DATA 624 Final Project

R Libraries

Exploratory Data Analysis and PreProcessing

## [1] 2571   33
## [1] 267  33
## [1] 2038
##   Brand Code         Carb Volume     Fill Ounces      PC Volume      
##  Length:2571        Min.   :5.040   Min.   :23.63   Min.   :0.07933  
##  Class :character   1st Qu.:5.293   1st Qu.:23.92   1st Qu.:0.23917  
##  Mode  :character   Median :5.347   Median :23.97   Median :0.27133  
##                     Mean   :5.370   Mean   :23.97   Mean   :0.27712  
##                     3rd Qu.:5.453   3rd Qu.:24.03   3rd Qu.:0.31200  
##                     Max.   :5.700   Max.   :24.32   Max.   :0.47800  
##                     NA's   :10      NA's   :38      NA's   :39       
##  Carb Pressure     Carb Temp          PSC             PSC Fill     
##  Min.   :57.00   Min.   :128.6   Min.   :0.00200   Min.   :0.0000  
##  1st Qu.:65.60   1st Qu.:138.4   1st Qu.:0.04800   1st Qu.:0.1000  
##  Median :68.20   Median :140.8   Median :0.07600   Median :0.1800  
##  Mean   :68.19   Mean   :141.1   Mean   :0.08457   Mean   :0.1954  
##  3rd Qu.:70.60   3rd Qu.:143.8   3rd Qu.:0.11200   3rd Qu.:0.2600  
##  Max.   :79.40   Max.   :154.0   Max.   :0.27000   Max.   :0.6200  
##  NA's   :27      NA's   :26      NA's   :33        NA's   :23      
##     PSC CO2           Mnf Flow       Carb Pressure1  Fill Pressure  
##  Min.   :0.00000   Min.   :-100.20   Min.   :105.6   Min.   :34.60  
##  1st Qu.:0.02000   1st Qu.:-100.00   1st Qu.:119.0   1st Qu.:46.00  
##  Median :0.04000   Median :  65.20   Median :123.2   Median :46.40  
##  Mean   :0.05641   Mean   :  24.57   Mean   :122.6   Mean   :47.92  
##  3rd Qu.:0.08000   3rd Qu.: 140.80   3rd Qu.:125.4   3rd Qu.:50.00  
##  Max.   :0.24000   Max.   : 229.40   Max.   :140.2   Max.   :60.40  
##  NA's   :39        NA's   :2         NA's   :32      NA's   :22     
##  Hyd Pressure1   Hyd Pressure2   Hyd Pressure3   Hyd Pressure4   
##  Min.   :-0.80   Min.   : 0.00   Min.   :-1.20   Min.   : 52.00  
##  1st Qu.: 0.00   1st Qu.: 0.00   1st Qu.: 0.00   1st Qu.: 86.00  
##  Median :11.40   Median :28.60   Median :27.60   Median : 96.00  
##  Mean   :12.44   Mean   :20.96   Mean   :20.46   Mean   : 96.29  
##  3rd Qu.:20.20   3rd Qu.:34.60   3rd Qu.:33.40   3rd Qu.:102.00  
##  Max.   :58.00   Max.   :59.40   Max.   :50.00   Max.   :142.00  
##  NA's   :11      NA's   :15      NA's   :15      NA's   :30      
##   Filler Level    Filler Speed   Temperature      Usage cont   
##  Min.   : 55.8   Min.   : 998   Min.   :63.60   Min.   :12.08  
##  1st Qu.: 98.3   1st Qu.:3888   1st Qu.:65.20   1st Qu.:18.36  
##  Median :118.4   Median :3982   Median :65.60   Median :21.79  
##  Mean   :109.3   Mean   :3687   Mean   :65.97   Mean   :20.99  
##  3rd Qu.:120.0   3rd Qu.:3998   3rd Qu.:66.40   3rd Qu.:23.75  
##  Max.   :161.2   Max.   :4030   Max.   :76.20   Max.   :25.90  
##  NA's   :20      NA's   :57     NA's   :14      NA's   :5      
##    Carb Flow       Density           MFR           Balling      
##  Min.   :  26   Min.   :0.240   Min.   : 31.4   Min.   :-0.170  
##  1st Qu.:1144   1st Qu.:0.900   1st Qu.:706.3   1st Qu.: 1.496  
##  Median :3028   Median :0.980   Median :724.0   Median : 1.648  
##  Mean   :2468   Mean   :1.174   Mean   :704.0   Mean   : 2.198  
##  3rd Qu.:3186   3rd Qu.:1.620   3rd Qu.:731.0   3rd Qu.: 3.292  
##  Max.   :5104   Max.   :1.920   Max.   :868.6   Max.   : 4.012  
##  NA's   :2      NA's   :1       NA's   :212     NA's   :1       
##  Pressure Vacuum        PH        Oxygen Filler     Bowl Setpoint  
##  Min.   :-6.600   Min.   :7.880   Min.   :0.00240   Min.   : 70.0  
##  1st Qu.:-5.600   1st Qu.:8.440   1st Qu.:0.02200   1st Qu.:100.0  
##  Median :-5.400   Median :8.540   Median :0.03340   Median :120.0  
##  Mean   :-5.216   Mean   :8.546   Mean   :0.04684   Mean   :109.3  
##  3rd Qu.:-5.000   3rd Qu.:8.680   3rd Qu.:0.06000   3rd Qu.:120.0  
##  Max.   :-3.600   Max.   :9.360   Max.   :0.40000   Max.   :140.0  
##                   NA's   :4       NA's   :12        NA's   :2      
##  Pressure Setpoint Air Pressurer      Alch Rel        Carb Rel    
##  Min.   :44.00     Min.   :140.8   Min.   :5.280   Min.   :4.960  
##  1st Qu.:46.00     1st Qu.:142.2   1st Qu.:6.540   1st Qu.:5.340  
##  Median :46.00     Median :142.6   Median :6.560   Median :5.400  
##  Mean   :47.62     Mean   :142.8   Mean   :6.897   Mean   :5.437  
##  3rd Qu.:50.00     3rd Qu.:143.0   3rd Qu.:7.240   3rd Qu.:5.540  
##  Max.   :52.00     Max.   :148.2   Max.   :8.620   Max.   :6.060  
##  NA's   :12                        NA's   :9       NA's   :10     
##   Balling Lvl  
##  Min.   :0.00  
##  1st Qu.:1.38  
##  Median :1.48  
##  Mean   :2.05  
##  3rd Qu.:3.14  
##  Max.   :3.66  
##  NA's   :1
##   Brand Code         Carb Volume     Fill Ounces      PC Volume      
##  Length:267         Min.   :5.147   Min.   :23.75   Min.   :0.09867  
##  Class :character   1st Qu.:5.287   1st Qu.:23.92   1st Qu.:0.23333  
##  Mode  :character   Median :5.340   Median :23.97   Median :0.27533  
##                     Mean   :5.369   Mean   :23.97   Mean   :0.27769  
##                     3rd Qu.:5.465   3rd Qu.:24.01   3rd Qu.:0.32200  
##                     Max.   :5.667   Max.   :24.20   Max.   :0.46400  
##                     NA's   :1       NA's   :6       NA's   :4        
##  Carb Pressure     Carb Temp          PSC             PSC Fill     
##  Min.   :60.20   Min.   :130.0   Min.   :0.00400   Min.   :0.0200  
##  1st Qu.:65.30   1st Qu.:138.4   1st Qu.:0.04450   1st Qu.:0.1000  
##  Median :68.00   Median :140.8   Median :0.07600   Median :0.1800  
##  Mean   :68.25   Mean   :141.2   Mean   :0.08545   Mean   :0.1903  
##  3rd Qu.:70.60   3rd Qu.:143.8   3rd Qu.:0.11200   3rd Qu.:0.2600  
##  Max.   :77.60   Max.   :154.0   Max.   :0.24600   Max.   :0.6200  
##                  NA's   :1       NA's   :5         NA's   :3       
##     PSC CO2           Mnf Flow       Carb Pressure1  Fill Pressure  
##  Min.   :0.00000   Min.   :-100.20   Min.   :113.0   Min.   :37.80  
##  1st Qu.:0.02000   1st Qu.:-100.00   1st Qu.:120.2   1st Qu.:46.00  
##  Median :0.04000   Median :   0.20   Median :123.4   Median :47.80  
##  Mean   :0.05107   Mean   :  21.03   Mean   :123.0   Mean   :48.14  
##  3rd Qu.:0.06000   3rd Qu.: 141.30   3rd Qu.:125.5   3rd Qu.:50.20  
##  Max.   :0.24000   Max.   : 220.40   Max.   :136.0   Max.   :60.20  
##  NA's   :5                           NA's   :4       NA's   :2      
##  Hyd Pressure1    Hyd Pressure2    Hyd Pressure3    Hyd Pressure4   
##  Min.   :-50.00   Min.   :-50.00   Min.   :-50.00   Min.   : 68.00  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.: 90.00  
##  Median : 10.40   Median : 26.80   Median : 27.70   Median : 98.00  
##  Mean   : 12.01   Mean   : 20.11   Mean   : 19.61   Mean   : 97.84  
##  3rd Qu.: 20.40   3rd Qu.: 34.80   3rd Qu.: 33.00   3rd Qu.:104.00  
##  Max.   : 50.00   Max.   : 61.40   Max.   : 49.20   Max.   :140.00  
##                   NA's   :1        NA's   :1        NA's   :4       
##   Filler Level    Filler Speed   Temperature      Usage cont   
##  Min.   : 69.2   Min.   :1006   Min.   :63.80   Min.   :12.90  
##  1st Qu.:100.6   1st Qu.:3812   1st Qu.:65.40   1st Qu.:18.12  
##  Median :118.6   Median :3978   Median :65.80   Median :21.44  
##  Mean   :110.3   Mean   :3581   Mean   :66.23   Mean   :20.90  
##  3rd Qu.:120.2   3rd Qu.:3996   3rd Qu.:66.60   3rd Qu.:23.74  
##  Max.   :153.2   Max.   :4020   Max.   :75.40   Max.   :24.60  
##  NA's   :2       NA's   :10     NA's   :2       NA's   :2      
##    Carb Flow       Density           MFR           Balling     
##  Min.   :   0   Min.   :0.060   Min.   : 15.6   Min.   :0.902  
##  1st Qu.:1083   1st Qu.:0.920   1st Qu.:707.0   1st Qu.:1.498  
##  Median :3038   Median :0.980   Median :724.6   Median :1.648  
##  Mean   :2409   Mean   :1.177   Mean   :697.8   Mean   :2.203  
##  3rd Qu.:3215   3rd Qu.:1.600   3rd Qu.:731.5   3rd Qu.:3.242  
##  Max.   :3858   Max.   :1.840   Max.   :784.8   Max.   :3.788  
##                 NA's   :1       NA's   :31      NA's   :1      
##  Pressure Vacuum     PH          Oxygen Filler     Bowl Setpoint  
##  Min.   :-6.400   Mode:logical   Min.   :0.00240   Min.   : 70.0  
##  1st Qu.:-5.600   NA's:267       1st Qu.:0.01960   1st Qu.:100.0  
##  Median :-5.200                  Median :0.03370   Median :120.0  
##  Mean   :-5.174                  Mean   :0.04666   Mean   :109.6  
##  3rd Qu.:-4.800                  3rd Qu.:0.05440   3rd Qu.:120.0  
##  Max.   :-3.600                  Max.   :0.39800   Max.   :130.0  
##  NA's   :1                       NA's   :3         NA's   :1      
##  Pressure Setpoint Air Pressurer      Alch Rel        Carb Rel   
##  Min.   :44.00     Min.   :141.2   Min.   :6.400   Min.   :5.18  
##  1st Qu.:46.00     1st Qu.:142.2   1st Qu.:6.540   1st Qu.:5.34  
##  Median :46.00     Median :142.6   Median :6.580   Median :5.40  
##  Mean   :47.73     Mean   :142.8   Mean   :6.907   Mean   :5.44  
##  3rd Qu.:50.00     3rd Qu.:142.8   3rd Qu.:7.180   3rd Qu.:5.56  
##  Max.   :52.00     Max.   :147.2   Max.   :7.820   Max.   :5.74  
##  NA's   :2         NA's   :1       NA's   :3       NA's   :2     
##   Balling Lvl   
##  Min.   :0.000  
##  1st Qu.:1.380  
##  Median :1.480  
##  Mean   :2.051  
##  3rd Qu.:3.080  
##  Max.   :3.420  
## 
## Loading required package: colorspace
## Loading required package: grid
## Loading required package: data.table
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
## The following object is masked from 'package:purrr':
## 
##     transpose
## VIM is ready to use. 
##  Since version 4.0.0 the GUI is in its own package VIMGUI.
## 
##           Please use the package to use the new (and old) GUI.
## Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha

## [1] "MFR"               "Hyd Pressure2"     "Carb Flow"        
## [4] "Alch Rel"          "Pressure Setpoint" "Hyd Pressure4"    
## [7] "Filler Level"      "Carb Pressure"

## NULL

Models

Linear Model

## 
## Call:
## lm(formula = PH ~ ., data = training)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0343 -0.4551  0.0580  0.5136  4.3194 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.237601   0.107999  -2.200 0.027935 *  
