Results for liblinear using a full set of features (noscale) ( 12 - L2-regularized L2-loss support vector regression (dual))
#readr::write_csv(RESULTS,path = "./devcon_challenge.liblinear_12_results_noscale_all_lines.csv")
a0<-readr::read_csv("./devcon_challenge.liblinear_12_results_noscale_all_lines.csv") %>% filter(!is.na(pearson))
a0
readr::read_csv("./devcon_challenge.liblinear_12_results_noscale_all_lines.csv") %>% filter(!is.na(pearson)) %>% summarise(pearson_mean=mean(pearson),spearman_mean=mean(spearman))
Results for liblinear (noscale) 1500 features. ( 12 - L2-regularized L2-loss support vector regression (dual))
#readr::write_csv(RESULTS,path = "./devcon_challenge.liblinear_12_results_noscale_rf_selected_features_1500_all_lines.csv")
a6<-readr::read_csv("./devcon_challenge.liblinear_12_results_noscale_rf_selected_features_1500_all_lines.csv") %>% filter(!is.na(pearson))
a6
readr::read_csv("./devcon_challenge.liblinear_12_results_noscale_rf_selected_features_1500_all_lines.csv") %>% filter(!is.na(pearson)) %>% summarise(pearson_mean=mean(pearson),spearman_mean=mean(spearman))
Results for liblinear (noscale) 1000 features. (13 L2-regularized L1-loss support vector regression (dual))
#readr::write_csv(RESULTS,path = "./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_1000_all_lines.csv")
a1<-readr::read_csv("./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_1000_all_lines.csv") %>% filter(!is.na(pearson))
a1
readr::read_csv("./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_1000_all_lines.csv") %>% filter(!is.na(pearson)) %>% summarise(pearson_mean=mean(pearson),spearman_mean=mean(spearman))
Results for liblinear (noscale) 1500 features. (13 L2-regularized L1-loss support vector regression (dual))
#readr::write_csv(RESULTS,path = "./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_1500_all_lines.csv")
a2<-readr::read_csv("./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_1500_all_lines.csv") %>% filter(!is.na(pearson))
a2
readr::read_csv("./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_1500_all_lines.csv") %>% filter(!is.na(pearson)) %>% summarise(pearson_mean=mean(pearson),spearman_mean=mean(spearman))
NA
Results for liblinear (noscale) 2000 features. (13 L2-regularized L1-loss support vector regression (dual))
