R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

#VERGARA HERNANDEZ JESUS ALEJANDRO
#NUMERO DE CONTROL: 16040461
#PRACTICA 11

library(tidyverse) # varias
## Warning: package 'tidyverse' was built under R version 3.6.3
## -- Attaching packages -------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.0     v purrr   0.3.3
## v tibble  3.0.0     v dplyr   0.8.5
## v tidyr   1.0.2     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.5.0
## Warning: package 'ggplot2' was built under R version 3.6.3
## Warning: package 'tibble' was built under R version 3.6.3
## Warning: package 'dplyr' was built under R version 3.6.3
## Warning: package 'forcats' was built under R version 3.6.3
## -- Conflicts ----------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(dplyr) # select filter mutate ...
library(ggplot2) # Gráficas
library(fdth) # Para tablas de distribución y frecuencias
## 
## Attaching package: 'fdth'
## The following objects are masked from 'package:stats':
## 
##     sd, var
library(knitr) # Para ver tablas mas amigables en formato html markdown
library(caret) # Pra particionar datos
## Warning: package 'caret' was built under R version 3.6.3
## Loading required package: lattice
## 
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
## 
##     lift
library(reshape)    # Para renombrar columnas en caso de necesitarse
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
## 
##     rename
## The following objects are masked from 'package:tidyr':
## 
##     expand, smiths
library(scales)
## 
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
## 
##     discard
## The following object is masked from 'package:readr':
## 
##     col_factor
library(readr)

datos <- read.csv("C:/Users/esemi/OneDrive/Documentos/RSTUDIO/adultos.csv")
head(datos)
##   x age workclass    education educational.num     marital.status  race gender
## 1 1  25   Private         11th               7      Never-married Black   Male
## 2 2  38   Private      HS-grad               9 Married-civ-spouse White   Male
## 3 3  28 Local-gov   Assoc-acdm              12 Married-civ-spouse White   Male
## 4 4  44   Private Some-college              10 Married-civ-spouse Black   Male
## 5 5  18         ? Some-college              10      Never-married White Female
## 6 6  34   Private         10th               6      Never-married White   Male
##   hours.per.week income
## 1             40  <=50K
## 2             50  <=50K
## 3             40   >50K
## 4             40   >50K
## 5             30  <=50K
## 6             30  <=50K
kable(head(datos, 10))
x age workclass education educational.num marital.status race gender hours.per.week income
1 25 Private 11th 7 Never-married Black Male 40 <=50K
2 38 Private HS-grad 9 Married-civ-spouse White Male 50 <=50K
3 28 Local-gov Assoc-acdm 12 Married-civ-spouse White Male 40 >50K
4 44 Private Some-college 10 Married-civ-spouse Black Male 40 >50K
5 18 ? Some-college 10 Never-married White Female 30 <=50K
6 34 Private 10th 6 Never-married White Male 30 <=50K
7 29 ? HS-grad 9 Never-married Black Male 40 <=50K
8 63 Self-emp-not-inc Prof-school 15 Married-civ-spouse White Male 32 >50K
9 24 Private Some-college 10 Never-married White Female 40 <=50K
10 55 Private 7th-8th 4 Married-civ-spouse White Male 10 <=50K
kable(tail(datos,10))
x age workclass education educational.num marital.status race gender hours.per.week income
48833 48833 32 Private 10th 6 Married-civ-spouse Amer-Indian-Eskimo Male 40 <=50K
48834 48834 43 Private Assoc-voc 11 Married-civ-spouse White Male 45 <=50K
48835 48835 32 Private Masters 14 Never-married Asian-Pac-Islander Male 11 <=50K
48836 48836 53 Private Masters 14 Married-civ-spouse White Male 40 >50K
48837 48837 22 Private Some-college 10 Never-married White Male 40 <=50K
48838 48838 27 Private Assoc-acdm 12 Married-civ-spouse White Female 38 <=50K
48839 48839 40 Private HS-grad 9 Married-civ-spouse White Male 40 >50K
48840 48840 58 Private HS-grad 9 Widowed White Female 40 <=50K
48841 48841 22 Private HS-grad 9 Never-married White Male 20 <=50K
48842 48842 52 Self-emp-inc HS-grad 9 Married-civ-spouse White Female 40 >50K
str(datos)
## 'data.frame':    48842 obs. of  10 variables:
##  $ x              : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ age            : int  25 38 28 44 18 34 29 63 24 55 ...
##  $ workclass      : Factor w/ 9 levels "?","Federal-gov",..: 5 5 3 5 1 5 1 7 5 5 ...
##  $ education      : Factor w/ 16 levels "10th","11th",..: 2 12 8 16 16 1 12 15 16 6 ...
##  $ educational.num: int  7 9 12 10 10 6 9 15 10 4 ...
##  $ marital.status : Factor w/ 7 levels "Divorced","Married-AF-spouse",..: 5 3 3 3 5 5 5 3 5 3 ...
##  $ race           : Factor w/ 5 levels "Amer-Indian-Eskimo",..: 3 5 5 3 5 5 3 5 5 5 ...
##  $ gender         : Factor w/ 2 levels "Female","Male": 2 2 2 2 1 2 2 2 1 2 ...
##  $ hours.per.week : int  40 50 40 40 30 30 40 32 40 10 ...
##  $ income         : Factor w/ 2 levels "<=50K",">50K": 1 1 2 2 1 1 1 2 1 1 ...
kable(summary(datos[-1]))
age workclass education educational.num marital.status race gender hours.per.week income
Min. :17.00 Private :33906 HS-grad :15784 Min. : 1.00 Divorced : 6633 Amer-Indian-Eskimo: 470 Female:16192 Min. : 1.00 <=50K:37155
1st Qu.:28.00 Self-emp-not-inc: 3862 Some-college:10878 1st Qu.: 9.00 Married-AF-spouse : 37 Asian-Pac-Islander: 1519 Male :32650 1st Qu.:40.00 >50K :11687
Median :37.00 Local-gov : 3136 Bachelors : 8025 Median :10.00 Married-civ-spouse :22379 Black : 4685 NA Median :40.00 NA
Mean :38.64 ? : 2799 Masters : 2657 Mean :10.08 Married-spouse-absent: 628 Other : 406 NA Mean :40.42 NA
3rd Qu.:48.00 State-gov : 1981 Assoc-voc : 2061 3rd Qu.:12.00 Never-married :16117 White :41762 NA 3rd Qu.:45.00 NA
Max. :90.00 Self-emp-inc : 1695 11th : 1812 Max. :16.00 Separated : 1530 NA NA Max. :99.00 NA
NA (Other) : 1463 (Other) : 7625 NA Widowed : 1518 NA NA NA NA
numericas <-select_if(datos, is.numeric)
kable(summary(numericas[-1])) 
age educational.num hours.per.week
Min. :17.00 Min. : 1.00 Min. : 1.00
1st Qu.:28.00 1st Qu.: 9.00 1st Qu.:40.00
Median :37.00 Median :10.00 Median :40.00
Mean :38.64 Mean :10.08 Mean :40.42
3rd Qu.:48.00 3rd Qu.:12.00 3rd Qu.:45.00
Max. :90.00 Max. :16.00 Max. :99.00
ggplot(numericas, aes(x=hours.per.week)) +
    geom_density(alpha = .2, fill = "#FF6666")

