Home

Column

Casos Totales en Chile

46059

Casos Nuevos en Chile

2018

Incidencia por Millón de Habitantes

2290.3

Región con Mayor Casos en Chile

Metropolitana

Column

Muertes Totales en Chile

478

Casos Activos a la Fecha

25416

Mortalidad por Millón de Habitantes

23.5

Comuna con Mayor Casos en Chile

Santiago

Column

Test Totales en Chile

381011

Casos Recuperados a la Fecha

20165

Letalidad %

1

País con Mayor Casos

Estados Unidos de América

Comparativo

Column

Lineal

Logarítmico

Casos

Muertes

Casos

Column

Lineal

Logarítmico

Muertes

Column

Lineal

Logarítmico

Casos Totales

Casos UCI

Fallecidos Totales

Gráfico

Gráfico

Puntual

Acumulada

Diarios

Totales

Mapas

Column

Chile

Tablas

Column

Top Casos Confirmados por Comuna

Top Casos Confirmados por Región

Top Casos Confirmados por País

Column

---
title: "Covid19 Chile"
output: 
  flexdashboard::flex_dashboard:
    source_code: embed
    orientation: column
    vertical_layout: fill
    theme: flatly
---

```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(highcharter)
library(DT)
library(reshape)
library(data.table)
corona_cases<-read.csv("https://covid.ourworldindata.org/data/owid-covid-data.csv", header = TRUE, sep = ",")
population<-read.csv("https://covid.ourworldindata.org/data/ecdc/locations.csv", header = TRUE, sep = ",")
corona_total<-merge(population, corona_cases, by = "location")
corona_total<-filter(corona_total, corona_total$total_cases >= 1|corona_total$total_deaths >=1)
corona_total<-mutate(corona_total, 
                     incidenciaX1000 = corona_total$new_cases/corona_total$population.x * 1000, 
                     mortalidadX1000 = corona_total$new_deaths/corona_total$population.x * 1000,
                     incidenciaX1000000 = corona_total$total_cases/corona_total$population.x * 1000000,
                     mortalidadX1000000 = corona_total$total_deaths/corona_total$population.x * 1000000,
                     letalidad = corona_total$new_deaths/corona_total$new_cases * 100, 
                     letalidad_acumulada = corona_total$total_deaths/corona_total$total_cases * 100,
                     total_cases_log = log10(corona_total$total_cases)
                     )
target<-c("United States",
          "Italy",
          "Argentina",
          "Brazil",
          "Bolivia",
          "Colombia",
          "Ecuador",
          "Paraguay",
          "Peru",
          "Uruguay",
          "Venezuela",
          "Germany",
          "France",
          "Spain",
          "China",
          "South Korea",
          "Japan"
          )
target2<-c("Chile")
target3<-c("United States",
           "Italy",
           "Argentina",
           "Brazil",
           "Bolivia",
           "Colombia",
           "Ecuador",
           "Paraguay",
           "Peru",
           "Uruguay",
           "Venezuela",
           "Germany",
           "France",
           "Spain",
           "China",
           "South Korea",
           "Japan",
           "Chile")
corona_dinamic_graph<-filter(corona_total, corona_total$location %in% target)
corona_dinamic_graph2<-filter(corona_total, corona_total$location %in% target2)
corona_table<-filter(corona_total, corona_total$location %in% target3)
corona_dinamic_graph<-arrange(corona_dinamic_graph, corona_dinamic_graph$date)
corona_dinamic_graph2<-arrange(corona_dinamic_graph2, corona_dinamic_graph2$date)
corona_dinamic_graph<-mutate(corona_dinamic_graph, new_date = as.Date(corona_dinamic_graph$date))
corona_dinamic_graph2<-mutate(corona_dinamic_graph2, new_date = as.Date(corona_dinamic_graph2$date))
total_casos_chile<-max(corona_dinamic_graph2$total_cases, na.rm = TRUE)
total_muertes_chile<-max(corona_dinamic_graph2$total_deaths, na.rm = TRUE)
total_test_chile<-max(corona_dinamic_graph2$total_tests, na.rm = TRUE)
incidencia_chile<-round(last(corona_dinamic_graph2$incidenciaX1000000), 1)
mortalidad_chile<-round(last(corona_dinamic_graph2$mortalidadX1000000), 1)