## `Brand Code`B        0.427657   0.157147   2.721 0.006565 ** 
## `Brand Code`C       -0.363806   0.156550  -2.324 0.020244 *  
## `Brand Code`D        0.218253   0.114130   1.912 0.055998 .  
## `Carb Volume`       -0.069745   0.053135  -1.313 0.189492    
## `Fill Ounces`       -0.021398   0.019274  -1.110 0.267058    
## `PC Volume`         -0.033261   0.022633  -1.470 0.141859    
## `Carb Pressure`      0.032014   0.075389   0.425 0.671141    
## `Carb Temp`         -0.011058   0.068520  -0.161 0.871813    
## PSC                 -0.009890   0.019671  -0.503 0.615191    
## `PSC Fill`          -0.013664   0.019609  -0.697 0.486009    
## `PSC CO2`           -0.050539   0.019183  -2.635 0.008496 ** 
## `Mnf Flow`          -0.490367   0.037980 -12.911  < 2e-16 ***
## `Carb Pressure1`     0.179711   0.022661   7.931 3.84e-15 ***
## `Fill Pressure`      0.023679   0.027342   0.866 0.386589    
## `Hyd Pressure1`     -0.009718   0.032485  -0.299 0.764861    
## `Hyd Pressure2`     -0.113660   0.061288  -1.855 0.063831 .  
## `Hyd Pressure3`      0.330101   0.064622   5.108 3.60e-07 ***
## `Hyd Pressure4`     -0.008954   0.028674  -0.312 0.754884    
## `Filler Level`      -0.103723   0.066403  -1.562 0.118461    
## `Filler Speed`      -0.003033   0.041771  -0.073 0.942134    
## Temperature         -0.145567   0.021840  -6.665 3.52e-11 ***
## `Usage cont`        -0.118484   0.023577  -5.025 5.53e-07 ***
## `Carb Flow`          0.060476   0.027289   2.216 0.026807 *  
## Density             -0.326131   0.071855  -4.539 6.04e-06 ***
## MFR                 -0.008168   0.030348  -0.269 0.787847    
## Balling             -0.468198   0.164158  -2.852 0.004393 ** 
## `Pressure Vacuum`   -0.068021   0.031350  -2.170 0.030162 *  
## `Oxygen Filler`     -0.061075   0.022415  -2.725 0.006499 ** 
## `Bowl Setpoint`      0.270312   0.067043   4.032 5.77e-05 ***
## `Pressure Setpoint` -0.104319   0.028327  -3.683 0.000238 ***
## `Air Pressurer`     -0.021473   0.019730  -1.088 0.276589    
## `Alch Rel`           0.201128   0.088085   2.283 0.022529 *  
## `Carb Rel`           0.098093   0.042634   2.301 0.021518 *  
## `Balling Lvl`        0.641993   0.159050   4.036 5.66e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7714 on 1764 degrees of freedom
## Multiple R-squared:  0.4098, Adjusted R-squared:  0.3984 
## F-statistic: 36.02 on 34 and 1764 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = PH ~ ., data = training2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0295 -0.4547  0.0636  0.5205  4.3623 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -0.272095   0.104289  -2.609  0.00916 ** 
