Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
3: In readChar(file, size, TRUE) : truncating string with embedded nuls
4: In readChar(file, size, TRUE) : truncating string with embedded nuls
5: In readChar(file, size, TRUE) : truncating string with embedded nuls
6: In readChar(file, size, TRUE) : truncating string with embedded nuls
7: In readChar(file, size, TRUE) : truncating string with embedded nuls
8: In readChar(file, size, TRUE) : truncating string with embedded nuls
9: In readChar(file, size, TRUE) : truncating string with embedded nuls
# size of point for scatterplots
POINT_SIZE = 0.5
#POINT_SIZE = 1

# timeout
TIMEOUT = 600
TIMEOUT_VAL = 1.05 * TIMEOUT

# saturate
#TIME_MIN = 0.01 # seconds
TIME_MIN = 0.01 # seconds

# FUNCTIONS
read_file <- function(file) {
  filename = paste0(file)
  df <- read.csv2(filename,
                  header=TRUE,
                  sep=";",
                  dec=",",
                  comment.char="",
                  quote="\"",
                  strip.white=TRUE,
                  allowEscapes=FALSE,
                  stringsAsFactors=FALSE)
  
  return(df)
}

plot_scatter_log <- function(df, xlab, ylab, xstring=xlab, ystring=ylab) {
  pscat <- ggplot(df, aes_string(x=xlab, y=ylab)) +
    geom_point(size=POINT_SIZE) +
    geom_abline(size=0.1) +
    geom_vline(size=0.1, xintercept=TIMEOUT_VAL, linetype="dashed") +
    geom_hline(size=0.1, yintercept=TIMEOUT_VAL, linetype="dashed") +
    scale_x_log10() +
    scale_y_log10() +
    theme(axis.text.y = element_text(angle = 90, hjust = 0.5)) +
    #coord_fixed(xlim = c(TIME_MIN, TIMEOUT_VAL), ylim = c(0.1, TIMEOUT_VAL)) +
    #coord_fixed(xlim = c(TIME_MIN, TIMEOUT_VAL), ylim = c(TIME_MIN, TIMEOUT_VAL)) +
        coord_fixed(xlim = c(TIME_MIN, TIMEOUT_VAL), ylim = c(TIME_MIN, TIMEOUT_VAL)) +

    labs(
      #title="Title",
      #subtitle="Subtitle",
      x=xstring,
      y=ystring)
  return(pscat)
}

df_old <- read_file("results-10-05-2020/table-ALL.csv")
df_new <- read_file("results-12-05-2020/table-ALL-ondra-processed.csv")

tools.times <- c("re2g", "cad", "grep", "srm", "dot.net")

# change the type of columns other than the name
for (i in tools.times) {
  df_old[,i] <- sub(",", ".", df_old[,i])
  suppressWarnings(df_old[,i] <- as.numeric(df_old[,i]))
  df_new[,i] <- sub(",", ".", df_new[,i])
  suppressWarnings(df_new[,i] <- as.numeric(df_new[,i]))
}

df_together <- merge(df_old, df_new, by = "file", suffixes=c(".old", ".new"))

plot_scatter_log(df_together, "grep.old", "grep.new")

plot_scatter_log(df_together, "cad.old", "cad.new")

plot_scatter_log(df_together, "re2g.old", "re2g.new")

plot_scatter_log(df_together, "srm.old", "srm.new")

plot_scatter_log(df_together, "dot.net.old", "dot.net.new")