letalidad_chile<-round(last(corona_dinamic_graph2$letalidad_acumulada), 1)
chile_totales_nacionales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto5/TotalesNacionales.csv", header = TRUE, sep = ",", check.names = TRUE)
recuperados<-chile_totales_nacionales[3,ncol(chile_totales_nacionales)]
activos<-chile_totales_nacionales[5,ncol(chile_totales_nacionales)]
casos_totales<-chile_totales_nacionales[2,ncol(chile_totales_nacionales)]
muertes_totales<-chile_totales_nacionales[4,ncol(chile_totales_nacionales)]
casos_nuevos<-chile_totales_nacionales[1,ncol(chile_totales_nacionales)]
regiones_nuevo<-c("Arica y Parinacota", "Tarapaca", "Antofagasta", "Atacama", "Coquimbo", "Valparaiso", 
              "Metropolitana", "OHiggins", "Maule", "Nuble", "Biobio", "Araucania", "Los Rios", "Los Lagos", "Aysen", "Magallanes", "Total")
corona_cases_chile<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto3/CasosTotalesCumulativo.csv", header = TRUE, sep = ",")
corona_cases_chile<-cbind.data.frame(corona_cases_chile, regiones_nuevo)
col_idx <- grep("regiones_nuevo", names(corona_cases_chile))
corona_cases_chile <-corona_cases_chile[, c(col_idx, (1:ncol(corona_cases_chile))[-col_idx])]
names(corona_cases_chile)<-sub("^X", "", names(corona_cases_chile))
mapdata<-get_data_from_map(download_map_data("countries/cl/cl-all"))
mapdata<-mutate(mapdata, regiones_codigo = mapdata$`hc-a2`)
regiones_code<-data.frame("regiones_codigo"=c("AY", "TA", "AN", "AT", "CO", "VS", "RM", "LI", "ML", "ML","BI", "LA", "AR", "LL", "AI", "MA", "TO"))
corona_cases_chile<-cbind(corona_cases_chile, regiones_code)
col_idx <- grep("regiones_codigo", names(corona_cases_chile))
corona_cases_chile <-corona_cases_chile[, c(col_idx, (1:ncol(corona_cases_chile))[-col_idx])]
corona_cases_chile <- corona_cases_chile[-nrow(corona_cases_chile),]
mapdata<-merge(mapdata, corona_cases_chile, by = "regiones_codigo")
data_fake <- mapdata %>%
  select(code = regiones_codigo) %>% 
  mutate(value = mapdata[,ncol(mapdata)])
comunas_region_totales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto1/Covid-19.csv", header = TRUE, sep = ",")
names(comunas_region_totales)<-sub("^X", "", names(comunas_region_totales))
comunas_region_totales<-select(comunas_region_totales, -Tasa)
casos_por_comuna<-comunas_region_totales[,ncol(comunas_region_totales)]
nombre_comunas<-comunas_region_totales$Comuna
top_comunas<-cbind.data.frame(nombre_comunas, casos_por_comuna)
top_comunas<-arrange(top_comunas, -top_comunas$casos_por_comuna)
names(top_comunas)[names(top_comunas) == "casos_por_comuna"] <- "Casos"
names(top_comunas)[names(top_comunas) == "nombre_comunas"] <- "Comuna"
region_new<-c("Arica y Parinacota", "Tarapaca", "Antofagasta", "Atacama", "Coquimbo", "Valparaiso", 
              "Metropolitana", "OHiggins", "Maule", "Nuble", "Biobio", "Araucania", "Los Rios", "Los Lagos", "Aysen", "Magallanes", "Total")
region_totales<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto3/CasosTotalesCumulativo.csv", header = TRUE, sep = ",")
region_totales<-cbind.data.frame(region_totales, region_new)
col_idx <- grep("region_new", names(region_totales))
region_totales <- region_totales[, c(col_idx, (1:ncol(region_totales))[-col_idx])]
names(region_totales)<-sub("^X", "", names(region_totales))
casos_por_region<-region_totales[,ncol(region_totales)]
nombre_region<-region_totales$region_new
top_regiones<-cbind.data.frame(nombre_region, casos_por_region)
top_regiones<-arrange(top_regiones, -top_regiones$casos_por_region)
top_regiones<-top_regiones %>% slice(-1)
names(top_regiones)[names(top_regiones) == "casos_por_region"] <- "Casos"
names(top_regiones)[names(top_regiones) == "nombre_region"] <- "Región"
corona_cases<-read.csv("https://covid.ourworldindata.org/data/owid-covid-data.csv", header = TRUE, sep = ",")
iso_pais<-read.csv("https://gist.githubusercontent.com/brenes/1095110/raw/0d30463c80403c19384323d8267f48e8ef5e8e8d/paises.csv", header = TRUE, sep = ",",encoding = "UTF-8", stringsAsFactors = FALSE)