## `Brand Code`B        0.405805   0.156079   2.600  0.00940 ** 
## `Brand Code`C       -0.390068   0.155980  -2.501  0.01248 *  
## `Brand Code`D        0.425019   0.077393   5.492 4.56e-08 ***
## `Carb Volume`       -0.067134   0.036452  -1.842  0.06569 .  
## `Fill Ounces`       -0.023372   0.019213  -1.216  0.22396    
## `PC Volume`         -0.018939   0.022285  -0.850  0.39554    
## `Carb Temp`          0.016332   0.019042   0.858  0.39117    
## PSC                 -0.012657   0.019697  -0.643  0.52058    
## `PSC Fill`          -0.008865   0.019630  -0.452  0.65161    
## `PSC CO2`           -0.049792   0.019169  -2.597  0.00947 ** 
## `Mnf Flow`          -0.503215   0.036851 -13.655  < 2e-16 ***
## `Carb Pressure1`     0.161144   0.021990   7.328 3.53e-13 ***
## `Fill Pressure`      0.044970   0.026002   1.729  0.08390 .  
## `Hyd Pressure1`     -0.037486   0.028923  -1.296  0.19512    
## `Hyd Pressure3`      0.252431   0.043821   5.760 9.87e-09 ***
## `Filler Speed`       0.005471   0.024055   0.227  0.82011    
## Temperature         -0.143339   0.021753  -6.589 5.80e-11 ***
## `Usage cont`        -0.139718   0.022970  -6.083 1.45e-09 ***
## Density             -0.319312   0.068128  -4.687 2.99e-06 ***
## Balling             -0.393497   0.154592  -2.545  0.01100 *  
## `Pressure Vacuum`   -0.045583   0.030262  -1.506  0.13218    
## `Oxygen Filler`     -0.060703   0.022435  -2.706  0.00688 ** 
## `Bowl Setpoint`      0.148406   0.027263   5.443 5.96e-08 ***
## `Pressure Setpoint` -0.109947   0.027859  -3.947 8.24e-05 ***
## `Air Pressurer`     -0.015809   0.019582  -0.807  0.41957    
## `Carb Rel`           0.115471   0.041723   2.768  0.00571 ** 
## `Balling Lvl`        0.676532   0.154086   4.391 1.20e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7744 on 1771 degrees of freedom
## Multiple R-squared:  0.4029, Adjusted R-squared:  0.3938 
## F-statistic: 44.26 on 27 and 1771 DF,  p-value: < 2.2e-16

MARS MODEL

## Loading required package: Formula
## Loading required package: plotmo
## Loading required package: plotrix
## 
## Attaching package: 'plotrix'
## The following object is masked from 'package:psych':
## 
##     rescale
## Loading required package: TeachingDemos
## Multivariate Adaptive Regression Spline 
## 
## 1799 samples
##   25 predictor
## 
## Pre-processing: centered (27), scaled (27) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 1799, 1799, 1799, 1799, 1799, 1799, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE       Rsquared   MAE      
##   1        2      0.8867206  0.2103277  0.6956737
##   1        3      0.8535987  0.2679548  0.6692461
##   1        4      0.8345518  0.3005094  0.6538934
##   1        5      0.8271336  0.3129571  0.6469357
##   1        6      0.8172052  0.3297803  0.6368058
##   1        7      0.8093723  0.3426488  0.6303815
##   1        8      0.8003398  0.3570452  0.6222729
##   1        9      0.7941340  0.3675287  0.6155937
##   1       10      0.7890103  0.3755941  0.6107297
##   2        2      0.8851293  0.2131670  0.6936721
##   2        3      0.8438199  0.2844008  0.6621597
##   2        4      0.8394388  0.2922949  0.6549625
##   2        5      0.8258897  0.3152327  0.6401502
##   2        6      0.8152442  0.3327858  0.6297584
##   2        7      0.8047282  0.3505888  0.6188240
##   2        8      0.7982001  0.3609115  0.6123209
##   2        9      0.7914027  0.3727390  0.6059591
##   2       10      0.7811561  0.3880791  0.5989128
##   3        2      0.8855582  0.2124518  0.6943201
##   3        3      0.8446958  0.2835561  0.6617109
##   3        4      0.8394390  0.2932133  0.6526675
##   3        5      0.8285507  0.3114026  0.6413335
##   3        6      0.8159166  0.3324821  0.6279260
##   3        7      0.8046113  0.3513653  0.6166450
##   3        8      0.7959696  0.3653488  0.6079498
##   3        9      0.7887555  0.3769430  0.6025707
##   3       10      0.7817335  0.3885946  0.5965610
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 10 and degree = 2.
## Call: earth(x=matrix[1799,27], y=c(-1.076,-1.656...), keepxy=TRUE,
##             degree=2, nprune=10)
## 
##                                                      coefficients
## (Intercept)                                            -0.8622121
## h(-0.198196-Mnf Flow)                                   0.9016834
## h(Bowl Setpoint- -1.27468)                              0.3874775
## Brand CodeC * Brand CodeD                              -0.5394923
## Brand CodeC * h(1.01607-Mnf Flow)                      -0.2493223
## Brand CodeC * h(0.777096-Oxygen Filler)                -0.3407226
## h(-0.198196-Mnf Flow) * h(Pressure Vacuum-0.384157)    -0.3327478
## h(Carb Pressure1- -1.76432) * h(1.69745-Temperature)    0.1238057
## h(1.69745-Temperature) * h(Usage cont-0.278805)        -0.3139828
## h(Density- -1.56239) * h(Bowl Setpoint- -1.27468)      -0.1258975
## 
## Selected 10 of 40 terms, and 10 of 27 predictors
## Termination condition: RSq changed by less than 0.001 at 40 terms
## Importance: `MnfFlow`, `BrandCode`C, `CarbPressure1`, Temperature, ...
## Number of terms at each degree of interaction: 1 2 7
## GCV 0.5784968    RSS 1013.704    GRSq 0.4154956    RSq 0.4300329
## k-Nearest Neighbors 
## 
## 1799 samples
##   32 predictor
## 
## Pre-processing: centered (34), scaled (34) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 1799, 1799, 1799, 1799, 1799, 1799, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE       Rsquared   MAE      
##    5  0.7796958  0.4113459  0.5775863
##    7  0.7638787  0.4251318  0.5712149
##    9  0.7599982  0.4268774  0.5729033
##   11  0.7558666  0.4317693  0.5719822
##   13  0.7548540  0.4325487  0.5730885
##   15  0.7564670  0.4303707  0.5763074
##   17  0.7585103  0.4274200  0.5787186
##   19  0.7615933  0.4227111  0.5825155
##   21  0.7637627  0.4194944  0.5851491
##   23  0.7672652  0.4142545  0.5886519
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 13.