distribucion <- fdt(numericas$hours.per.week,breaks="Sturges") 
kable(distribucion)
Class limits f rf rf(%) cf cf(%)
[0.99,6.8) 410 0.0083944 0.8394415 410 0.8394415
[6.8,13) 982 0.0201056 2.0105647 1392 2.8500061
[13,18) 1180 0.0241595 2.4159535 2572 5.2659596
[18,24) 2383 0.0487900 4.8789976 4955 10.1449572
[24,30) 2896 0.0592932 5.9293231 7851 16.0742803
[30,36) 2481 0.0507964 5.0796446 10332 21.1539249
[36,42) 24217 0.4958233 49.5823267 34549 70.7362516
[42,48) 3803 0.0778633 7.7863314 38352 78.5225830
[48,53) 5319 0.1089022 10.8902174 43671 89.4128005
[53,59) 1318 0.0269850 2.6984972 44989 92.1112977
[59,65) 2596 0.0531510 5.3150977 47585 97.4263953
[65,71) 483 0.0098890 0.9889030 48068 98.4152983
[71,77) 223 0.0045657 0.4565743 48291 98.8718726
[77,83) 237 0.0048524 0.4852381 48528 99.3571107
[83,88) 98 0.0020065 0.2006470 48626 99.5577577
[88,94) 52 0.0010647 0.1064657 48678 99.6642234
[94,1e+02) 164 0.0033578 0.3357766 48842 100.0000000
x
start 0.990000
end 99.990000
h 5.823529
right 0.000000
barplot(height = distribucion$table$f, names.arg = distribucion$table$`Class limits`)

ggplot(numericas, aes(x = age)) +
    geom_density(alpha = .2, fill = "#FF6666")

barplot(height = distribucion$table$f, names.arg = distribucion$table$`Class limits`)