iso_pais = rename(iso_pais, c(iso3 = "iso_code"))
corona_cases<-mutate(corona_cases, new_date = as.Date(corona_cases$date))
corona_cases<-subset(corona_cases, corona_cases$new_date == Sys.Date())
corona_cases<-arrange(corona_cases, -corona_cases$total_cases)
corona_cases<-corona_cases %>% slice(-1)
corona_cases<-merge(iso_pais, corona_cases, by = "iso_code")
#corona_cases<-as.data.frame(corona_cases)
top_pais<-select(corona_cases, nombre, total_cases)
top_pais<-arrange(top_pais, -total_cases)
names(top_pais)[names(top_pais) == "total_cases"] <- "Casos"
names(top_pais)[names(top_pais) == "nombre"] <- "País"
chile_g4<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto5/TotalesNacionales.csv", header = TRUE, sep = ",", check.names = TRUE)
names(chile_g4)<-sub("^X", "", names(chile_g4))
chile_g4t<-transpose(chile_g4)
fecha<-c(colnames(chile_g4))
chile_g4t<-cbind.data.frame(fecha, chile_g4t)
chile_g4t<-chile_g4t %>% slice(-1)
fecha2<-chile_g4t$fecha
fecha2<-chartr(".", "-", fecha2)
fecha2<-as.Date(fecha2)
chile_g4t<-cbind.data.frame(fecha2, chile_g4t)
chile_g4t$V1<-as.numeric(as.character(chile_g4t$V1))#casos nuevos con sintomas
chile_g4t$V2<-as.numeric(as.character(chile_g4t$V2))#casos totales
chile_g4t$V3<-as.numeric(as.character(chile_g4t$V3))#casos recuperados
chile_g4t$V4<-as.numeric(as.character(chile_g4t$V4))#fallecidos
chile_g4t$V5<-as.numeric(as.character(chile_g4t$V5))#casos activos
chile_g4t$V6<-as.numeric(as.character(chile_g4t$V6))#casos nuevos sin sintomas
chile_g4t$V7<-as.numeric(as.character(chile_g4t$V7))#casos nuevos totales
datos_genero_edad<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto16/CasosGeneroEtario.csv", header = TRUE, sep = ",", check.names = FALSE)
grupo_edad<-sub(" años| y más años", "", datos_genero_edad$`Grupo de edad`)
grupo_edad<-sub("80", "80 y mas", grupo_edad)
datos_genero_edad<-cbind.data.frame(grupo_edad, datos_genero_edad)
datos_genero_edad<-select(datos_genero_edad, -'Grupo de edad')
f<-filter(datos_genero_edad, datos_genero_edad$Sexo == "F")
m<-filter(datos_genero_edad, datos_genero_edad$Sexo == "M")
fm<-select(f, +ncol(f)) + select(m, +ncol(m))
colnames(fm)<-c("Total")
grupo<-c(datos_genero_edad[1:17,1])
fm<-cbind(grupo, fm)

#pacientes UCI por grupo de edad

datos_uci_edad<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto9/HospitalizadosUCIEtario.csv", header = TRUE, sep = ",", check.names = FALSE)

#pacientes fallecidos por grupo de edad#

datos_fallecidos_edad<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto10/FallecidosEtario.csv", header = TRUE, sep = ",", check.names = FALSE)

datos_comuna_sem_epi<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto15/FechaInicioSintomasHistorico_std.csv", header = TRUE, sep = ",", check.names = FALSE)
#target_comunas<-c("Estacion Central", "Santiago", "Las Condes", "Ancud", "Dalcahue", "Castro", "Puente Alto")
target_comunas<-c(head(top_comunas$Comuna, n = 20L))
semana_epi<-read.csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto15/SemanasEpidemiologicas.csv", header =  TRUE, sep = ",", check.names = FALSE)
datos_comuna_sem_epi<-filter(datos_comuna_sem_epi, datos_comuna_sem_epi$Comuna %in% target_comunas)
datos_comuna_sem_epi<-mutate(datos_comuna_sem_epi, fecha_std = as.Date(datos_comuna_sem_epi$Publicacion))
semana_epi_t<-transpose(semana_epi)
names(semana_epi_t)<-c("Inicio", "Fin")
nombre_semanas<-colnames(semana_epi)
semana_epi_t<-cbind(nombre_semanas, semana_epi_t)
names(semana_epi_t)<-c("Semana Epidemiologica", "Fecha de Inicio", "Fecha de Fin")
datos_comuna_sem_epi<-merge(datos_comuna_sem_epi, semana_epi_t, by = "Semana Epidemiologica")
datos_comuna_sem_epi<-mutate(datos_comuna_sem_epi, f_inicio = as.Date.character(datos_comuna_sem_epi$`Fecha de Inicio`), f_termino = as.Date.character(datos_comuna_sem_epi$`Fecha de Fin`))
datos_comuna_sem_epi<-unite(datos_comuna_sem_epi, "se_fechas", f_inicio:f_termino ,sep = " ", remove = FALSE, na.rm = FALSE)

