library(readr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.2.1     v purrr   0.3.2
## v tibble  2.1.3     v dplyr   0.8.3
## v tidyr   0.8.3     v stringr 1.4.0
## v ggplot2 3.2.1     v forcats 0.4.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ggplot2)
library(dplyr)
library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
df<-read.csv("Crime_Year_To_Date_-_2019.csv")
sum(is.na(df))
## [1] 3966
df <- df %>%
  mutate(victims = replace('victims', 'victims' == "na", NA)) %>%
  mutate(victims = replace('victims', 'victims' == "N/A", NA)) %>%
  mutate(victims = replace('victims', 'victims' == "", NA)) %>%
  mutate(victims = replace('victims', 'victims' == "?", NA)) %>%
  mutate(victims = replace('victims', 'victims' == "NA", NA))

df <- df %>%
  mutate(CrimeName2 = replace('Crime Name2', 'Crime Name2' == "na", NA)) %>%
  mutate(CrimeName2 = replace('Crime Name2', 'Crime Name2' == "N/A", NA)) %>%
  mutate(CrimeName2 = replace('Crime Name2', 'Crime Name2' == "", NA)) %>%
  mutate(CrimeName2 = replace('Crime Name2', 'Crime Name2' == "?", NA)) %>%
  mutate(CrimeName2 = replace('Crime Name2', 'Crime Name2' == "NA", NA))

df <- df %>%
  mutate(place = replace('place', 'place' == "na", NA)) %>%
  mutate(place = replace('place', 'place' == "N/A", NA)) %>%
  mutate(place = replace('place', 'place' == "", NA)) %>%
  mutate(place = replace('place', 'place' == "?", NA)) %>%
  mutate(place = replace('place', 'place' == "NA", NA))

df <- df %>%
  mutate(zipcode = replace('zip code', 'zip code' == "na", NA)) %>%
  mutate(zipcode = replace('zip code', 'zip code' == "N/A", NA)) %>%
  mutate(zipcode = replace('zip code', 'zip code' == "", NA)) %>%
  mutate(zipcode = replace('zip code', 'zip code' == "?", NA)) %>%
  mutate(zipcode = replace('zip code', 'zip code' == "NA", NA))
head(df$Crime.Name1)
## [1] Crime Against Property Crime Against Society  Crime Against Society 
## [4] Other                  Crime Against Person   Crime Against Property
## 6 Levels:  Crime Against Person ... Other
head(df$Crime.Name2)
## [1] Shoplifting                 Driving Under the Influence
## [3] Driving Under the Influence All Other Offenses         
## [5] Simple Assault              Identity Theft             
## 54 Levels:  Aggravated Assault All other Larceny ... Wire Fraud
(summary(df$Crime.Name2))
##                                             
##                                          32 
##                          Aggravated Assault 
##                                         607 
##                           All other Larceny 
##                                        1854 
##                          All Other Offenses 
##                                        9451 
##                                       Arson 
##                                          26 
##         Assisting or Promoting Prostitution 
##                                           1 
##                                  Bad Checks 
##                                          59 
##              Burglary/Breaking and Entering 
##                                        1275 
##                      Counterfeiting/Forgery 
##                                         335 
##  Credit Card/Automatic Teller Machine Fraud 
##                                         525 
##        Curfew/Loitering/Vagrancy Violations 
##                                           1 
##    Destruction/Damage/Vandalism of Property 
##                                        2478 
##                          Disorderly Conduct 
##                                         591 
##                 Driving Under the Influence 
##                                        2033 
##                   Drug Equipment Violations 
##                                         236 
##                    Drug/Narcotic Violations 
##                                        2682 
##                                 Drunkenness 
##                                          10 
##                                Embezzlement 
##                                          76 
##                         Extortion/Blackmail 
##                                          26 
##     False Pretenses/Swindle/Confidence Game 
##                                         819 
##                 Family Offenses, NonViolent 
##                                         107 
##                                    Fondling 
##                                         129 
##                           Forcible Fondling 
##                                          38 
##                               Forcible Rape 
##                                         157 
##                             Forcible Sodomy 
##                                          50 
##        From Coin/Operated Machine or Device 
##                                           5 
##      Human Trafficking, Commercial Sex Acts 
##                                           5 
##                              Identity Theft 
##                                        