imp <- read.csv(file="complete_dataset_all_data_and_LPA.csv", header=T, stringsAsFactors = FALSE, na.strings=c(""," ","NA"))

# ##FTP items
# ftp1 <- d[ , grepl( "Q6.1" , names( d ) ) ]
# ftp2 <- d[ , grepl( "Q9.1" , names( d ) ) ]
# ftp <- cbind(ftp1,ftp2)
# rm(ftp1, ftp2)
# nfja <- (ftp$Q6.1_6 + ftp$Q6.1_11 + ftp$Q9.1_3 + ftp$Q9.1_5 + ftp$Q6.1_7 + ftp$Q9.1_4)/6
# pie <- (ftp$Q9.1_10 + ftp$Q9.1_11 + ftp$Q9.1_12 + ftp$Q9.1_13)/4
# s <- (ftp$Q6.1_2 + ftp$Q6.1_3 + ftp$Q6.1_4)/3
# cc <- (ftp$Q9.1_7 + ftp$Q9.1_8 + ftp$Q9.1_9)/3
# rfps <- (ftp$Q9.1_1 + ftp$Q9.1_2)/2
# mf <- (ftp$Q9.1_6 + ftp$Q9.1_10)/2
# 
# ftp_m <- cbind(nfja,pie,s,cc,rfps,mf)
# ftp_m <- as.data.frame(ftp_m)
# ftp_m$tot <- rowMeans(ftp_m, na.rm=T)
# ftp_m <- cbind(ftp_m,summ)
# ftp_m$summ <- as.factor(ftp_m$summ)
# tests <- head(colnames(ftp_m), n=-1)
# rm(nfja,pie,s,cc,rfps,mf)
# ftp_m <- na.omit(ftp_m)
# 
# ##identity items
# sid <- d[ , grepl( "Q3.1" , names( d ) ) ]
# eid <- d[ , grepl( "Q4.1" , names( d ) ) ]
# rid <- d[ , grepl( "Q5.1" , names( d ) ) ]
# 
# s_rec <- (sid$Q3.1_2 + sid$Q3.1_3 + sid$Q3.1_4 + sid$Q3.1_5 + sid$Q3.1_6 + sid$Q3.1_7)/6
# s_pc <- (sid$Q3.1_11 + sid$Q3.1_12 + sid$Q3.1_13 + sid$Q3.1_14 + sid$Q3.1_15)/5
# s_int <- (sid$Q3.1_8 + sid$Q3.1_9 + sid$Q3.1_10)/3
# e_rec <- (eid$Q4.1_2 + eid$Q4.1_3 + eid$Q4.1_4 + eid$Q4.1_6 + eid$Q4.1_7)/5
# e_pc <- (eid$Q4.1_11 + eid$Q4.1_12 + eid$Q4.1_13 + eid$Q4.1_14 + eid$Q4.1_10)/5
# e_int <- (eid$Q4.1_8 + eid$Q4.1_9 + eid$Q4.1_5)/3
# r_rec <- (rid$Q5.1_2 + rid$Q5.1_3 + rid$Q5.1_4 + rid$Q5.1_5 + rid$Q5.1_6 + rid$Q5.1_7)/6
# r_pc <- (rid$Q5.1_16 + rid$Q5.1_12 + rid$Q5.1_13 + rid$Q5.1_14 + rid$Q5.1_15)/5
# r_int <- (rid$Q5.1_8 + rid$Q5.1_9 + rid$Q5.1_10 + rid$Q5.1_11)/4
# 
# id_m <- cbind(s_rec,s_pc,s_int,e_rec,e_pc,e_int,r_rec,r_pc,r_int)
# id_m <- as.data.frame(id_m)
# id_m$s_tot <- (id_m$s_rec + id_m$s_pc + id_m$s_int)/3
# id_m$e_tot <- (id_m$e_rec + id_m$e_pc + id_m$e_int)/3
# id_m$r_tot <- (id_m$r_rec + id_m$r_pc + id_m$r_int)/3
# id_m$rec_tot <- (id_m$s_rec + id_m$e_rec + id_m$r_rec)/3
# id_m$pc_tot <- (id_m$s_pc + id_m$e_pc + id_m$r_pc)/3
# id_m$int_tot <- (id_m$s_int + id_m$e_int + id_m$r_int)/3
# id_m$tot <- (id_m$s_tot + id_m$e_tot + id_m$r_tot)/3
# 
# id_m <- id_m[,c(1,2,3,10,4,5,6,11,7,8,9,12,13,14,15,16)]
# 
# id_m <- cbind(id_m,summ)
# id_m$summ <- as.factor(id_m$summ)
# tests <- head(colnames(id_m), n=-1)
# rm(list=ls()[!(ls() %in% c('inscode','d','summ','id_m','tests'))])
# id_m <- na.omit(id_m)
# 
# ##IBM items
# ibm_sal <- d[ , grepl( "Q11" , names( d ) ) ]