```


Home
=====================================

Column
-------------------------------------
   
### Casos Totales en Chile

```{r}
articles <- casos_totales
valueBox(articles, icon = "body")
``` 
 
### Casos Nuevos en Chile

```{r}
spam <-casos_nuevos
valueBox(spam, 
         icon = "flask-sharp")
```

### Incidencia por Millón de Habitantes
    
```{r}
comments <- incidencia_chile
valueBox(comments, icon = "fas fa-skull-crossbones")
```
   
### Región con Mayor Casos en Chile

```{r}
comments <- top_regiones[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```


Column
-------------------------------------

### Muertes Totales en Chile

```{r}
comments <- muertes_totales
valueBox(comments, icon = "fas fa-skull-crossbones")
``` 
 
### Casos Activos a la Fecha 
 
```{r}
activ <- activos
valueBox(activ, icon = "body")
```

### Mortalidad por Millón de Habitantes
    
```{r}
spam <- mortalidad_chile
valueBox(spam, 
         icon = "flask-sharp",
         color = ifelse(spam > 10, "warning", "primary"))
```

### Comuna con Mayor Casos en Chile

```{r}
comments <- top_comunas[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```

Column
-------------------------------------

### Test Totales en Chile

```{r}
spam <-total_test_chile
valueBox(spam, 
         icon = "flask-sharp")
```
 
### Casos Recuperados a la Fecha

```{r}
recu <- recuperados
valueBox(recu, icon = "body")
```

### Letalidad %

```{r}
spam <-letalidad_chile
valueBox(spam, 
         icon = "flask-sharp", 
         color = ifelse(spam > 5, "warning", "primary"))
```