escalados <- datos[-1] %>%
    mutate(age.scale = rescale(age),educational.num.scale = rescale(educational.num), hours.per.week.scale = rescale(hours.per.week)  )
head(escalados, 10)
##    age        workclass    education educational.num     marital.status  race
## 1   25          Private         11th               7      Never-married Black
## 2   38          Private      HS-grad               9 Married-civ-spouse White
## 3   28        Local-gov   Assoc-acdm              12 Married-civ-spouse White
## 4   44          Private Some-college              10 Married-civ-spouse Black
## 5   18                ? Some-college              10      Never-married White
## 6   34          Private         10th               6      Never-married White
## 7   29                ?      HS-grad               9      Never-married Black
## 8   63 Self-emp-not-inc  Prof-school              15 Married-civ-spouse White
## 9   24          Private Some-college              10      Never-married White
## 10  55          Private      7th-8th               4 Married-civ-spouse White
##    gender hours.per.week income  age.scale educational.num.scale
## 1    Male             40  <=50K 0.10958904             0.4000000
## 2    Male             50  <=50K 0.28767123             0.5333333
## 3    Male             40   >50K 0.15068493             0.7333333
## 4    Male             40   >50K 0.36986301             0.6000000
## 5  Female             30  <=50K 0.01369863             0.6000000
## 6    Male             30  <=50K 0.23287671             0.3333333
## 7    Male             40  <=50K 0.16438356             0.5333333
## 8    Male             32   >50K 0.63013699             0.9333333
## 9  Female             40  <=50K 0.09589041             0.6000000
## 10   Male             10  <=50K 0.52054795             0.2000000
##    hours.per.week.scale
## 1            0.39795918
## 2            0.50000000
## 3            0.39795918
## 4            0.39795918
## 5            0.29591837
## 6            0.29591837
## 7            0.39795918
## 8            0.31632653
## 9            0.39795918
## 10           0.09183673
tail(escalados, 10)
##       age    workclass    education educational.num     marital.status
## 48833  32      Private         10th               6 Married-civ-spouse
## 48834  43      Private    Assoc-voc              11 Married-civ-spouse
## 48835  32      Private      Masters              14      Never-married
## 48836  53      Private      Masters              14 Married-civ-spouse
## 48837  22      Private Some-college              10      Never-married
## 48838  27      Private   Assoc-acdm              12 Married-civ-spouse
## 48839  40      Private      HS-grad               9 Married-civ-spouse
## 48840  58      Private      HS-grad               9            Widowed
## 48841  22      Private      HS-grad               9      Never-married
## 48842  52 Self-emp-inc      HS-grad               9 Married-civ-spouse
##                     race gender hours.per.week income  age.scale
## 48833 Amer-Indian-Eskimo   Male             40  <=50K 0.20547945
## 48834              White   Male             45  <=50K 0.35616438
## 48835 Asian-Pac-Islander   Male             11  <=50K 0.20547945
## 48836              White   Male             40   >50K 0.49315068
## 48837              White   Male             40  <=50K 0.06849315
## 48838              White Female             38  <=50K 0.13698630
## 48839              White   Male             40   >50K 0.31506849
## 48840              White Female             40  <=50K 0.56164384
## 48841              White   Male             20  <=50K 0.06849315
## 48842              White Female             40   >50K 0.47945205
##       educational.num.scale hours.per.week.scale
## 48833             0.3333333            0.3979592
## 48834             0.6666667            0.4489796
## 48835             0.8666667            0.1020408
## 48836             0.8666667            0.3979592
## 48837             0.6000000            0.3979592
## 48838             0.7333333            0.3775510
## 48839             0.5333333            0.3979592
## 48840             0.5333333            0.3979592
## 48841             0.5333333            0.1938776
## 48842             0.5333333            0.3979592
recategorizados <- escalados %>%
    mutate(education = factor(ifelse(education == "Preschool" | education == "10th" | education == "11th" | education == "12th" | education == "1st-4th" | education == "5th-6th" | education == "7th-8th" | education == "9th", "Dropout", ifelse(education == "HS-grad", "HighGrad", ifelse(education == "Some-college" | education == "Assoc-acdm" | education == "Assoc-voc", "Community",ifelse(education == "Bachelors", "Bachelors",
        ifelse(education == "Masters" | education == "Prof-school", "Master", "PhD")))))))
kable(head(recategorizados))
age w orkclass e ducation educational.num m arital.status r ace g ender hours.per.week i ncome age.scale educational.num.scale hours.per.week.scale
25 Private Dropout 7 Never-married Black Male 40 <=50K 0.1095890 0.4000000 0.3979592
38 Private HighGrad 9 Married-civ-spouse White Male 50 <=50K 0.2876712 0.5333333 0.5000000
28 Local-gov Community 12 Married-civ-spouse White Male 40 >50K 0.1506849 0.7333333 0.3979592
44 Private Community 10 Married-civ-spouse Black Male 40 >50K 0.3698630 0.6000000 0.3979592
18 ? Community 10 Never-married White Female 30 <=50K 0.0136986 0.6000000 0.2959184
34 Private Dropout 6 Never-married White Male 30 <=50K 0.2328767 0.3333333 0.2959184
recategorizados %>% 
  group_by(education) %>%
    summarize(promedio_educacion = mean(educational.num),
        cuantos = n()) %>%
    arrange(promedio_educacion)
## # A tibble: 6 x 3
##   education promedio_educacion cuantos
##   <fct>                  <dbl>   <int>
## 1 Dropout                 5.61    6408
## 2 HighGrad                9      15784
## 3 Community              10.4    14540
## 4 Bachelors              13       8025
## 5 Master                 14.2     3491
## 6 PhD                    16        594
temporal <- recategorizados %>%
  mutate(marital.status=factor(ifelse(marital.status=="Never-married" | marital.status=="Married-spouse-absent","Not_married",ifelse(marital.status == "Married-civ-spouse" | marital.status=="Married-AF-spouse","Married",ifelse(marital.status=="Divorced" | marital.status=="Separated","Separated","Widow")))))