names(imp)
##   [1] "R_IDs"            "X"                "Progress"        
##   [4] "Finished"         "Q1.1"             "Q6.1_1"          
##   [7] "Q6.1_2"           "Q6.1_3"           "Q6.1_4"          
##  [10] "Q6.1_5"           "Q6.1_6"           "Q6.1_7"          
##  [13] "Q6.1_8"           "Q6.1_9"           "Q6.1_10"         
##  [16] "Q6.1_11"          "Q9.1_1"           "Q9.1_2"          
##  [19] "Q9.1_3"           "Q9.1_4"           "Q9.1_5"          
##  [22] "Q9.1_6"           "Q9.1_7"           "Q9.1_8"          
##  [25] "Q9.1_9"           "Q9.1_10"          "Q9.1_11"         
##  [28] "Q9.1_12"          "Q9.1_13"          "Q9.1_14"         
##  [31] "Q3.1_1"           "Q3.1_2"           "Q3.1_3"          
##  [34] "Q3.1_4"           "Q3.1_5"           "Q3.1_6"          
##  [37] "Q3.1_7"           "Q3.1_8"           "Q3.1_9"          
##  [40] "Q3.1_10"          "Q3.1_11"          "Q3.1_12"         
##  [43] "Q3.1_13"          "Q3.1_14"          "Q3.1_15"         
##  [46] "Q4.1_1"           "Q4.1_2"           "Q4.1_3"          
##  [49] "Q4.1_4"           "Q4.1_5"           "Q4.1_6"          
##  [52] "Q4.1_7"           "Q4.1_8"           "Q4.1_9"          
##  [55] "Q4.1_10"          "Q4.1_11"          "Q4.1_12"         
##  [58] "Q4.1_13"          "Q4.1_14"          "Q5.1_1"          
##  [61] "Q5.1_2"           "Q5.1_3"           "Q5.1_4"          
##  [64] "Q5.1_5"           "Q5.1_6"           "Q5.1_7"          
##  [67] "Q5.1_8"           "Q5.1_9"           "Q5.1_10"         
##  [70] "Q5.1_11"          "Q5.1_12"          "Q5.1_13"         
##  [73] "Q5.1_14"          "Q5.1_15"          "Q5.1_16"         
##  [76] "Q11.1_1"          "Q11.1_2"          "Q11.1_3"         
##  [79] "Q11.2_1"          "Q11.2_2"          "Q11.2_3"         
##  [82] "Q11.3_1"          "Q11.3_2"          "Q11.3_3"         
##  [85] "Q11.4_1"          "Q11.4_2"          "Q11.4_3"         
##  [88] "Q11.5_1"          "Q11.5_2"          "Q11.5_3"         
##  [91] "Q11.6_1"          "Q11.6_2"          "Q11.6_3"         
##  [94] "Q11.7_1"          "Q11.7_2"          "Q11.7_3"         
##  [97] "Q11.8_1"          "Q11.8_2"          "Q11.8_3"         
## [100] "Q11.9_1"          "Q11.9_2"          "Q11.9_3"         
## [103] "Q12.1_1"          "Q12.1_2"          "Q12.1_3"         
## [106] "Q12.1_4"          "Q12.1_5"          "Q12.1_6"         
## [109] "Q12.1_7"          "Q12.1_8"          "Q12.1_9"         
## [112] "Q13.1_1"          "Q13.1_2"          "Q14.1_3"         
## [115] "Q14.1_2"          "Q14.1_1"          "Q14.1_4"         
## [118] "Q14.2"            "Q14.3_1"          "Q14.4_4"         
## [121] "Q14.4_5"          "Q14.4_6"          "Q14.5_4"         
## [124] "Q14.5_5"          "Q14.5_3"          "Q14.6_4"         
## [127] "Q14.6_6"          "Q14.6_11"         "Q14.6_12"        
## [130] "Q15.1_4"          "Q15.2"            "Q16.2"           
## [133] "Q16.2_6_TEXT"     "Q70"              "Q70_2_TEXT"      
## [136] "Q16.4_4"          "Q16.4_7"          "Q16.4_8"         
## [139] "Q16.4_9"          "Q16.4_15"         "Q16.4_16"        
## [142] "Q16.4_17"         "Q16.4_12"         "Q16.5"           
## [145] "Q17.1"            "Q17.2"            "Q17.3_4"         
## [148] "Q17.3_5"          "Q17.3_8"          "Q18.1"           
## [151] "Q18.2"            "Q71"              "Q71_3_TEXT"      
## [154] "Q72_1"            "Q72_2"            "Q75"             
## [157] "Q19.1"            "Major"            "Q19.2"           
## [160] "Q19.3"            "Q19.4_1"          "Start.Year"      
## [163] "Q19.4_2"          "Start.Year.Month" "Q19.5"           
## [166] "Q19.6_1"          "Q19.6_2"          "Q19.7"           
## [169] "Q19.7_2_TEXT"     "Q19.8"            "Q19.9"           
## [172] "Q19.10"           "Q19.11"           "Q19.12"          
## [175] "Country"          "Continent"        "Q19.13"          
## [178] "Q19.13_8_TEXT"    "Q19.14"           "Q19.15_1"        
## [181] "Q19.15_2"         "Q19.15_3"         "Q19.16"          
## [184] "Q19.16_7_TEXT"    "Q19.17"           "Q19.17_5_TEXT"   
## [187] "Q19.18"           "Q19.18_7_TEXT"    "Q19.19"          
## [190] "Q19.20"           "Q19.21"           "Required"        
## [193] "NF"               "PI"               "Sp"              
## [196] "CC"               "RF"               "MF"              
## [199] "ResID_REC"        "ResID_INT"        "ResID_PC"        
## [202] "SciID_REC"        "SciID_INT"        "SciID_PC"        
## [205] "EngrID_REC"       "EngrID_PC"        "IBM_SciID"       
## [208] "IBM_EngrID"       "IBM_ResID"        "Diff_Res"        
## [211] "Diff_Diss"        "Diff_Stu"         "Advisor"         
## [214] "Peer"             "s_rec"            "s_pc"            
## [217] "s_int"            "e_rec"            "e_pc"            
## [220] "e_int"            "r_rec"            "r_pc"            
## [223] "r_int"            "IDclass"          "IDuncer"         
## [226] "IDpp"             "nfja"             "pie"             
## [229] "cc"               "mf"               "FTPclass"        
## [232] "FTPuncer"         "FTPpp"            "scim"            
## [235] "engm"             "resm"             "IBMclass"        
## [238] "IBMuncer"         "IBMpp"            "int_construct"   
## [241] "int_profile"      "finalphase"
d <- subset(imp, select=c(193:214))