Bagged Tree Model

## Warning: executing %dopar% sequentially: no parallel backend registered
## Bagged Model 
## 
## 1799 samples
##   25 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold) 
## Summary of sample sizes: 1438, 1439, 1440, 1439, 1440 
## Resampling results:
## 
##   RMSE       Rsquared   MAE      
##   0.7086387  0.4946152  0.5321531
## 
## Tuning parameter 'vars' was held constant at a value of 27
## Stochastic Gradient Boosting 
## 
## 1799 samples
##   32 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold) 
## Summary of sample sizes: 1439, 1439, 1439, 1439, 1440 
## Resampling results across tuning parameters:
## 
##   interaction.depth  n.trees  RMSE       Rsquared   MAE      
##    1                   50     0.7940863  0.3787615  0.6260608
##    1                  100     0.7720805  0.4057486  0.6077037
##    1                  150     0.7660696  0.4121970  0.6007820
##    1                  200     0.7602647  0.4186988  0.5951930
##    1                  250     0.7584085  0.4205916  0.5898030
##    1                  300     0.7581452  0.4204349  0.5871813
##    1                  350     0.7570953  0.4225198  0.5859415
##    1                  400     0.7572114  0.4221444  0.5848688
##    1                  450     0.7566378  0.4232554  0.5834376
##    1                  500     0.7572621  0.4224765  0.5828689
##    1                  550     0.7570439  0.4227299  0.5819140
##    1                  600     0.7573377  0.4226626  0.5802516
##    1                  650     0.7585327  0.4212666  0.5817796
##    1                  700     0.7599010  0.4191890  0.5820626
##    1                  750     0.7609231  0.4183584  0.5821235
##    1                  800     0.7608742  0.4181826  0.5820341
##    1                  850     0.7594892  0.4205481  0.5798933
##    1                  900     0.7583318  0.4220531  0.5788770
##    1                  950     0.7572313  0.4237875  0.5778177
##    1                 1000     0.7584548  0.4226046  0.5789300
##    2                   50     0.7543461  0.4392164  0.5927526
##    2                  100     0.7312263  0.4656035  0.5701011
##    2                  150     0.7182285  0.4817352  0.5545016
##    2                  200     0.7147113  0.4858075  0.5487336
##    2                  250     0.7091846  0.4932229  0.5434720
##    2                  300     0.7047382  0.4989244  0.5389097
##    2                  350     0.7023769  0.5022009  0.5362863
##    2                  400     0.7003822  0.5050079  0.5333657
##    2                  450     0.7005464  0.5050875  0.5318027
##    2                  500     0.6987470  0.5078935  0.5287474
##    2                  550     0.6959495  0.5115275  0.5267737
##    2                  600     0.6942135  0.5140517  0.5255325
##    2                  650     0.6941006  0.5145047  0.5253628
##    2                  700     0.6930339  0.5161452  0.5235945
##    2                  750     0.6922977  0.5172888  0.5231254
##    2                  800     0.6908824  0.5194937  0.5220396
##    2                  850     0.6891750  0.5223704  0.5204442
##    2                  900     0.6884157  0.5233400  0.5209834
##    2                  950     0.6886573  0.5231230  0.5207102
##    2                 1000     0.6886393  0.5234906  0.5209244
##    3                   50     0.7313184  0.4700763  0.5705301
##    3                  100     0.7099989  0.4946587  0.5461014
##    3                  150     0.6966210  0.5122258  0.5333464
##    3                  200     0.6895426  0.5215631  0.5241350
##    3                  250     0.6868288  0.5246612  0.5218729
##    3                  300     0.6846589  0.5271672  0.5194405
##    3                  350     0.6821946  0.5305856  0.5164303
##    3                  400     0.6810621  0.5321973  0.5165130
##    3                  450     0.6789900  0.5350761  0.5143812
##    3                  500     0.6760289  0.5395233  0.5117238
##    3                  550     0.6744592  0.5417717  0.5105462
##    3                  600     0.6745687  0.5419550  0.5103554
##    3                  650     0.6739971  0.5428248  0.5099355
##    3                  700     0.6729303  0.5444093  0.5094492
##    3                  750     0.6739381  0.5433350  0.5086350
##    3                  800     0.6723289  0.5456597  0.5075732
##    3                  850     0.6712374  0.5471451  0.5076663
##    3                  900     0.6712472  0.5471347  0.5077598
##    3                  950     0.6715778  0.5470054  0.5073943
##    3                 1000     0.6716372  0.5472059  0.5070168
##    4                   50     0.7141166  0.4949271  0.5529603
##    4                  100     0.6927026  0.5180203  0.5281567
##    4                  150     0.6796930  0.5345758  0.5146507
##    4                  200     0.6765017  0.5383714  0.5098753
##    4                  250     0.6730834  0.5428341  0.5071816
##    4                  300     0.6697691  0.5472589  0.5034884
##    4                  350     