### País con Mayor Casos

```{r}
comments <- top_pais[1,1]
valueBox(comments, icon = "fas fa-skull-crossbones")
```

Comparativo
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V2, 
                ), visible = TRUE, name = "Casos Totales") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V1,
                ), visible = TRUE, name = "Casos Nuevos SINTOMÁTICOS") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V3, 
                ), visible = TRUE, name = "Casos Recuperados") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V4, 
                ), visible = TRUE, name = "Casos Fallecidos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V5, 
                ), visible = TRUE, name = "Casos Activos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V6, 
                ), visible = TRUE, name = "Casos Nuevos ASINTOMÁTICOS") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V7, 
                ), visible = TRUE, name = "Casos Nuevos Totales (SINTOMÁTICO Y ASINTOMÁTICOS") %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Comparativa de Casos Totales, Nuevos, Recuperados, Fallecidos y Activos de COVID19 en CHile") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V2, 
                ), visible = TRUE, name = "Casos Totales") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V1,
                ), visible = TRUE, name = "Casos Nuevos SINTOMÁTICOS") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V3, 
                ), visible = TRUE, name = "Casos Recuperados") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V4, 
                ), visible = TRUE, name = "Casos Fallecidos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V5, 
                ), visible = TRUE, name = "Casos Activos") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V6, 
                ), visible = TRUE, name = "Casos Nuevos ASINTOMÁTICOS") %>%
  hc_add_series(chile_g4t, 
                "spline", 
                hcaes(x = chile_g4t$fecha2, 
                      y = chile_g4t$V7, 
                ), visible = TRUE, name = "Casos Nuevos Totales (SINTOMÁTICO Y ASINTOMÁTICOS") %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Comparativa de Casos Totales, Nuevos, Recuperados, Fallecidos y Activos de COVID19 en CHile") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "casos"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```


Casos {data-navmenu="Diarios"}
=====================================

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Nuevos de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Muertes {data-navmenu="Diarios"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Nuevas Muertes de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos casos"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Casos {data-navmenu="Totales"}
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Casos Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_cases,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_cases, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Totales de COVID19 por día de infección (escala logarítmica") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Casos Totales"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Muertes {data-navmenu="Totales"}
=====================================

Column {.tabset}
-------------------------------------

### Lineal

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Muertes Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Muertes Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

### Logarítmico

```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_deaths,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_deaths, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Muertes Totales de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Muertes totales"),opposite = FALSE, type = "logarithmic") %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Casos Totales {data-navmenu="Grupos"}
=====================================

```{r}
highchart() %>%
  hc_add_series(datos_genero_edad, 
                "column", 
                hcaes(x = datos_genero_edad$grupo_edad, 
                      y = datos_genero_edad[,ncol(datos_genero_edad)],
                      group = datos_genero_edad$Sexo), visible = TRUE) %>%
  hc_add_series(fm,
                "column",
                hcaes(x = fm$grupo,
                      y = fm$Total, 
                      visible = TRUE)) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Totales por Grupo de Edad") %>% 
  hc_xAxis(title = list(text = "Grupo de Edad"),opposite = FALSE, categories = datos_genero_edad$grupo_edad) %>% 
  hc_yAxis(title = list(text = "Casos Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "Genero"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Casos UCI {data-navmenu="Grupos"}
=====================================

``` {r}
highchart() %>%
  hc_add_series(datos_uci_edad,
                "column",
                hcaes(x = datos_uci_edad$`Grupo de edad`,
                      y = datos_uci_edad[,ncol(datos_uci_edad)], 
                      visible = TRUE)) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos UCI por Grupo de Edad") %>% 
  hc_xAxis(title = list(text = "Grupo de Edad"),opposite = FALSE, categories = datos_uci_edad$`Grupo de edad`) %>% 
  hc_yAxis(title = list(text = "Tasos UCI"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "Género"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Fallecidos Totales {data-navmenu="Grupos"}
=====================================

``` {r}
highchart() %>%
  hc_add_series(datos_fallecidos_edad,
                "column",
                hcaes(x = datos_fallecidos_edad$`Grupo de edad`,
                      y = datos_fallecidos_edad[,ncol(datos_fallecidos_edad)], 
                      visible = TRUE)) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Fallecidos Totales por Grupo de Edad") %>% 
  hc_xAxis(title = list(text = "Grupo de Edad"),opposite = FALSE, categories = datos_uci_edad$`Grupo de edad`) %>% 
  hc_yAxis(title = list(text = "Fallecidos Totales"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "Fallecidos"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```