eid <- imp[ , grepl( "Q4.1" , names( imp ) ) ]
e_int <- (eid$Q4.1_8 + eid$Q4.1_9 + eid$Q4.1_5)/3

d <- cbind(d, e_int)
colnames(d) <- c("ftp1_nf","ftp2_pi","ftp3_sp","ftp4_cc","ftp5_rf","ftp6_mf",
            "id1_res-rec","id2_res-int","id3_res-pc",
            "id4_sci-rec","id5_sci-int","id6_sci-pc",
            "id7_eng_rec","id9_eng_pc",
            "ibm1_sci","ibm2_eng","ibm3_res",
            "etc1_diff_res","etc2_diff_diss","etc3_diff_stu","etc4_adv","etc5_peer",
            "id8_eng_int")
d2 <- subset(imp, select=c(215:223, 227:230, 234:236))
colnames(d2) <- paste("lpa", colnames(d2), sep="-")
d3 <- data.frame(scale(d, center=T, scale=T))
colnames(d3) <- paste("std", colnames(d), sep="-")
ids <- imp$R_IDs
head(d)
##    ftp1_nf ftp2_pi  ftp3_sp  ftp4_cc ftp5_rf ftp6_mf id1_res-rec
## 1 3.666667    4.25 4.000000 3.000000     3.5     4.5         5.0
## 2 2.500000    3.75 4.666667 3.666667     3.0     4.0         3.0
## 3 3.500000    3.75 3.666667 4.000000     2.5     4.0         4.0
## 4 3.000000    3.75 3.666667 3.666667     4.5     4.5         3.2
## 5 3.666667    4.25 2.333333 4.666667     3.0     4.5         4.4
## 6 4.500000    4.00 1.333333 3.000000     4.0     5.0         4.8
##   id2_res-int id3_res-pc id4_sci-rec id5_sci-int id6_sci-pc id7_eng_rec
## 1        4.25   5.000000         4.4    5.000000        5.0         5.0
## 2        4.00   3.333333         3.0    4.666667        4.2         3.0
## 3        4.75   4.333333         4.0    4.333333        4.2         3.8
## 4        3.75   4.000000         4.0    5.000000        3.8         5.0
## 5        5.00   4.000000         3.4    5.000000        4.2         4.6
## 6        5.00   5.000000         4.6    5.000000        5.0         5.0
##   id9_eng_pc ibm1_sci ibm2_eng ibm3_res etc1_diff_res etc2_diff_diss
## 1        5.0 4.285714 4.000000 4.857143      3.000000            2.0
## 2        4.0 4.428571 3.857143 3.857143      2.333333            3.5
## 3        3.8 4.000000 4.142857 3.714286      5.000000             NA
## 4        5.0 4.714286 5.000000 4.285714      2.333333            1.5
## 5        4.4 4.285714 4.285714 4.571429      3.000000            2.0
## 6        5.0 4.142857 4.857143 4.571429      1.666667            2.5
##   etc3_diff_stu etc4_adv etc5_peer id8_eng_int
## 1           1.0    4.875      4.75    5.000000
## 2           1.0    3.500      3.25    4.666667
## 3           5.0       NA      4.50    4.333333
## 4           1.5    4.875      4.25    5.000000
## 5           4.0    4.875      5.00    5.000000
## 6           1.0    4.500      3.25    5.000000
head(d2)
##     lpa-s_rec   lpa-s_pc  lpa-s_int lpa-e_rec   lpa-e_pc lpa-e_int
## 1  0.73534227  0.9766860  0.7234524 0.9766642 0.80399264 0.7944945
## 2          NA         NA         NA        NA         NA        NA
## 3          NA         NA         NA        NA         NA        NA
## 4          NA         NA         NA        NA         NA        NA
## 5 -0.09305441 -0.1624052 -0.7698422 0.5792016 0.01549111 0.7944945
## 6          NA         NA         NA        NA         NA        NA
##   lpa-r_rec   lpa-r_pc  lpa-r_int  lpa-nfja   lpa-pie     lpa-cc    lpa-mf
## 1 0.8549564  0.3939927 -0.1537839 0.3233690 0.2934547 -0.4473132 0.2914708