recategorizados <- temporal
kable(head(recategorizados))
age w orkclass e ducation educational.num m arital.status r ace g ender hours.per.week i ncome age.scale educational.num.scale hours.per.week.scale
25 Private Dropout 7 Not_married Black Male 40 <=50K 0.1095890 0.4000000 0.3979592
38 Private HighGrad 9 Married White Male 50 <=50K 0.2876712 0.5333333 0.5000000
28 Local-gov Community 12 Married White Male 40 >50K 0.1506849 0.7333333 0.3979592
44 Private Community 10 Married Black Male 40 >50K 0.3698630 0.6000000 0.3979592
18 ? Community 10 Not_married White Female 30 <=50K 0.0136986 0.6000000 0.2959184
34 Private Dropout 6 Not_married White Male 30 <=50K 0.2328767 0.3333333 0.2959184
table(recategorizados$marital.status)
## 
##     Married Not_married   Separated       Widow 
##       22416       16745        8163        1518
ggplot(recategorizados, aes(x = gender, fill = income)) +
    geom_bar(position = "fill") +
    theme_classic()

ggplot(recategorizados, aes(x = race, fill = income)) + 
  geom_bar(position = "fill") +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90))

head(recategorizados)
##   age workclass education educational.num marital.status  race gender
## 1  25   Private   Dropout               7    Not_married Black   Male
## 2  38   Private  HighGrad               9        Married White   Male
## 3  28 Local-gov Community              12        Married White   Male
## 4  44   Private Community              10        Married Black   Male
## 5  18         ? Community              10    Not_married White Female
## 6  34   Private   Dropout               6    Not_married White   Male
##   hours.per.week income  age.scale educational.num.scale hours.per.week.scale
## 1             40  <=50K 0.10958904             0.4000000            0.3979592
## 2             50  <=50K 0.28767123             0.5333333            0.5000000
## 3             40   >50K 0.15068493             0.7333333            0.3979592
## 4             40   >50K 0.36986301             0.6000000            0.3979592
## 5             30  <=50K 0.01369863             0.6000000            0.2959184
## 6             30  <=50K 0.23287671             0.3333333            0.2959184
ggplot(recategorizados, aes(x = gender, y = hours.per.week)) +
    geom_boxplot() +
    stat_summary(fun.y = mean,
        geom = "point",
        size = 3,
        color = "steelblue") +
    theme_classic()
## Warning: `fun.y` is deprecated. Use `fun` instead.

ggplot(recategorizados, aes(x = hours.per.week)) +
    geom_density(aes(color = education), alpha = 0.5) +
    theme_classic()

ggplot(recategorizados, aes(x = age, y = hours.per.week)) +
    geom_point(aes(color = income),
        size = 0.5) +
    stat_smooth(method = 'lm',
        formula = y~poly(x, 2),
        se = TRUE,
        aes(color = income)) +
    theme_classic()

ggplot(recategorizados, aes(x = education, y = hours.per.week)) +
    geom_point(aes(color = income),
        size = 0.5) +
    stat_smooth(method = 'lm',
        formula = y~poly(x, 2),
        se = TRUE,
        aes(color = income)) +
    theme_classic()

recategorizados <- recategorizados %>%
  mutate(income10 = recode(income,"<=50K" = 0,">50K" = 1))