Gráfico {data-navmenu="Incidencia"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$incidenciaX1000000,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$incidenciaX1000000, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Incidencia de COVID19 por día de infección por millón de habitantes") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Incidencia"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Gráfico {data-navmenu="Mortalidad"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$mortalidadX1000000,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$mortalidadX1000000, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Mortalidad de COVID19 por día de infección por millón de habitantes") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Mortalidad"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Puntual {data-navmenu="Letalidad"}
=====================================  
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$letalidad,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$letalidad, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Letalidad (%) de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Letalidad (%)"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Acumulada {data-navmenu="Letalidad"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$letalidad_acumulada,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$letalidad_acumulada, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Letalidad Acumulada (%) de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Letalidad Acumulada (%)"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Diarios {data-navmenu="Test"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "column", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$new_tests,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "column", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$new_tests, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Nuevos Tests Realizados de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Nuevos Tests"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Totales {data-navmenu="Test"}
=====================================
```{r}
highchart() %>%
  hc_add_series(corona_dinamic_graph2, 
                "spline", 
                hcaes(x = corona_dinamic_graph2$new_date, 
                      y = corona_dinamic_graph2$total_tests,
                      group = corona_dinamic_graph2$location), visible = TRUE) %>%
  hc_add_series(corona_dinamic_graph, 
                "spline", 
                hcaes(x = corona_dinamic_graph$new_date, 
                      y = corona_dinamic_graph$total_tests, 
                      group = corona_dinamic_graph$location), visible = FALSE) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Tests Acumulados de COVID19 por día de infección") %>% 
  hc_xAxis(title = list(text = "Día de la Infección"),opposite = FALSE, type = "datetime") %>% 
  hc_yAxis(title = list(text = "Tests Acumulados"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "País"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```

Mapas
=====================================

Column
-------------------------------------
    
### Chile
    
```{r plots, echo=FALSE}
hcmap("countries/cl/cl-all", data = data_fake, value = "value",
      joinBy = c("hc-a2", "code"), name = "Casos por Región",
      dataLabels = list(enabled = TRUE, format = '{point.name}'),
      borderColor = "#0048BA", borderWidth = 1, tooltip = list(valueDecimals = 0, valuePrefix = "Casos Totales = "))
```

Tablas
=====================================

Column
-------------------------------------

### Top Casos Confirmados por Comuna

```{r}
DT::datatable(top_comunas, options = list(
  bPaginate = FALSE
))
```

### Top Casos Confirmados por Región

```{r}
DT::datatable(top_regiones, options = list(
  bPaginate = FALSE
))
```

### Top Casos Confirmados por País

```{r}
DT::datatable(top_pais, options = list(
  bPaginate = FALSE
))
```

Column
-------------------------------------
``` {r}
highchart() %>%
  hc_add_series(datos_comuna_sem_epi,
                "column",
                hcaes(x = datos_comuna_sem_epi$f_inicio,
                      y = datos_comuna_sem_epi$`Casos confirmados`,
                      group = datos_comuna_sem_epi$Comuna,
                      visible = FALSE)) %>%
  hc_add_theme(hc_theme_google()) %>% 
  hc_title(text = "Casos Confirmados de COVID19 por Semana Epidemiológica de las 20 comunas de Chile más afectadas") %>% 
  hc_xAxis(title = list(text = "Fecha de Inicio de la Semana Epidemiológica"),
           opposite = FALSE, 
           type = "datetime",
           tickmarkPlacement = "on", 
           tickLength = 0,
           plotLines = list(
             list(label = list(text = "Nueva Normalidad"),
                  color = "#FE0202",
                  width = 20,
                  value = 2020-04-20))) %>% 
  hc_yAxis(title = list(text = "Casos Confirmados"),opposite = FALSE) %>% 
  hc_legend(title = list(text = "Comuna"), align = "left", vertilAlign = "top", layout = "vertical", x = 0, y = 0)
```