## 2        NA         NA         NA        NA        NA         NA        NA
## 3        NA         NA         NA        NA        NA         NA        NA
## 4        NA         NA         NA        NA        NA         NA        NA
## 5 0.2310767 -0.3092680  0.7896832 0.1774183 0.2934547  1.0894984 0.2914708
## 6        NA         NA         NA        NA        NA         NA        NA
##    lpa-scim   lpa-engm  lpa-resm
## 1 1.1341062 -0.5960461 0.7856047
## 2        NA         NA        NA
## 3        NA         NA        NA
## 4        NA         NA        NA
## 5 0.4642623  0.3569008 0.3078649
## 6        NA         NA        NA
head(d3)
##   std-ftp1_nf std-ftp2_pi std-ftp3_sp std-ftp4_cc std-ftp5_rf std-ftp6_mf
## 1   0.3784695   0.4985965   1.0632640  -0.6274465   0.1389721   0.8563885
## 2  -1.2710684  -0.1734333   1.7634232   0.1309718  -0.3595581   0.2778549
## 3   0.1428212  -0.1734333   0.7131845   0.5101810  -0.8580883   0.2778549
## 4  -0.5641236  -0.1734333   0.7131845   0.1309718   1.1360325   0.8563885
## 5   0.3784695   0.4985965  -0.6871339   1.2685994  -0.3595581   0.8563885
## 6   1.5567109   0.1625816  -1.7373726  -0.6274465   0.6375023   1.4349222
##   std-id1_res-rec std-id2_res-int std-id3_res-pc std-id4_sci-rec
## 1      1.10274073       0.1420579     1.11747212      1.02345537
## 2     -0.92232184      -0.1229551    -0.84000455     -0.36668222
## 3      0.09020945       0.6720840     0.33448145      0.62627320
## 4     -0.71981558      -0.3879682    -0.05701388      0.62627320
## 5      0.49522196       0.9370971    -0.05701388      0.03049995
## 6      0.90023447       0.9370971     1.11747212      1.22204645
##   std-id5_sci-int std-id6_sci-pc std-id7_eng_rec std-id9_eng_pc
## 1      0.86616824    1.205620124       1.1368468      0.9306750
## 2      0.46479554    0.007740463      -1.1012122     -0.4526968
## 3      0.06342284    0.007740463      -0.2059886     -0.7293711
## 4      0.86616824   -0.591199367       1.1368468      0.9306750
## 5      0.86616824    0.007740463       0.6892350      0.1006519
## 6      0.86616824    1.205620124       1.1368468      0.9306750
##   std-ibm1_sci std-ibm2_eng std-ibm3_res std-etc1_diff_res
## 1    0.6667850    0.2918291    0.8892679         0.1038867
## 2    0.8164094    0.1263082   -0.3859723        -0.5894021
## 3    0.3675362    0.4573500   -0.5681494         2.1837530
## 4    1.1156583    1.4504753    0.1605593        -0.5894021
## 5    0.6667850    0.6228709    0.5249136         0.1038867
## 6    0.5171606    1.2849544    0.5249136        -1.2826909
##   std-etc2_diff_diss std-etc3_diff_stu std-etc4_adv std-etc5_peer
## 1        -0.43082061        -1.0107159    0.9709375     1.0438450
## 2         0.99354445        -1.0107159   -0.5828872    -0.8407697
## 3                 NA         2.6713132           NA     0.7297425
## 4        -0.90560896        -0.5504623    0.9709375     0.4156401
## 5        -0.43082061         1.7508059    0.9709375     1.3579474
## 6         0.04396774        -1.0107159    0.5471671    -0.8407697
##   std-id8_eng_int
## 1      0.86616824
## 2      0.46479554
## 3      0.06342284
## 4      0.86616824
## 5      0.86616824
## 6      0.86616824
# run correlations
library(psych)