head(recategorizados[,c(9,13)])
##   income income10
## 1  <=50K        0
## 2  <=50K        0
## 3   >50K        1
## 4   >50K        1
## 5  <=50K        0
## 6  <=50K        0
names(recategorizados)
##  [1] "age"                   "workclass"             "education"            
##  [4] "educational.num"       "marital.status"        "race"                 
##  [7] "gender"                "hours.per.week"        "income"               
## [10] "age.scale"             "educational.num.scale" "hours.per.week.scale" 
## [13] "income10"
head(recategorizados)
##   age workclass education educational.num marital.status  race gender
## 1  25   Private   Dropout               7    Not_married Black   Male
## 2  38   Private  HighGrad               9        Married White   Male
## 3  28 Local-gov Community              12        Married White   Male
## 4  44   Private Community              10        Married Black   Male
## 5  18         ? Community              10    Not_married White Female
## 6  34   Private   Dropout               6    Not_married White   Male
##   hours.per.week income  age.scale educational.num.scale hours.per.week.scale
## 1             40  <=50K 0.10958904             0.4000000            0.3979592
## 2             50  <=50K 0.28767123             0.5333333            0.5000000
## 3             40   >50K 0.15068493             0.7333333            0.3979592
## 4             40   >50K 0.36986301             0.6000000            0.3979592
## 5             30  <=50K 0.01369863             0.6000000            0.2959184
## 6             30  <=50K 0.23287671             0.3333333            0.2959184
##   income10
## 1        0
## 2        0
## 3        1
## 4        1
## 5        0
## 6        0
write.csv(recategorizados, file="adultos_clean.csv")
dir() 
##  [1] "adultos_clean.csv"                   "ALEJANDRO CUENTAS Y PASSWORD.url"   
##  [3] "Arduino"                             "ArduinoData"                        
##  [5] "Bandicam"                            "Base de daots Unidad 4"             
##  [7] "BCoGfWQCcAA_939.jpg"                 "Bloc de notas de Jesus.url"         
##  [9] "BzEouGVIAAEEjrH.jpg"                 "Camtasia Studio"                    
## [11] "Cliente_TELNET_TFTP.pptx"            "cN7W7JM.jpg"                        
## [13] "CUBOS ACUATICOS.docx"                "DESARROLLO BB.pptx"                 
## [15] "descarga.jpg"                        "desktop.ini"                        
## [17] "DOCKERFILE PASOS.docx"               "Empresa.accdb"                      
## [19] "enlace.txt"                          "Entonces.docx"                      
## [21] "examen metodos.txt"                  "examenes"                           
## [23] "FEMJOY22-682x1024.jpg"               "Formulario2.html"                   
## [25] "hoja rayada.docx"                    "justin bb.txt"                      
## [27] "los 5 poemas del romanticismo.docx"  "MAnual de seguridad.docx"           
## [29] "Manual_colegioMilitar(1).docx"       "Manual_colegioMilitar.docx"         
## [31] "MEGA"                                "Metdo baisteain.xlsx"               
## [33] "mierda.webp"                         "Modelo 2.mwb"                       
## [35] "Modelo 2.mwb.bak"                    "Modelo1.mwb"                        
## [37] "Modelo1.mwb.bak"                     "My Cheat Tables"                    
## [39] "NetBeansProjects"                    "NMP [Autoguardado].pptx"            
## [41] "NMP.pptx"                            "PCSX2"                              
## [43] "Plantillas personalizadas de Office" "practica"                           
## [45] "practica11.Rmd"                      "practica9.html"                     
## [47] "practica9.Rmd"                       "Presentación1.pptx"                 
## [49] "PROBA"                               "prueba.html"                        
## [51] "R"                                   "rsconnect"                          
## [53] "RSTUDIO"                             "Solar Winds.docx"                   
## [55] "UNIDAD 4 TOPICOS"                    "Virtual Machines"                   
## [57] "WindowsPowerShell"
nrow(recategorizados)
## [1] 48842
set.seed(2020)

entrena <- createDataPartition(recategorizados$income, p=0.7, list = FALSE)

datos.Entrena <- recategorizados[entrena,]
datos.Validacion <- recategorizados[-entrena,]

nrow(datos.Entrena)
## [1] 34190
kable(head(datos.Entrena))
ag e wor kclass edu cation ed ucational.num mar ital.status rac e gen der ho urs.per.week inc ome ag e.scale ed ucational.num.scale ho urs.per.week.scale in come10
1 25 Private Dropout 7 Not_married Black Male 40 <=50K 0.1095890 0.4000000 0.3979592 0
2 38 Private HighGrad 9 Married White Male 50 <=50K 0.2876712 0.5333333 0.5000000 0
3 28 Local-gov Community 12 Married White Male 40 >50K 0.1506849 0.7333333 0.3979592 1
4 44 Private Community 10 Married Black Male 40 >50K 0.3698630 0.6000000 0.3979592 1
5 18 ? Community 10 Not_married White Female 30 <=50K 0.0136986 0.6000000 0.2959184 0
7 29 ? HighGrad 9 Not_married Black Male 40 <=50K 0.1643836 0.5333333 0.3979592 0
kable(tail(datos.Entrena))
ag e wor kclass edu cation ed ucational.num mar ital.status rac e gen der ho urs.per.week inc ome ag e.scale ed ucational.num.scale ho urs.per.week.scale in come10
48834 43 Private Community 11 Married White Male 45 <=50K 0.3561644 0.6666667 0.4489796 0
48835 32 Private Master 14 Not_married Asian-Pac-Islander Male 11 <=50K 0.2054795 0.8666667 0.1020408 0
48838 27 Private Community 12 Married White Female 38 <=50K 0.1369863 0.7333333 0.3775510 0
48840 58 Private HighGrad 9 Widow White Female 40 <=50K 0.5616438 0.5333333 0.3979592 0
48841 22 Private HighGrad 9 Not_married White Male 20 <=50K 0.0684932 0.5333333 0.1938776 0
48842 52 Self-emp-inc HighGrad 9 Married White Female 40 >50K 0.4794521 0.5333333 0.3979592 1
datos.Validacion <- recategorizados[-entrena,]