1067 
##                               Impersonation 
##                                          34 
##                                Intimidation 
##                                          33 
##                        Justifiable Homicide 
##                                           1 
##                        Kidnapping/Abduction 
##                                           6 
##                       Liquor Law Violations 
##                                         569 
##                         Motor Vehicle Theft 
##                                         795 
##        Murder and Nonnegligent Manslaughter 
##                                          11 
##                                  Not Mapped 
##                                          32 
##                              NOT NIBRS CODE 
##                                          25 
##                                 Peeping Tom 
##                                          19 
##                              Pocket/picking 
##                                         104 
##                Pornography/Obscene Material 
##                                           7 
##                                Prostitution 
##                                          16 
##                             Purse-snatching 
##                                          68 
##                                     Robbery 
##                                         503 
##                                     Runaway 
##                                         560 
##               Sexual Assault With An Object 
##                                          38 
##                                 Shoplifting 
##                                        2459 
##                              Simple Assault 
##                                        3064 
##                    Stolen Property Offenses 
##                                          20 
##                         Theft from Building 
##                                        1528 
##                    Theft From Motor Vehicle 
##                                        3927 
## Theft of Motor Vehicle Parts or Accessories 
##                                         728 
##                   Trespass of Real Property 
##                                         519 
##                       Weapon Law Violations 
##                                         260 
##                                  Wire Fraud 
##                                          33
arrange(df,desc(Crime.Name2)) %>%
  head(10)
##    Incident.ID Offence.Code CR.Number   Dispatch.Date...Time NIBRS.Code
## 1    201225120         2608 190004970 01/31/2019 05:27:20 PM        26E
## 2    201225791         2608 190005889 02/06/2019 01:30:49 PM        26E
## 3    201227204         2608 190007650 02/16/2019 09:07:12 PM        26E
## 4    201229023         2608 190009890 03/02/2019 10:23:21 PM        26E
## 5    201229588         2608 190010614 03/07/2019 12:10:36 PM        26E
## 6    201230193         2608 190011386 03/12/2019 08:50:39 AM        26E
## 7    201230547         2608 190011841 03/14/2019 03:20:00 PM        26E
## 8    201233391         2608 190014211 03/27/2019 05:27:15 PM        26E
## 9    201233637         2608 190015427 04/03/2019 11:07:09 AM        26E
## 10   201236291         2608 190018866 04/22/2019 05:08:03 PM        26E
##    Victims            Crime.Name1 Crime.Name2   Crime.Name3
## 1        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 2        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 3        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 4        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 5        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 6        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 7        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 8        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 9        1 Crime Against Property  Wire Fraud FRAUD BY WIRE
## 10       1 Crime Against Property  Wire Fraud FRAUD BY WIRE
##    Police.District.Name               Block.Address          City State
## 1         SILVER SPRING       2400 BLK  PARALLEL LA SILVER SPRING    MD
## 2            GERMANTOWN 13500 BLK  HAMLET SQUARE CT    GERMANTOWN    MD
## 3             ROCKVILLE    13200 BLK  TWINBROOK PKW     ROCKVILLE    MD
## 4             ROCKVILLE        1300 BLK  PICCARD DR     ROCKVILLE    MD
## 5         SILVER SPRING       300 BLK  GREENWICH LA SILVER SPRING    MD
## 6              BETHESDA      9800 BLK  INGLEMERE DR      BETHESDA    MD
## 7              BETHESDA     7600 BLK  WISCONSIN AVE      BETHESDA    MD
## 8   CITY OF TAKOMA PARK     6700 BLK  ALLEGHENY AVE   TAKOMA PARK    MD
## 9         SILVER SPRING  500 BLK E INDIAN SPRING DR SILVER SPRING    MD
## 10           GERMANTOWN    20000 BLK  DUNSTABLE CIR    GERMANTOWN    MD
##    Zip.Code Agency                       Place Sector Beat PRA
## 1     20904   MCPD   Residence - Single Family      