d.corr <- corr.test(d, adjust = "holm")
d2.corr <- corr.test(d2, adjust = "holm")
d3.corr <- corr.test(d3, adjust = "holm")

# create corrplots
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.6.2
## corrplot 0.84 loaded
rmat <- d.corr$r
pmat <- d.corr$p
corrplot(rmat, type="lower", number.cex = .6, tl.cex =.6, order = "alphabet", tl.srt = 45, tl.col = "black",
               p.mat = pmat, insig = "label_sig", pch.col = "white", pch.cex = 1)

rmat <- d2.corr$r
pmat <- d2.corr$p
corrplot(rmat, type="lower", number.cex = .6, tl.cex =.6, order = "alphabet", tl.srt = 45, tl.col = "black",
         p.mat = pmat, insig = "label_sig", pch.col = "white", pch.cex = 1)

rmat <- d3.corr$r
pmat <- d3.corr$p
corrplot(rmat, type="lower", number.cex = .6, tl.cex =.6, order = "alphabet", tl.srt = 45, tl.col = "black",
         p.mat = pmat, insig = "label_sig", pch.col = "white", pch.cex = 1)

# view matrices
library(DT)
## Warning: package 'DT' was built under R version 3.6.3
mat <- round(d.corr$r, digits = 2)
datatable(mat)
mat <- round(d2.corr$r, digits = 2)
datatable(mat)
mat <- round(d3.corr$r, digits = 2)
datatable(mat)
# look @ institution change item