nrow(datos.Validacion)
## [1] 14652
kable(head(datos.Validacion))
ag e wor kclass edu cation ed ucational.num mar ital.status rac e gen der ho urs.per.week inc ome ag e.scale ed ucational.num.scale ho urs.per.week.scale in come10
6 34 Private Dropout 6 Not_married White Male 30 <=50K 0.2328767 0.3333333 0.2959184 0
15 48 Private HighGrad 9 Married White Male 48 >50K 0.4246575 0.5333333 0.4795918 1
17 20 State-gov Community 10 Not_married White Male 25 <=50K 0.0410959 0.6000000 0.2448980 0
36 65 ? HighGrad 9 Married White Male 40 <=50K 0.6575342 0.5333333 0.3979592 0
41 65 Private Master 14 Married White Male 50 >50K 0.6575342 0.8666667 0.5000000 1
49 52 Private Dropout 7 Separated Black Female 18 <=50K 0.4794521 0.4000000 0.1734694 0
kable(tail(datos.Validacion))
ag e wor kclass edu cation ed ucational.num mar ital.status rac e gen der ho urs.per.week inc ome ag e.scale ed ucational.num.scale ho urs.per.week.scale in come10
48826 31 Private Master 14 Separated Other Female 30 <=50K 0.1917808 0.8666667 0.2959184 0
48830 65 Self-emp-not-inc Master 15 Not_married White Male 60 <=50K 0.6575342 0.9333333 0.6020408 0
48832 43 Self-emp-not-inc Community 10 Married White Male 50 <=50K 0.3561644 0.6000000 0.5000000 0
48836 53 Private Master 14 Married White Male 40 >50K 0.4931507 0.8666667 0.3979592 1
48837 22 Private Community 10 Not_married White Male 40 <=50K 0.0684932 0.6000000 0.3979592 0
48839 40 Private HighGrad 9 Married White Male 40 >50K 0.3150685 0.5333333 0.3979592 1
formula = income10 ~ age.scale + workclass + education + marital.status + race + gender + hours.per.week.scale
modelo <- glm(formula, data = datos.Entrena, family = 'binomial')
summary(modelo)
## 
## Call:
## glm(formula = formula, family = "binomial", data = datos.Entrena)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.7337  -0.5768  -0.2588  -0.0654   3.3492  
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               -2.419e+00  2.228e-01 -10.858  < 2e-16 ***
## age.scale                  2.224e+00  1.053e-01  21.121  < 2e-16 ***
## workclassFederal-gov       1.421e+00  1.237e-01  11.485  < 2e-16 ***
## workclassLocal-gov         6.942e-01  1.100e-01   6.312 2.76e-10 ***
## workclassNever-worked     -8.124e+00  1.042e+02  -0.078   0.9379    
## workclassPrivate           8.124e-01  9.598e-02   8.464  < 2e-16 ***
## workclassSelf-emp-inc      1.218e+00  1.186e-01  10.270  < 2e-16 ***
## workclassSelf-emp-not-inc  1.878e-01  1.071e-01   1.753   0.0797 .  
## workclassState-gov         5.339e-01  1.223e-01   4.367 1.26e-05 ***
## workclassWithout-pay      -3.965e-01  8.276e-01  -0.479   0.6318    
## educationCommunity        -9.930e-01  4.428e-02 -22.426  < 2e-16 ***
## educationDropout          -2.782e+00  7.802e-02 -35.657  < 2e-16 ***
## educationHighGrad         -1.611e+00  4.523e-02 -35.610  < 2e-16 ***
## educationMaster            6.250e-01  6.110e-02  10.230  < 2e-16 ***
## educationPhD               1.077e+00  1.379e-01   7.814 5.55e-15 ***
## marital.statusNot_married -2.491e+00  5.355e-02 -46.511  < 2e-16 ***
## marital.statusSeparated   -2.102e+00  5.650e-02 -37.214  < 2e-16 ***
## marital.statusWidow       -2.163e+00  1.287e-01 -16.809  < 2e-16 ***
## raceAsian-Pac-Islander    -2.461e-02  2.074e-01  -0.119   0.9055    
## raceBlack                  4.784e-04  1.968e-01   0.002   0.9981    
## raceOther                 -9.881e-02  2.817e-01  -0.351   0.7258    
## raceWhite                  2.155e-01  1.876e-01   1.148   0.2509    
## genderMale                 9.432e-02  4.455e-02   2.117   0.0342 *  
## hours.per.week.scale       3.136e+00  1.398e-01  22.430  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 37626  on 34189  degrees of freedom
## Residual deviance: 25011  on 34166  degrees of freedom
## AIC: 25059
## 
## Number of Fisher Scoring iterations: 11
comparar <- data.frame(datos.Entrena$income10, as.vector(modelo$fitted.values) )