I  3I2 379
## 2     20874   MCPD Residence -Townhouse/Duplex      N  5N2 594
## 3     20851   RCPD Residence - Apartment/Condo      A  1A2 301
## 4     20850   RCPD               Other/Unknown      A  1A3 242
## 5     20910   MCPD   Residence - Single Family      G  3G2 119
## 6     20817   MCPD       Bank/S&L/Credit Union      E  2E3 195
## 7     20814   MCPD       Bank/S&L/Credit Union      D  2D2  48
## 8     20912   TPPD   Residence - Single Family      T  8T1 802
## 9     20901   MCPD       Bank/S&L/Credit Union      H  3H1 672
## 10    20876   MCPD       Bank/S&L/Credit Union      M  5M1 470
##    Address.Number Street.Prefix   Street.Name Street.Suffix Street.Type
## 1            2400                    PARALLEL                        LA
## 2           13500               HAMLET SQUARE                        CT
## 3           13200                   TWINBROOK                       PKW
## 4            1300                     PICCARD                        DR
## 5             300                   GREENWICH                        LA
## 6            9800                   INGLEMERE                        DR
## 7            7600                   WISCONSIN                       AVE
## 8            6700                   ALLEGHENY                       AVE
## 9             500             E INDIAN SPRING                        DR
## 10          20000                   DUNSTABLE                       CIR
##           Start_Date_Time          End_Date_Time Latitude Longitude
## 1  01/31/2019 05:27:00 PM                        39.08218 -76.96528
## 2  01/01/2019 01:30:00 PM 02/06/2019 12:00:00 PM 39.16157 -77.27879
## 3  02/16/2019 10:00:00 AM 02/16/2019 06:00:00 PM 39.07177 -77.11339
## 4  02/26/2019 12:00:00 AM 02/27/2019 11:59:00 PM 39.10192 -77.17717
## 5  02/01/2019 12:10:00 PM 03/07/2019 12:58:00 PM 39.00128 -77.01598
## 6  02/25/2019 01:00:00 AM                        39.01724 -77.13320
## 7  03/11/2019 02:30:00 PM                        38.98599 -77.09456
## 8  03/09/2019 12:00:00 PM 03/25/2019 02:59:00 PM 38.97209 -77.00706
## 9  04/03/2019 11:07:00 AM 04/03/2019 11:54:00 AM 39.01508 -77.00017
## 10 04/22/2019 05:08:00 PM                        39.18313 -77.23006
##    Police.District.Number            Location victims  CrimeName2 place
## 1                      3D (39.0822, -76.9653) victims Crime Name2 place
## 2                      5D (39.1616, -77.2788) victims Crime Name2 place
## 3                      1D (39.0718, -77.1134) victims Crime Name2 place
## 4                      1D (39.1019, -77.1772) victims Crime Name2 place
## 5                      3D  (39.0013, -77.016) victims Crime Name2 place
## 6                      2D (39.0172, -77.1332) victims Crime Name2 place
## 7                      2D  (38.986, -77.0946) victims Crime Name2 place
## 8                      8D (38.9721, -77.0071) victims Crime Name2 place
## 9                      3D (39.0151, -77.0002) victims Crime Name2 place
## 10                     5D (39.1831, -77.2301) victims Crime Name2 place
##     zipcode
## 1  zip code
## 2  zip code
## 3  zip code
## 4  zip code
## 5  zip code
## 6  zip code
## 7  zip code
## 8  zip code
## 9  zip code
## 10 zip code
top5<-df %>%
  group_by(Crime.Name2) %>%
  summarize(sum=sum(Victims)) %>%
  arrange(desc(sum)) %>%
  top_n(n=5)
## Selecting by sum
top5
## # A tibble: 5 x 2
##   Crime.Name2                                sum
##   <fct>                                    <int>
## 1 All Other Offenses                        9549
## 2 Theft From Motor Vehicle                  3927
## 3 Simple Assault                            3799
## 4 Drug/Narcotic Violations                  2682
## 5 Destruction/Damage/Vandalism of Property  2478
arrange(df,desc(Police.District.Name)) %>%
  head(10)
##    Incident.ID Offence.Code CR.Number   Dispatch.Date...Time NIBRS.Code
## 1    201225013         2404 190004832 01/31/2019 07:10:59 AM        240
## 2    201225013         2305 190004832 01/31/2019 07:10:59 AM        23F
## 3    201225011         2902 190004847 01/31/2019 08:28:20 AM        290
## 4    201225011         2305 190004847 01/31/2019 08:28:20 AM        23F
## 5    201225038         2902 190004876 01/31/2019 10:56:55 AM        290
## 6    201225038         2305 190004876 01/31/2019 10:56:55 AM        23F
## 7    201225136         2305 190004881 01/31/2019 11:47:55 AM        23F
## 8    201225051         1214 190004895 01/31/2019 12:58:37 PM        120
## 9    201225050         2601 190004894 01/31/2019 12:59:23 PM        26A
## 10   201225066         2303 190004911 01/31/2019 02:30:17 PM        23C
##    Victims            Crime.Name1                              Crime.Name2
## 1        1 Crime Against Property                      Motor Vehicle Theft
## 2        1 Crime Against Property                 Theft From Motor Vehicle
## 3        1 Crime Against Property Destruction/Damage/Vandalism of Property
## 4        1 Crime Against Property                 Theft From Motor Vehicle
## 5        1 