inschg <- (imp$Q19.8 - 1)
inschg[inschg == 0] <- "No"
inschg[inschg == 1] <- "Yes"
table(inschg, useNA = "always")
## inschg
##   No  Yes <NA> 
## 1556   85  113
table(inschg, imp$FTPclass, useNA = "always")
##       
## inschg   1   2   3   4   5 <NA>
##   No   159 498 195 134  63  507
##   Yes   17  36   7   4   7   14
##   <NA>   4  11   3   3   2   90
inschg_cs <- table(inschg, imp$FTPclass, useNA = "always")
csout <- chisq.test(inschg_cs)
## Warning in chisq.test(inschg_cs): Chi-squared approximation may be
## incorrect
csout
## 
##  Pearson's Chi-squared test
## 
## data:  inschg_cs
## X-squared = 129.57, df = 10, p-value < 2.2e-16
csout$residuals
##       
## inschg           1           2           3           4           5
##   No   -0.05387019  0.66045800  0.97448332  0.79727400 -0.10914544
##   Yes   2.80250426  1.86585402 -0.93100707 -1.08376515  1.87952964
##   <NA> -2.23071637 -4.06907493 -2.80863216 -2.01855946 -1.22510436
##       
## inschg        <NA>
##   No   -1.50451622
##   Yes  -2.86861800
##   <NA>  8.07089093
# class combinations from FTP LPA

## ----------------------------------------------------
## Combining Gaussian mixture components for clustering 
## ----------------------------------------------------
## 
## Mclust model name: EVI 
## Number of components: 8 
## 
## Combining steps:
## 
##   Step | Classes combined at this step | Class labels after this step
## -------|-------------------------------|-----------------------------
##    0   |              ---              | 1 2 3 4 5 6 7 8 
##    1   |             4 & 6             | 1 2 3 4 5 7 8 
##    2   |             3 & 4             | 1 2 3 5 7 8 
##    3   |             2 & 8             | 1 2 3 5 7 
##    4   |             1 & 2             | 1 3 5 7 
##    5   |             1 & 7             | 1 3 5 
##    6   |             1 & 3             | 1 5 
##    7   |             1 & 5             | 1

library(tidyr)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.3
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
d4 <- cbind(d2[10:13], imp$FTPclass)
colnames(d4)[5] <- "group"
desc <- describeBy(d4, group = "group")
desc1 <- subset(data.frame(desc$`1` ), select=c("mean"), vars != 5)
desc2 <- subset(data.frame(desc$`2` ), select=c("mean"), vars != 5)
desc3 <- subset(data.frame(desc$`3` ), select=c("mean"), vars != 5)
desc4 <- subset(data.frame(desc$`4` ), select=c("mean"), vars != 5)
desc5 <- subset(data.frame(desc$`5` ), select=c("mean"), vars != 5)
descall <- rbind(desc1, desc2, desc3, desc4, desc5)
descall$group <- rbind("g1","g1","g1","g1",
                                             "g2","g2","g2","g2",
                                             "g3","g3","g3","g3",
                                             "g4","g4","g4","g4",
                                             "g5","g5","g5","g5")
descall$var <- rownames(descall)
descall
##                  mean group       var
## lpa-nfja  -0.56700311    g1  lpa-nfja
## lpa-pie   -1.13042390    g1   lpa-pie
## lpa-cc    -0.20604769    g1    lpa-cc
## lpa-mf    -0.89208756    g1    lpa-mf
## lpa-nfja1 -0.11366383    g2 lpa-nfja1
## lpa-pie1   0.01595735    g2  lpa-pie1
## lpa-cc1    0.16692814    g2   lpa-cc1
## lpa-mf1    0.08018651    g2   lpa-mf1
## lpa-nfja2 -0.01588458    g3 lpa-nfja2
## lpa-pie2   0.26051101    g3  lpa-pie2
## lpa-cc2   -1.03517633    g3   lpa-cc2
## lpa-mf2    0.33391197    g3   lpa-mf2
## lpa-nfja3  0.85263197    g4 lpa-nfja3
## lpa-pie3   0.80752467    g4  lpa-pie3
## lpa-cc3    0.79225496    g4   lpa-cc3
## lpa-mf3    0.74754569    g4   lpa-mf3
## lpa-nfja4  0.65336918    g5 lpa-nfja4
## lpa-pie4   0.38213628    g5  lpa-pie4
## lpa-cc4    0.64744369    g5   lpa-cc4
## lpa-mf4   -0.79141364    g5   lpa-mf4
#plot
ggplot(data=descall, aes(x = group, y = mean, fill = var)) +
  geom_bar(stat="identity", position=position_dodge())