0.6670108  0.5511408  0.5032579
##    4                  400     0.6652760  0.5534874  0.5005529
##    4                  450     0.6656821  0.5531452  0.5014939
##    4                  500     0.6625912  0.5572215  0.4994350
##    4                  550     0.6603068  0.5603321  0.4975673
##    4                  600     0.6584303  0.5628414  0.4960590
##    4                  650     0.6585247  0.5628986  0.4951755
##    4                  700     0.6564802  0.5660572  0.4936407
##    4                  750     0.6552852  0.5676480  0.4928799
##    4                  800     0.6569507  0.5659021  0.4936989
##    4                  850     0.6583828  0.5641469  0.4945265
##    4                  900     0.6574247  0.5655463  0.4938535
##    4                  950     0.6558364  0.5675192  0.4920329
##    4                 1000     0.6564775  0.5668623  0.4927122
##    5                   50     0.7010221  0.5134188  0.5419663
##    5                  100     0.6790268  0.5373907  0.5187372
##    5                  150     0.6728390  0.5437853  0.5093348
##    5                  200     0.6687110  0.5490123  0.5038351
##    5                  250     0.6669736  0.5511066  0.5010368
##    5                  300     0.6645482  0.5542419  0.4996366
##    5                  350     0.6608626  0.5596343  0.4958318
##    5                  400     0.6581104  0.5633457  0.4941709
##    5                  450     0.6555269  0.5667904  0.4917419
##    5                  500     0.6556817  0.5669356  0.4901420
##    5                  550     0.6568323  0.5654803  0.4902174
##    5                  600     0.6567724  0.5658471  0.4891532
##    5                  650     0.6559812  0.5670393  0.4883037
##    5                  700     0.6550979  0.5681990  0.4872684
##    5                  750     0.6535647  0.5702699  0.4856225
##    5                  800     0.6531674  0.5709217  0.4857768
##    5                  850     0.6532799  0.5710125  0.4850259
##    5                  900     0.6530060  0.5714792  0.4849249
##    5                  950     0.6517552  0.5731882  0.4841762
##    5                 1000     0.6520510  0.5728490  0.4843703
##    6                   50     0.6895890  0.5285651  0.5321773
##    6                  100     0.6696637  0.5501136  0.5129311
##    6                  150     0.6569762  0.5648298  0.5037176
##    6                  200     0.6562873  0.5655389  0.5018840
##    6                  250     0.6516742  0.5713194  0.4959884
##    6                  300     0.6488227  0.5748592  0.4924938
##    6                  350     0.6473555  0.5771933  0.4910339
##    6                  400     0.6462240  0.5785872  0.4881264
##    6                  450     0.6457796  0.5793279  0.4869715
##    6                  500     0.6451688  0.5802738  0.4853244
##    6                  550     0.6444413  0.5815288  0.4842715
##    6                  600     0.6431196  0.5833371  0.4832606
##    6                  650     0.6422719  0.5845874  0.4819869
##    6                  700     0.6428311  0.5839605  0.4823249
##    6                  750     0.6432157  0.5834869  0.4823709
##    6                  800     0.6428258  0.5840653  0.4826485
##    6                  850     0.6432975  0.5835653  0.4825560
##    6                  900     0.6437221  0.5832501  0.4825209
##    6                  950     0.6434525  0.5835831  0.4814506
##    6                 1000     0.6437303  0.5833468  0.4819381
##    7                   50     0.6815269  0.5383920  0.5261737
##    7                  100     0.6611320  0.5600783  0.5030333
##    7                  150     0.6539961  0.5684006  0.4949588
##    7                  200     0.6478703  0.5764237  0.4902473
##    7                  250     0.6472636  0.5774415  0.4882592
##    7                  300     0.6445572  0.5808674  0.4853508
##    7                  350     0.6433541  0.5822724  0.4845676
##    7                  400     0.6438594  0.5819613  0.4841994
##    7                  450     0.6438007  0.5824004  0.4846855
##    7                  500     0.6427438  0.5838912  0.4840385
##    7                  550     0.6422597  0.5846059  0.4831335
##    7                  600     0.6433281  0.5835040  0.4839372
##    7                  650     0.6439623  0.5829136  0.4847471
##    7                  700     0.6434631  0.5835791  0.4836487
##    7                  750     0.6424360  0.5850511  0.4826555
##    7                  800     0.6416839  0.5860486  0.4823239
##    7                  850     0.6414045  0.5864734  0.4816313
##    7                  900     0.6411403  0.5867191  0.4814372
##    7                  950     0.6413640  0.5864777  0.4812171
##    7                 1000     0.6414010  0.5864486  0.4816128
##    8                   50     0.6743416  0.5484627  0.5165858
##    8                  100     0.6509402  0.5743293  0.4945704
##    8                  150     0.6407950  0.5858746  0.4832314
##    8                  200     0.6360365  0.5915323  0.4781552
