Chapter 12 Section 12.3 Exercise 17

In Exercises 9 – 26, find fx, fy, fxx, fyy, fxy and fyx.

  1. f(x, y) = cos(5xy^3)

Solution:

To find fx, you take the derivative of f(x, y) and treat y as a constant.

fx(x, y) = \(-5{ y }^{ 3 }sin(5x{ y }^{ 3 })\)

To find fy, you take the derivative of f(x, y) and treat x as a constant.

fy(x, y) = \(-15x{ y }^{ 2 }sin(5x{ y }^{ 3 })\)

To find fxx, you take the derivative of fx and treat y as a constant.

fxx(x, y) = \(-25{ y }^{ 6 }cos(5x{ y }^{ 3 })\)

To find fyy, you take the derivative of fy and treat x as a constant.

\(-15x{ y }^{ 2 }sin(5x{ y }^{ 3 })\) Take out constants.

\(-15x({ y }^{ 2 }sin(5x{ y }^{ 3 }))\) Take the derivative with regards to derivative of products.

fyy(x, y) = \(-15x(2ysin(5x{ y }^{ 3 })+15x{ y }^{ 4 }cos(5x{ y }^{ 3 }))\)

To find fxy, you take the derivative of fx and treat x as a constant.

\(-5{ y }^{ 3 }sin(5x{ y }^{ 3 })\) Take out constant.

\(-5({ y }^{ 3 }sin(5x{ y }^{ 3 }))\) Take the derivative with regards to derivative of products.

fxy(x, y) = \(-5(3{ y }^{ 2 }sin(5x{ y }^{ 3 })+15x{ y }^{ 5 }cos(5x{ y }^{ 3 }))\)

To find fyx, you take the derivative of fy and treat y as a constant.

\(-15x{ y }^{ 2 }sin(5x{ y }^{ 3 })\) Take out constants.

\(-15{ y }^{ 2 }(xsin(5x{ y }^{ 3 }))\) Take the derivative with regards to derivative of products.

\(-15{ y }^{ 2 }(sin(5x{ y }^{ 3 })5x{ y }^{ 3 }+cos(5x{ y }^{ 3 }))\)