df <- data.frame(X = c(5.6, 6.3, 7, 7.7, 8.4), Y = c(8.8, 12.4, 14.8, 18.2, 20.8))
md1 <- lm(Y ~ X, data = df)
s1 <- summary(md1)
s1
##
## Call:
## lm(formula = Y ~ X, data = df)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## X 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
y = 4.26x -14.80
\[f\left( x,y \right) =24x-6x{ y }^{ 2 }-8{ y }^{ 3 }\]
\[\frac { df }{ dx } =24-6{ y }^{ 2 }\]
\[\frac { df }{ dy } =-12xy-24{ y }^{ 2 }\]
\[if\_ y\Rightarrow 0=24-6{ y }^{ 2 }\Rightarrow { y }^{ 2 }=4\Rightarrow y\pm 2\]
\[if\_ y\Rightarrow \pm 2...\& ...-12xy-24{ y }^{ 2 }=0\Rightarrow \pm { 24 }x=24x4\Rightarrow x=\pm 4\]
\[R(x,y) = (81 - 21x + 17y)x + (40 + 11x - 23y)y\]
\[R(x,y) = 81x - 21x^2 + 17yx + 40y + 11xy - 23y^2\] \[R(x,y) = 81x - 21x^2 + 28yx + 40y - 23y^2\]
x=2.30
y=4.10
s2 <- -21*x^2 +81*x +28*x*y +40*y -23*y^2
s2
## [1] 116.62
\[ \begin{align} C(x,y) & = \frac{1}{6}x^2 + \frac{1}{6}y^2 + 7x + 25y + 700 & \text{ } \\ f(x) & = \frac{1}{6}x^2 + \frac{1}{6}(96-x)^2 + 7x + 25(96-x) + 700 & \text{substitute y=96-x} \\ f'(x)& = \frac{1}{6}2x + \frac{1}{6}2(96-x)(-1) + 7 + 25(-1) & \\ f'(x)& = \frac{1}{3}x - \frac{1}{3}(96-x) - 18 & \\ f'(x)& = \frac{2}{3}x - 32 - 18 & \\ f'(x)& = \frac{2}{3}x - 50 & \\ f''(x) &= \frac{2}{3} > 0 \end{align} \]
\(f'(x) = 0\) -> \(x = 75\)
Values of x:
\[0 \leq x \leq 96\]
\[y= 96-x = 21\]
\[y = 75; y = 21\]
\[\int \int_{R} e^{8x + 3y} dA \text{ where } R:=\bigg \lbrace 2 \leq x \leq 4; 2 \leq y \leq 4\bigg \rbrace\]
\[ \begin{align} \int \int_{R} e^{8x + 3y} dA & = & \bigg(\int_{2}^{4} e^{8x}dx \bigg)\bigg( \int_{2}^{4}e^{3y}dy \bigg) \\ & = & \bigg( \frac{1}{8}e^{8x} \bigg \lvert_{x=2}^{4}\bigg) \bigg( \frac{1}{3} e^{3y} \bigg \lvert_{y=2}^{4} \bigg) \\ & = & \bigg( \frac{ e^{32} - e^{16}}{8} \bigg) \bigg( \frac{ e^{12} - e^{6} }{ 3} \bigg) \\ & = & \frac{1}{24}(e^{32}-e^{16})(e^{12}- e^{6}) \end{align} \]