In Exercises 27 – 30, form a function \(z = f(x, y)\) such that \(f_{x}\) and $f_{y} match those given.
\[\int f_{x}dx=\]
\[=\int 6xy-4y^{2}dx\]
\[=3x^{2}y-4xy^{2}+C\]
\[\int f_{y}dy=\]
\[\int 3x^{2}-8xy+2dy=\]
\[3x^{2}y-4xy^{2}+2y+C\]
Adding all of the unique terms we get:
\[f(x,y) = 3x^{2}y-4xy^{2}+2y+C\]