#readr::write_csv(RESULTS,path = "./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_2000_all_lines.csv")
a3<-readr::read_csv("./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_2000_all_lines.csv")
a3
readr::read_csv("./devcon_challenge.liblinear_13_results_noscale_rf_selected_features_2000_all_lines.csv") %>% summarise(pearson_mean=mean(pearson),spearman_mean=mean(spearman))
Results for glmnet using 5000 features
#readr::write_csv(RESULTS,path = "./devcon_challenge.gmlnet_results_noscale_rf_selected_features_5000_all_lines.csv")
a4<-readr::read_csv("./devcon_challenge.gmlnet_results_noscale_rf_selected_features_5000_all_lines.csv") %>% filter(!is.na(pearson))
a4
readr::read_csv("./devcon_challenge.gmlnet_results_noscale_rf_selected_features_5000_all_lines.csv") %>% filter(!is.na(pearson)) %>% summarise(pearson_mean=mean(pearson),spearman_mean=mean(spearman))
Results for glmnet using 500 features
#readr::write_csv(RESULTS,path = "./devcon_challenge.gmlnet_results_noscale_rf_selected_features_500_all_lines.csv")
a5<-readr::read_csv("./devcon_challenge.gmlnet_results_noscale_rf_selected_features_500_all_lines.csv")
a5
readr::read_csv("./devcon_challenge.gmlnet_results_noscale_rf_selected_features_500_all_lines.csv") %>% filter(!is.na(pearson)) %>% summarise(pearson_mean=mean(pearson),spearman_mean=mean(spearman))
library(gridExtra)
a0$type<-"liblinear12full"
a1$type<-"liblinear13_1000"
a2$type<-"liblinear13_1500"
a3$type<-"liblinear13_2000"
a4$type<-"glmnet5000"
a5$type<-"glmnet500"
a6$type<-"liblinear12_1500"
plot2<-rbind(a0,a1,a2,a3,a4,a5,a6) %>% group_by(type,datasets) %>% summarise(pearson=mean(pearson)) %>% arrange(pearson) %>%
ggplot()+
geom_tile(aes(x=type,y=datasets,fill=pearson))+
scale_fill_gradient(low = "red", high = "white",limits=c(0.4, 1),)+
theme(axis.text.x=element_text(angle=45,hjust=1))
plot1<-rbind(a0,a1,a2,a3,a4,a5,a6) %>% group_by(type,datasets) %>% summarise(spearman=mean(spearman)) %>% arrange(spearman) %>%
ggplot()+
geom_tile(aes(x=type,y=datasets,fill=spearman))+
scale_fill_gradient(low = "red", high = "white",limits=c(0.4, 1),)+
theme(axis.text.x=element_text(angle=45,hjust=1))
gridExtra::grid.arrange(plot1,plot2,ncol=2)

NA