comparar <- comparar %>%
    mutate(income10ajustados = if_else (modelo$fitted.values > 0.5, 1, 0))

colnames(comparar) <- c("income10", "ajuste", 'income10ajustados')
head(comparar)
##   income10      ajuste income10ajustados
## 1        0 0.005003194                 0
## 2        0 0.331904483                 0
## 3        1 0.304736019                 0
## 4        1 0.393130183                 0
## 5        0 0.008761445                 0
## 6        0 0.008068021                 0
tail(comparar)
##       income10     ajuste income10ajustados
## 34185        0 0.47760555                 0
## 34186        0 0.06751504                 0
## 34187        0 0.28999271                 0
## 34188        0 0.06490387                 0
## 34189        0 0.00958675                 0
## 34190        1 0.43003777                 0
matriz_confusion <- table(comparar$income10, comparar$income10ajustados, dnn = c("income10", "income10ajustados para predicciones"))
matriz_confusion
##         income10ajustados para predicciones
## income10     0     1
##        0 24107  1902
##        1  4016  4165
n = nrow(datos.Entrena)
exactidud <- (matriz_confusion[1,1] + matriz_confusion[2,2]) / n

exactidud
## [1] 0.8269085
predicciones <- predict(modelo, datos.Validacion, se.fit = TRUE)

head(predicciones$fit)
##          6         15         17         36         41         49 
## -5.1235447 -0.4589452 -4.1994476 -1.0094459  2.3586616 -4.8803438
tail(predicciones$fit)
##      48826      48830      48832      48836      48837      48839 
## -1.8282163 -0.4364728 -0.5542026  1.6730416 -3.3800099 -0.9586976
predicciones_prob <- exp(predicciones$fit) / (1 + exp(predicciones$fit))

head(predicciones_prob)
##           6          15          17          36          41          49 
## 0.005919626 0.387236079 0.014782074 0.267088310 0.913620236 0.007537162
tail(predicciones_prob)
##      48826      48830      48832      48836      48837      48839 
## 0.13845090 0.39258175 0.36488993 0.84198092 0.03292608 0.27713903
las.predicciones <- cbind(datos.Validacion, predicciones_prob)

las.predicciones <- las.predicciones %>%
  mutate(income10.prediccion =  if_else(predicciones_prob > 0.5, 1, 0))
  
head(las.predicciones)
##   age workclass education educational.num marital.status  race gender
## 1  34   Private   Dropout               6    Not_married White   Male
## 2  48   Private  HighGrad               9        Married White   Male
## 3  20 State-gov Community              10    Not_married White   Male
## 4  65         ?  HighGrad               9        Married White   Male
## 5  65   Private    Master              14        Married White   Male
## 6  52   Private   Dropout               7      Separated Black Female
##   hours.per.week income  age.scale educational.num.scale hours.per.week.scale
## 1             30  <=50K 0.23287671             0.3333333            0.2959184
## 2             48   >50K 0.42465753             0.5333333            0.4795918
## 3             25  <=50K 0.04109589             0.6000000            0.2448980
## 4             40  <=50K 0.65753425             0.5333333            0.3979592
## 5             50   >50K 0.65753425             0.8666667            0.5000000
## 6             18  <=50K 0.47945205             0.4000000            0.1734694
##   income10 predicciones_prob income10.prediccion
## 1        0       0.005919626                   0
## 2        1       0.387236079                   0
## 3        0       0.014782074                   0
## 4        0       0.267088310                   0
## 5        1       0.913620236                   1
## 6        0       0.007537162                   0
tail(las.predicciones)
##       age        workclass education educational.num marital.status  race
## 14647  31          Private    Master              14      Separated Other
## 14648  65 Self-emp-not-inc    Master              15    Not_married White
## 14649  43 Self-emp-not-inc Community              10        Married White
## 14650  53          Private    Master              14        Married White
## 14651  22          Private Community              10    Not_married White
## 14652  40          Private  HighGrad               9        Married White
##       gender hours.per.week income  age.scale educational.num.scale
## 14647 Female             30  <=50K 0.19178082             0.8666667
## 14648   Male             60  <=50K 0.65753425             0.9333333
## 14649   Male             50  <=50K 0.35616438             0.6000000
## 14650   Male             40   >50K 0.49315068             0.8666667
## 14651   Male             40  <=50K 0.06849315             0.6000000
## 14652   Male             40   >50K 0.31506849             0.5333333
##       hours.per.week.scale income10 predicciones_prob income10.prediccion
## 14647            0.2959184        0        0.13845090                   0
## 14648            0.6020408        0        0.39258175                   0
## 14649            0.5000000        0        0.36488993                   0
## 14650            0.3979592        1        0.84198092                   1
## 14651            0.3979592        0        0.03292608                   0
## 14652            0.3979592        1        0.27713903                   0
matriz_confusion <- table(las.predicciones$income10, las.predicciones$income10.prediccion, dnn = c("income10", "predicciones"))
matriz_confusion
##         predicciones
## income10     0     1
##        0 10357   789
##        1  1762  1744
n = nrow(datos.Validacion)
exactidud <- (matriz_confusion[1,1] + matriz_confusion[2,2]) / n

