\[f(x,y) = sin(y)cos(x)\]
For \(f_x\) treat \(y\) as a constant
Take constant out \((a*f') = a*f'\)
\[f_x = sin(y)(-sin(x))\]
For \(f_y\) treat \(x\) as a constant
Take constant out \((a*f') = a*f'\) \[f_y= cos(y)cos(x)\]
sin(x) |
cos(x) |
tan(x) |
|---|---|---|
| 0 = 0 | 0 =1 | 0=0 |
| \(\frac{\pi}{6} = \frac{1}{2}\) | \(\frac{\pi}{6}= \frac{\sqrt3}{2}\) | \(\frac{\pi}{6}=\frac{1}{\sqrt3}\) |
| \(\frac{\pi}{4} = \frac{\sqrt2}{2}\) | \(\frac{\pi}{4}=\frac{\sqrt2}{2}\) | \(\frac{\pi}{4}=1\) |
| \(\frac{\pi}{3}= \frac{\sqrt3}{2}\) | \(\frac{\pi}{3}= \frac{1}{2}\) | \(\frac{\pi}{3}=\sqrt3\) |
| \(\frac{\pi}{2}=1\) | \(\frac{\pi}{2}= 0\) | \(\frac{\pi}{2}\)=undefined |
Using the values above, we can substitute the indicated point \((\frac{\pi}{3},\frac{\pi}{3})\) into \(f_x\) and \(f_y\)
\[f_x = sin(y)(-sin(x))\] \[f_x = sin(\frac{\pi}{3})(-sin(\frac{\pi}{3}))\] \[f_x = \frac{\sqrt3}{2} (-\frac{\sqrt3}{2})\] \[f_x=\frac{-3}{4}\]
\[f_y= cos(y)cos(x)\]
\[f_y= cos(\frac{\pi}{3})cos(\frac{\pi}{3})\] \[f_y= \frac{1}{2}*\frac{1}{2}\] \[f_y=\frac{1}{4}\]