fitmod()
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## Data: dat
## REML criterion at convergence: 81.99
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 1.10
## Residual 1.17
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## -21.3146 0.0206 0.0951
sim_R = replicate(n=1000, expr = fitmod())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
#variances <- sim_R %>% map_dfr (tidy, effects = "ran_pars", scales = "vcov")
#variances <- sim_R %>% map(`[[`, 1) %>% map_dfr(tidy, effects = "ran_pars", #scales = "vcov")
variances=sim_R %>% map_dfr(tidy,effects="ran_pars",scales="vcov")
variances %>% print(n = 6)
## # A tibble: 2,000 x 4
## effect group term estimate
## <chr> <chr> <chr> <dbl>
## 1 ran_pars stand var__(Intercept) 5.56
## 2 ran_pars Residual var__Observation 0.951
## 3 ran_pars stand var__(Intercept) 2.61
## 4 ran_pars Residual var__Observation 1.11
## 5 ran_pars stand var__(Intercept) 9.73
## 6 ran_pars Residual var__Observation 1.36
## # … with 1,994 more rows
# use this chunk to answer question 4
stand_sims <- c(20, 60, 200) %>%
set_names(c("sample1_20","sample2_60", "sample3_200")) %>%
map(~replicate(n = 1000, expr = fitmod(nstand = .x)))
stand_vars = stand_sims %>%
modify_depth(2, ~tidy(.x, effects = "ran_pars", scales = "vcov")) %>%
map_dfr(bind_rows, .id = "id")
#%>%
#filter(group == "stand")
ggplot(stand_vars, aes(x = estimate)) +
geom_density(fill = "blue", alpha = 0.25) +
facet_wrap(~id) +
geom_vline(xintercept = 4)
# use this chunk to answer question 5
simsest <- sim_R %>%
future_map(tidy, effects = "fixed") %>%
bind_rows()
simsest %>%
dplyr::filter(term %in% c("elevation", "slope")) %>%
group_by(term) %>%
mutate(x = 1 : 1000) %>%
ungroup() %>%
mutate(real_value = ifelse(term == "elevation", 0.005, 0.1)) %>%
ggplot(aes(x = x, y = estimate)) +
geom_line() +
facet_wrap(~term) +
geom_hline(aes(yintercept = real_value, color = term), linetype = 4, size = 0.5) +
theme_bw()