LS0tCnRpdGxlOiAiRGV2Y29uIENoYWxsZW5nZSIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgdG9jOiB5ZXMKLS0tCgpgYGB7cn0KCmBgYAoKIyBSZXN1bHRzIGZvciBsaWJsaW5lYXIgdXNpbmcgYSBmdWxsIHNldCBvZiAgZmVhdHVyZXMgKG5vc2NhbGUpICggMTIgLSBMMi1yZWd1bGFyaXplZCBMMi1sb3NzIHN1cHBvcnQgdmVjdG9yIHJlZ3Jlc3Npb24gKGR1YWwpKQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojcmVhZHI6OndyaXRlX2NzdihSRVNVTFRTLHBhdGggPSAiLi9kZXZjb25fY2hhbGxlbmdlLmxpYmxpbmVhcl8xMl9yZXN1bHRzX25vc2NhbGVfYWxsX2xpbmVzLmNzdiIpCmEwPC1yZWFkcjo6cmVhZF9jc3YoIi4vZGV2Y29uX2NoYWxsZW5nZS5saWJsaW5lYXJfMTJfcmVzdWx0c19ub3NjYWxlX2FsbF9saW5lcy5jc3YiKSAlPiUgZmlsdGVyKCFpcy5uYShwZWFyc29uKSkgCmEwCnJlYWRyOjpyZWFkX2NzdigiLi9kZXZjb25fY2hhbGxlbmdlLmxpYmxpbmVhcl8xMl9yZXN1bHRzX25vc2NhbGVfYWxsX2xpbmVzLmNzdiIpICU+JSBmaWx0ZXIoIWlzLm5hKHBlYXJzb24pKSAlPiUgIHN1bW1hcmlzZShwZWFyc29uX21lYW49bWVhbihwZWFyc29uKSxzcGVhcm1hbl9tZWFuPW1lYW4oc3BlYXJtYW4pKQpgYGAKCgojIFJlc3VsdHMgZm9yIGxpYmxpbmVhciAgKG5vc2NhbGUpIDE1MDAgZmVhdHVyZXMuICAoIDEyIC0gTDItcmVndWxhcml6ZWQgTDItbG9zcyBzdXBwb3J0IHZlY3RvciByZWdyZXNzaW9uIChkdWFsKSkKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KI3JlYWRyOjp3cml0ZV9jc3YoUkVTVUxUUyxwYXRoID0gIi4vZGV2Y29uX2NoYWxsZW5nZS5saWJsaW5lYXJfMTJfcmVzdWx0c19ub3NjYWxlX3JmX3NlbGVjdGVkX2ZlYXR1cmVzXzE1MDBfYWxsX2xpbmVzLmNzdiIpCmE2PC1yZWFkcjo6cmVhZF9jc3YoIi4vZGV2Y29uX2NoYWxsZW5nZS5saWJsaW5lYXJfMTJfcmVzdWx0c19ub3NjYWxlX3JmX3NlbGVjdGVkX2ZlYXR1cmVzXzE1MDBfYWxsX2xpbmVzLmNzdiIpICU+JSBmaWx0ZXIoIWlzLm5hKHBlYXJzb24pKSAKYTYKcmVhZHI6OnJlYWRfY3N2KCIuL2RldmNvbl9jaGFsbGVuZ2UubGlibGluZWFyXzEyX3Jlc3VsdHNfbm9zY2FsZV9yZl9zZWxlY3RlZF9mZWF0dXJlc18xNTAwX2FsbF9saW5lcy5jc3YiKSAlPiUgZmlsdGVyKCFpcy5uYShwZWFyc29uKSkgICU+JSAgc3VtbWFyaXNlKHBlYXJzb25fbWVhbj1tZWFuKHBlYXJzb24pLHNwZWFybWFuX21lYW49bWVhbihzcGVhcm1hbikpCmBgYAoKCiMgUmVzdWx0cyBmb3IgbGlibGluZWFyICAobm9zY2FsZSkgMTAwMCBmZWF0dXJlcy4gKDEzIEwyLXJlZ3VsYXJpemVkIEwxLWxvc3Mgc3VwcG9ydCB2ZWN0b3IgcmVncmVzc2lvbiAoZHVhbCkpCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CiNyZWFkcjo6d3JpdGVfY3N2KFJFU1VMVFMscGF0aCA9ICIuL2RldmNvbl9jaGFsbGVuZ2UubGlibGluZWFyXzEzX3Jlc3VsdHNfbm9zY2FsZV9yZl9zZWxlY3RlZF9mZWF0dXJlc18xMDAwX2FsbF9saW5lcy5jc3YiKQphMTwtcmVhZHI6OnJlYWRfY3N2KCIuL2RldmNvbl9jaGFsbGVuZ2UubGlibGluZWFyXzEzX3Jlc3VsdHNfbm9zY2FsZV9yZl9zZWxlY3RlZF9mZWF0dXJlc18xMDAwX2FsbF9saW5lcy5jc3YiKSAlPiUgZmlsdGVyKCFpcy5uYShwZWFyc29uKSkgCmExCnJlYWRyOjpyZWFkX2NzdigiLi9kZXZjb25fY2hhbGxlbmdlLmxpYmxpbmVhcl8xM19yZXN1bHRzX25vc2NhbGVfcmZfc2VsZWN0ZWRfZmVhdHVyZXNfMTAwMF9hbGxfbGluZXMuY3N2IikgJT4lIGZpbHRlcighaXMubmEocGVhcnNvbikpICU+JSAgc3VtbWFyaXNlKHBlYXJzb25fbWVhbj1tZWFuKHBlYXJzb24pLHNwZWFybWFuX21lYW49bWVhbihzcGVhcm1hbikpCmBgYAoKCgojIFJlc3VsdHMgZm9yIGxpYmxpbmVhciAgKG5vc2NhbGUpIDE1MDAgZmVhdHVyZXMuICgxMyBMMi1yZWd1bGFyaXplZCBMMS1sb3NzIHN1cHBvcnQgdmVjdG9yIHJlZ3Jlc3Npb24gKGR1YWwpKQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojcmVhZHI6OndyaXRlX2NzdihSRVNVTFRTLHBhdGggPSAiLi9kZXZjb25fY2hhbGxlbmdlLmxpYmxpbmVhcl8xM19yZXN1bHRzX25vc2NhbGVfcmZfc2VsZWN0ZWRfZmVhdHVyZXNfMTUwMF9hbGxfbGluZXMuY3N2IikKCmEyPC1yZWFkcjo6cmVhZF9jc3YoIi4vZGV2Y29uX2NoYWxsZW5nZS5saWJsaW5lYXJfMTNfcmVzdWx0c19ub3NjYWxlX3JmX3NlbGVjdGVkX2ZlYXR1cmVzXzE1MDBfYWxsX2xpbmVzLmNzdiIpICU+JSBmaWx0ZXIoIWlzLm5hKHBlYXJzb24pKSAKYTIKcmVhZHI6OnJlYWRfY3N2KCIuL2RldmNvbl9jaGFsbGVuZ2UubGlibGluZWFyXzEzX3Jlc3VsdHNfbm9zY2FsZV9yZl9zZWxlY3RlZF9mZWF0dXJlc18xNTAwX2FsbF9saW5lcy5jc3YiKSAlPiUgZmlsdGVyKCFpcy5uYShwZWFyc29uKSkgICU+JSBzdW1tYXJpc2UocGVhcnNvbl9tZWFuPW1lYW4ocGVhcnNvbiksc3BlYXJtYW5fbWVhbj1tZWFuKHNwZWFybWFuKSkKCmBgYAoKIyBSZXN1bHRzIGZvciBsaWJsaW5lYXIgIChub3NjYWxlKSAyMDAwIGZlYXR1cmVzLiAoMTMgTDItcmVndWxhcml6ZWQgTDEtbG9zcyBzdXBwb3J0IHZlY3RvciByZWdyZXNzaW9uIChkdWFsKSkKCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CiNyZWFkcjo6d3JpdGVfY3N2KFJFU1VMVFMscGF0aCA9ICIuL2RldmNvbl9jaGFsbGVuZ2UubGlibGluZWFyXzEzX3Jlc3VsdHNfbm9zY2FsZV9yZl9zZWxlY3RlZF9mZWF0dXJlc18yMDAwX2FsbF9saW5lcy5jc3YiKQoKYTM8LXJlYWRyOjpyZWFkX2NzdigiLi9kZXZjb25fY2hhbGxlbmdlLmxpYmxpbmVhcl8xM19yZXN1bHRzX25vc2NhbGVfcmZfc2VsZWN0ZWRfZmVhdHVyZXNfMjAwMF9hbGxfbGluZXMuY3N2IikgCmEzCnJlYWRyOjpyZWFkX2NzdigiLi9kZXZjb25fY2hhbGxlbmdlLmxpYmxpbmVhcl8xM19yZXN1bHRzX25vc2NhbGVfcmZfc2VsZWN0ZWRfZmVhdHVyZXNfMjAwMF9hbGxfbGluZXMuY3N2IikgICU+JSAgc3VtbWFyaXNlKHBlYXJzb25fbWVhbj1tZWFuKHBlYXJzb24pLHNwZWFybWFuX21lYW49bWVhbihzcGVhcm1hbikpCmBgYAoKIyBSZXN1bHRzIGZvciBnbG1uZXQgdXNpbmcgNTAwMCBmZWF0dXJlcwpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojcmVhZHI6OndyaXRlX2NzdihSRVNVTFRTLHBhdGggPSAiLi9kZXZjb25fY2hhbGxlbmdlLmdtbG5ldF9yZXN1bHRzX25vc2NhbGVfcmZfc2VsZWN0ZWRfZmVhdHVyZXNfNTAwMF9hbGxfbGluZXMuY3N2IikKYTQ8LXJlYWRyOjpyZWFkX2NzdigiLi9kZXZjb25fY2hhbGxlbmdlLmdtbG5ldF9yZXN1bHRzX25vc2NhbGVfcmZfc2VsZWN0ZWRfZmVhdHVyZXNfNTAwMF9hbGxfbGluZXMuY3N2IikgJT4lIGZpbHRlcighaXMubmEocGVhcnNvbikpIAphNApyZWFkcjo6cmVhZF9jc3YoIi4vZGV2Y29uX2NoYWxsZW5nZS5nbWxuZXRfcmVzdWx0c19ub3NjYWxlX3JmX3NlbGVjdGVkX2ZlYXR1cmVzXzUwMDBfYWxsX2xpbmVzLmNzdiIpICU+JSBmaWx0ZXIoIWlzLm5hKHBlYXJzb24pKSAlPiUgIHN1bW1hcmlzZShwZWFyc29uX21lYW49bWVhbihwZWFyc29uKSxzcGVhcm1hbl9tZWFuPW1lYW4oc3BlYXJtYW4pKQpgYGAKCiMgUmVzdWx0cyBmb3IgZ2xtbmV0IHVzaW5nIDUwMCBmZWF0dXJlcwpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojcmVhZHI6OndyaXRlX2NzdihSRVNVTFRTLHBhdGggPSAiLi9kZXZjb25fY2hhbGxlbmdlLmdtbG5ldF9yZXN1bHRzX25vc2NhbGVfcmZfc2VsZWN0ZWRfZmVhdHVyZXNfNTAwX2FsbF9saW5lcy5jc3YiKQphNTwtcmVhZHI6OnJlYWRfY3N2KCIuL2RldmNvbl9jaGFsbGVuZ2UuZ21sbmV0X3Jlc3VsdHNfbm9zY2FsZV9yZl9zZWxlY3RlZF9mZWF0dXJlc181MDBfYWxsX2xpbmVzLmNzdiIpIAphNQpyZWFkcjo6cmVhZF9jc3YoIi4vZGV2Y29uX2NoYWxsZW5nZS5nbWxuZXRfcmVzdWx0c19ub3NjYWxlX3JmX3NlbGVjdGVkX2ZlYXR1cmVzXzUwMF9hbGxfbGluZXMuY3N2IikgJT4lIGZpbHRlcighaXMubmEocGVhcnNvbikpICU+JSAgc3VtbWFyaXNlKHBlYXJzb25fbWVhbj1tZWFuKHBlYXJzb24pLHNwZWFybWFuX21lYW49bWVhbihzcGVhcm1hbikpCmBgYAoKCmBgYHtyIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTh9CmxpYnJhcnkoZ3JpZEV4dHJhKQphMCR0eXBlPC0ibGlibGluZWFyMTJmdWxsIgphMSR0eXBlPC0ibGlibGluZWFyMTNfMTAwMCIKYTIkdHlwZTwtImxpYmxpbmVhcjEzXzE1MDAiCmEzJHR5cGU8LSJsaWJsaW5lYXIxM18yMDAwIgphNCR0eXBlPC0iZ2xtbmV0NTAwMCIKYTUkdHlwZTwtImdsbW5ldDUwMCIKYTYkdHlwZTwtImxpYmxpbmVhcjEyXzE1MDAiCgpwbG90MjwtcmJpbmQoYTAsYTEsYTIsYTMsYTQsYTUsYTYpICU+JSBncm91cF9ieSh0eXBlLGRhdGFzZXRzKSAlPiUgc3VtbWFyaXNlKHBlYXJzb249bWVhbihwZWFyc29uKSkgJT4lIGFycmFuZ2UocGVhcnNvbikgJT4lCiAgZ2dwbG90KCkrCiAgZ2VvbV90aWxlKGFlcyh4PXR5cGUseT1kYXRhc2V0cyxmaWxsPXBlYXJzb24pKSsKICBzY2FsZV9maWxsX2dyYWRpZW50KGxvdyA9ICJyZWQiLCBoaWdoID0gIndoaXRlIixsaW1pdHM9YygwLjQsIDEpLCkrCiAgdGhlbWUoYXhpcy50ZXh0Lng9ZWxlbWVudF90ZXh0KGFuZ2xlPTQ1LGhqdXN0PTEpKQogIAogIApwbG90MTwtcmJpbmQoYTAsYTEsYTIsYTMsYTQsYTUsYTYpICU+JSBncm91cF9ieSh0eXBlLGRhdGFzZXRzKSAlPiUgc3VtbWFyaXNlKHNwZWFybWFuPW1lYW4oc3BlYXJtYW4pKSAlPiUgYXJyYW5nZShzcGVhcm1hbikgJT4lCiAgZ2dwbG90KCkrCiAgZ2VvbV90aWxlKGFlcyh4PXR5cGUseT1kYXRhc2V0cyxmaWxsPXNwZWFybWFuKSkrCiAgc2NhbGVfZmlsbF9ncmFkaWVudChsb3cgPSAicmVkIiwgaGlnaCA9ICJ3aGl0ZSIsbGltaXRzPWMoMC40LCAxKSwpKwogIHRoZW1lKGF4aXMudGV4dC54PWVsZW1lbnRfdGV4dChhbmdsZT00NSxoanVzdD0xKSkKCmdyaWRFeHRyYTo6Z3JpZC5hcnJhbmdlKHBsb3QxLHBsb3QyLG5jb2w9MikgIAogIApgYGAK