Crime Against Property Destruction/Damage/Vandalism of Property
## 6        1 Crime Against Property                 Theft From Motor Vehicle
## 7        1 Crime Against Property                 Theft From Motor Vehicle
## 8        1 Crime Against Property                                  Robbery
## 9        1 Crime Against Property  False Pretenses/Swindle/Confidence Game
## 10       1 Crime Against Property                              Shoplifting
##                   Crime.Name3 Police.District.Name
## 1  AUTO THEFT - VEHICLE THEFT              WHEATON
## 2         LARCENY - FROM AUTO              WHEATON
## 3   DAMAGE PROPERTY - PRIVATE              WHEATON
## 4         LARCENY - FROM AUTO              WHEATON
## 5   DAMAGE PROPERTY - PRIVATE              WHEATON
## 6         LARCENY - FROM AUTO              WHEATON
## 7         LARCENY - FROM AUTO              WHEATON
## 8             ROBBERY - KNIFE              WHEATON
## 9     FRAUD - CONFIDENCE GAME              WHEATON
## 10      LARCENY - SHOPLIFTING              WHEATON
##                Block.Address          City State Zip.Code Agency
## 1        11500 BLK  NAIRN RD SILVER SPRING    MD    20902   MCPD
## 2        11500 BLK  NAIRN RD SILVER SPRING    MD    20902   MCPD
## 3    14200 BLK  GRAND PRE RD SILVER SPRING    MD    20906   MCPD
## 4    14200 BLK  GRAND PRE RD SILVER SPRING    MD    20906   MCPD
## 5     12100 BLK  EDGEMONT ST SILVER SPRING    MD    20902   MCPD
## 6     12100 BLK  EDGEMONT ST SILVER SPRING    MD    20902   MCPD
## 7                            SILVER SPRING    MD    20906   MCPD
## 8  800 BLK  UNIVERSITY BLV W SILVER SPRING    MD    20901   MCPD
## 9     1100 BLK N BELGRADE RD SILVER SPRING    MD    20902   MCPD
## 10  11100 BLK  VEIRS MILL RD SILVER SPRING    MD    20902   MCPD
##                                 Place Sector Beat PRA Address.Number
## 1                      Street - Alley      L  4L1 359          11500
## 2                 Street - In vehicle      L  4L1 359          11500
## 3                 Street - In vehicle      K  4K1 534          14200
## 4                 Street - In vehicle      K  4K1 534          14200
## 5                Street - Residential      L  4L1 331          12100
## 6                Street - Residential      L  4L1 331          12100
## 7                Street - Residential      K  4K1 347             NA
## 8                      School/College      L  4L2 158            800
## 9           Residence - Single Family      L  4L1 535           1100
## 10 Retail - Department/Discount Store      L  4L2 321          11100
##    Street.Prefix  Street.Name Street.Suffix Street.Type
## 1                       NAIRN                        RD
## 2                       NAIRN                        RD
## 3                   GRAND PRE                        RD
## 4                   GRAND PRE                        RD
## 5                    EDGEMONT                        ST
## 6                    EDGEMONT                        ST
## 7                CHESTER MILL                        RD
## 8                  UNIVERSITY             W         BLV
## 9              N     BELGRADE                        RD
## 10                 VEIRS MILL                        RD
##           Start_Date_Time          End_Date_Time Latitude Longitude
## 1  01/30/2019 08:00:00 PM 01/31/2019 05:50:00 AM 39.04510 -77.04303
## 2  01/30/2019 08:00:00 PM 01/31/2019 05:50:00 AM 39.04510 -77.04303
## 3  01/31/2019 08:28:00 AM                        39.08866 -77.07517
## 4  01/31/2019 08:28:00 AM                        39.08866 -77.07517
## 5  01/30/2019 07:30:00 PM 01/31/2019 07:30:00 AM 39.05457 -77.07334
## 6  01/30/2019 07:30:00 PM 01/31/2019 07:30:00 AM 39.05457 -77.07334
## 7  01/31/2019 11:47:00 AM                        39.11772 -77.03618
## 8  01/31/2019 11:00:00 AM 01/31/2019 12:10:00 PM 39.03138 -77.02231
## 9  01/31/2019 12:59:00 PM                        39.04221 -77.02728
## 10 01/31/2019 02:30:00 PM                        39.03737 -77.05166
##    Police.District.Number            Location victims  CrimeName2 place
## 1                      4D  (39.0451, -77.043) victims Crime Name2 place
## 2                      4D  (39.0451, -77.043) victims Crime Name2 place
## 3                      4D (39.0887, -77.0752) victims Crime Name2 place
## 4                      4D (39.0887, -77.0752) victims Crime Name2 place
## 5                      4D (39.0546, -77.0733) victims Crime Name2 place
## 6                      4D (39.0546, -77.0733) victims Crime Name2 place
## 7                      4D (39.1177, -77.0362) victims Crime Name2 place
## 8                      4D (39.0314, -77.0223) victims Crime Name2 place
## 9                      4D (39.0422, -77.0273) victims Crime Name2 place
## 10                     4D (39.0374, -77.0517) victims Crime Name2 place
##     zipcode
## 1  zip code
## 2  zip code
## 3  zip code
## 4  zip code
## 5  zip code
## 6  zip code
## 7  zip code
## 8  zip code
## 9  zip code
## 10 zip code