NA
NA
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CgojIHNpemUgb2YgcG9pbnQgZm9yIHNjYXR0ZXJwbG90cwpQT0lOVF9TSVpFID0gMC41CiNQT0lOVF9TSVpFID0gMQoKIyB0aW1lb3V0ClRJTUVPVVQgPSA2MDAKVElNRU9VVF9WQUwgPSAxLjA1ICogVElNRU9VVAoKIyBzYXR1cmF0ZQojVElNRV9NSU4gPSAwLjAxICMgc2Vjb25kcwpUSU1FX01JTiA9IDAuMDEgIyBzZWNvbmRzCgojIEZVTkNUSU9OUwpyZWFkX2ZpbGUgPC0gZnVuY3Rpb24oZmlsZSkgewogIGZpbGVuYW1lID0gcGFzdGUwKGZpbGUpCiAgZGYgPC0gcmVhZC5jc3YyKGZpbGVuYW1lLAogICAgICAgICAgICAgICAgICBoZWFkZXI9VFJVRSwKICAgICAgICAgICAgICAgICAgc2VwPSI7IiwKICAgICAgICAgICAgICAgICAgZGVjPSIsIiwKICAgICAgICAgICAgICAgICAgY29tbWVudC5jaGFyPSIiLAogICAgICAgICAgICAgICAgICBxdW90ZT0iXCIiLAogICAgICAgICAgICAgICAgICBzdHJpcC53aGl0ZT1UUlVFLAogICAgICAgICAgICAgICAgICBhbGxvd0VzY2FwZXM9RkFMU0UsCiAgICAgICAgICAgICAgICAgIHN0cmluZ3NBc0ZhY3RvcnM9RkFMU0UpCiAgCiAgcmV0dXJuKGRmKQp9CgpwbG90X3NjYXR0ZXJfbG9nIDwtIGZ1bmN0aW9uKGRmLCB4bGFiLCB5bGFiLCB4c3RyaW5nPXhsYWIsIHlzdHJpbmc9eWxhYikgewogIHBzY2F0IDwtIGdncGxvdChkZiwgYWVzX3N0cmluZyh4PXhsYWIsIHk9eWxhYikpICsKICAgIGdlb21fcG9pbnQoc2l6ZT1QT0lOVF9TSVpFKSArCiAgICBnZW9tX2FibGluZShzaXplPTAuMSkgKwogICAgZ2VvbV92bGluZShzaXplPTAuMSwgeGludGVyY2VwdD1USU1FT1VUX1ZBTCwgbGluZXR5cGU9ImRhc2hlZCIpICsKICAgIGdlb21faGxpbmUoc2l6ZT0wLjEsIHlpbnRlcmNlcHQ9VElNRU9VVF9WQUwsIGxpbmV0eXBlPSJkYXNoZWQiKSArCiAgICBzY2FsZV94X2xvZzEwKCkgKwogICAgc2NhbGVfeV9sb2cxMCgpICsKICAgIHRoZW1lKGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KGFuZ2xlID0gOTAsIGhqdXN0ID0gMC41KSkgKwogICAgI2Nvb3JkX2ZpeGVkKHhsaW0gPSBjKFRJTUVfTUlOLCBUSU1FT1VUX1ZBTCksIHlsaW0gPSBjKDAuMSwgVElNRU9VVF9WQUwpKSArCiAgICAjY29vcmRfZml4ZWQoeGxpbSA9IGMoVElNRV9NSU4sIFRJTUVPVVRfVkFMKSwgeWxpbSA9IGMoVElNRV9NSU4sIFRJTUVPVVRfVkFMKSkgKwogICAgICAgIGNvb3JkX2ZpeGVkKHhsaW0gPSBjKFRJTUVfTUlOLCBUSU1FT1VUX1ZBTCksIHlsaW0gPSBjKFRJTUVfTUlOLCBUSU1FT1VUX1ZBTCkpICsKCgogICAgbGFicygKICAgICAgI3RpdGxlPSJUaXRsZSIsCiAgICAgICNzdWJ0aXRsZT0iU3VidGl0bGUiLAogICAgICB4PXhzdHJpbmcsCiAgICAgIHk9eXN0cmluZykKICByZXR1cm4ocHNjYXQpCn0KCmRmX29sZCA8LSByZWFkX2ZpbGUoInJlc3VsdHMtMTAtMDUtMjAyMC90YWJsZS1BTEwuY3N2IikKZGZfbmV3IDwtIHJlYWRfZmlsZSgicmVzdWx0cy0xMi0wNS0yMDIwL3RhYmxlLUFMTC1vbmRyYS1wcm9jZXNzZWQuY3N2IikKCnRvb2xzLnRpbWVzIDwtIGMoInJlMmciLCAiY2FkIiwgImdyZXAiLCAic3JtIiwgImRvdC5uZXQiKQoKIyBjaGFuZ2UgdGhlIHR5cGUgb2YgY29sdW1ucyBvdGhlciB0aGFuIHRoZSBuYW1lCmZvciAoaSBpbiB0b29scy50aW1lcykgewogIGRmX29sZFssaV0gPC0gc3ViKCIsIiwgIi4iLCBkZl9vbGRbLGldKQogIHN1cHByZXNzV2FybmluZ3MoZGZfb2xkWyxpXSA8LSBhcy5udW1lcmljKGRmX29sZFssaV0pKQogIGRmX25ld1ssaV0gPC0gc3ViKCIsIiwgIi4iLCBkZl9uZXdbLGldKQogIHN1cHByZXNzV2FybmluZ3MoZGZfbmV3WyxpXSA8LSBhcy5udW1lcmljKGRmX25ld1ssaV0pKQp9CgpkZl90b2dldGhlciA8LSBtZXJnZShkZl9vbGQsIGRmX25ldywgYnkgPSAiZmlsZSIsIHN1ZmZpeGVzPWMoIi5vbGQiLCAiLm5ldyIpKQoKcGxvdF9zY2F0dGVyX2xvZyhkZl90b2dldGhlciwgImdyZXAub2xkIiwgImdyZXAubmV3IikKcGxvdF9zY2F0dGVyX2xvZyhkZl90b2dldGhlciwgImNhZC5vbGQiLCAiY2FkLm5ldyIpCnBsb3Rfc2NhdHRlcl9sb2coZGZfdG9nZXRoZXIsICJyZTJnLm9sZCIsICJyZTJnLm5ldyIpCnBsb3Rfc2NhdHRlcl9sb2coZGZfdG9nZXRoZXIsICJzcm0ub2xkIiwgInNybS5uZXciKQpwbG90X3NjYXR0ZXJfbG9nKGRmX3RvZ2V0aGVyLCAiZG90Lm5ldC5vbGQiLCAiZG90Lm5ldC5uZXciKQoKCmBgYAoK