exactidud
## [1] 0.8258941
edad <- 53; horas <- 50
a.predecir <- data.frame(rbind(c(edad, 'Local-gov', 'HighGrad', 'Married', 'White' , 'Male', horas)))

colnames(a.predecir) <- c('age.scale', 'workclass', 'education', 'marital.status', 'race', 'gender', 'hours.per.week.scale')
edad; horas
## [1] 53
## [1] 50
edad.escalada <- rescale(c(edad, min(datos$age), max(datos$age)))
edad.escalada <- edad.escalada[1]

# Escalando las horas por semana
horas.escalada<- rescale(c(horas, min(datos$hours.per.week), max(datos$hours.per.week)))
horas.escalada <- horas.escalada[1]

a.predecir <- a.predecir %>%
  mutate(age.scale = edad.escalada,
         hours.per.week.scale = horas.escalada)
 
a.predecir
##   age.scale workclass education marital.status  race gender
## 1 0.4931507 Local-gov  HighGrad        Married White   Male
##   hours.per.week.scale
## 1                  0.5
prediccion <- predict(modelo, a.predecir, se.fit = TRUE)
prediccion
## $fit
##          1 
## -0.3608282 
## 
## $se.fit
## [1] 0.06749201
## 
## $residual.scale
## [1] 1
prediccion_prob <- exp(prediccion$fit) / (1 + exp(prediccion$fit))
prediccion_prob
##         1 
## 0.4107591
if_else(prediccion_prob > 0.5, 1, 0)
## [1] 0
cat("La probabilidad y la predicción de que una persona con esas características gane >50K es: ", if_else(prediccion_prob > 0.5, 1, 0))
## La probabilidad y la predicción de que una persona con esas características gane >50K es:  0
edad <- c(35,55,65,71,42,60,65,75,35,53)

clase.empleo <- c('HighGrad', 'State-gov','Never-worked','Self-emp-inc', 'Federal-gov','Private', 'Private', 'Federal-gov', 'State-gov', 'Local-gov')
nivel.educacion <- c('HighGrad', 'HighGrad', 'Bachelors', 'HighGrad', 'Bachelors', 'Bachelors', 'Community', 'Community', 'Master', 'PhD')
edo.civil <- c('Married', 'Separated', 'Separated', 'Widow', 'Not_married', 'Married', 'Separated', 'Widow', 'Married', 'Not_married')

raza <- c('White', 'Asian-Pac-Islander', 'Black', 'Other', 'White', 'White', 'Amer-Indian-Eskimo', 'Black', 'White', 'White')

genero <- c('Male', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male')

horas <- c(45,55,50,52,50,34,40,44,60,53)

a.predecir <- data.frame(rbind(cbind(edad, clase.empleo, nivel.educacion, edo.civil,raza, genero, horas)))

colnames(a.predecir) <- c('age.scale', 'workclass', 'education', 'marital.status', 'race', 'gender', 'hours.per.week.scale')

a.predecir
##    age.scale    workclass education marital.status               race gender
## 1         35     HighGrad  HighGrad        Married              White   Male
## 2         55    State-gov  HighGrad      Separated Asian-Pac-Islander   Male
## 3         65 Never-worked Bachelors      Separated              Black Female
## 4         71 Self-emp-inc  HighGrad          Widow              Other   Male
## 5         42  Federal-gov Bachelors    Not_married              White Female
## 6         60      Private Bachelors        Married              White   Male
## 7         65      Private Community      Separated Amer-Indian-Eskimo Female
## 8         75  Federal-gov Community          Widow              Black   Male
## 9         35    State-gov    Master        Married              White Female
## 10        53    Local-gov       PhD    Not_married              White   Male
##    hours.per.week.scale
## 1                    45
## 2                    55
## 3                    50
## 4                    52
## 5                    50
## 6                    34
## 7                    40
## 8                    44
## 9                    60
## 10                   53

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.