Chapter 12.5
Problem 7:
In Exercises 7-12, functions \(z=f(x,y)\), \(x=g(t)\), and \(y=h(t)\) are given.
In our problem we are given:
\(z=3x+4y\), \(x={ t }^{ 2 }\), \(y=2t\); \(t=1\)
Following the Multivariable Chain Rule theorem:
\(\frac { dz }{ dt } =\frac { df }{ dt } ={ f }_{ x }(x,y)\frac { dx }{ dt } +{ f }_{ y }(x,y)\frac { dy }{ dt }\)
Thus,
\(\frac { dz }{ dt } =3(2t)+4(2)\)
\(\frac { dz }{ dt } =6t+8\)