##    8                  250     0.6330010  0.5954976  0.4743225
##    8                  300     0.6307508  0.5982106  0.4705235
##    8                  350     0.6299098  0.5993228  0.4710306
##    8                  400     0.6288441  0.6009037  0.4693306
##    8                  450     0.6293942  0.6001548  0.4695619
##    8                  500     0.6293250  0.6004752  0.4701527
##    8                  550     0.6294555  0.6006597  0.4700233
##    8                  600     0.6299880  0.6001407  0.4703696
##    8                  650     0.6297955  0.6005190  0.4702786
##    8                  700     0.6304551  0.5998544  0.4708125
##    8                  750     0.6302398  0.6001394  0.4701407
##    8                  800     0.6303476  0.6001049  0.4698411
##    8                  850     0.6304263  0.6000109  0.4699052
##    8                  900     0.6301426  0.6004596  0.4699979
##    8                  950     0.6301886  0.6004498  0.4697398
##    8                 1000     0.6304620  0.6000715  0.4698815
##    9                   50     0.6653988  0.5598878  0.5081606
##    9                  100     0.6498457  0.5750205  0.4927864
##    9                  150     0.6448816  0.5805781  0.4855998
##    9                  200     0.6416281  0.5842109  0.4833593
##    9                  250     0.6387874  0.5879300  0.4813083
##    9                  300     0.6373810  0.5897138  0.4797866
##    9                  350     0.6349952  0.5927529  0.4777069
##    9                  400     0.6331475  0.5950578  0.4759286
##    9                  450     0.6322341  0.5962575  0.4752481
##    9                  500     0.6316605  0.5970087  0.4746489
##    9                  550     0.6315416  0.5973033  0.4737805
##    9                  600     0.6318515  0.5970063  0.4741805
##    9                  650     0.6315515  0.5974930  0.4742558
##    9                  700     0.6315447  0.5975161  0.4744583
##    9                  750     0.6315529  0.5974907  0.4737504
##    9                  800     0.6315327  0.5976058  0.4737999
##    9                  850     0.6306112  0.5987382  0.4727761
##    9                  900     0.6308837  0.5984757  0.4730289
##    9                  950     0.6309178  0.5984796  0.4727729
##    9                 1000     0.6308070  0.5986314  0.4725955
##   10                   50     0.6672997  0.5557771  0.5100692
##   10                  100     0.6551864  0.5673443  0.4949370
##   10                  150     0.6486640  0.5754789  0.4883327
##   10                  200     0.6440296  0.5815974  0.4844364
##   10                  250     0.6419835  0.5842401  0.4830858
##   10                  300     0.6395900  0.5873723  0.4797501
##   10                  350     0.6380403  0.5894740  0.4782991
##   10                  400     0.6366961  0.5912211  0.4773800
##   10                  450     0.6366195  0.5915257  0.4766102
##   10                  500     0.6352940  0.5931987  0.4748476
##   10                  550     0.6362610  0.5921119  0.4752443
##   10                  600     0.6365020  0.5919732  0.4757126
##   10                  650     0.6370440  0.5912671  0.4762290
##   10                  700     0.6372324  0.5911979  0.4762483
##   10                  750     0.6367087  0.5918044  0.4758029
##   10                  800     0.6365018  0.5921429  0.4754619
##   10                  850     0.6364130  0.5922833  0.4753258
##   10                  900     0.6364991  0.5921621  0.4751995
##   10                  950     0.6363430  0.5923875  0.4747992
##   10                 1000     0.6361904  0.5925847  0.4745889
##   11                   50     0.6637283  0.5589972  0.5035067
##   11                  100     0.6479751  0.5763744  0.4885245
##   11                  150     0.6376352  0.5893908  0.4790005
##   11                  200     0.6373872  0.5898933  0.4795619
##   11                  250     0.6336705  0.5946110  0.4771309
##   11                  300     0.6336061  0.5948792  0.4765587
##   11                  350     0.6319020  0.5970334  0.4739264
##   11                  400     0.6309953  0.5982399  0.4724554
##   11                  450     0.6313442  0.5979111  0.4727891
##   11                  500     0.6316577  0.5975869  0.4727295
##   11                  550     0.6317882  0.5974477  0.4726572
##   11                  600     0.6312834  0.5981240  0.4722306
##   11                  650     0.6310130  0.5984997  0.4718476
##   11                  700     0.6304559  0.5991858  0.4715117
##   11                  750     0.6305062  0.5991486  0.4712975
##   11                  800     0.6305647  0.5991290  0.4711583
##   11                  850     0.6304182  0.5993320  0.4712171
##   11                  900     0.6300503  0.5997640  0.4708547
##   11                  950     0.6301977  0.5995741  0.4709217
##   11                 1000     0.6302487  0.5995286  0.4710061
##   12                   50     0.6625446  0.5618382  0.4992600
##   12                  100     0.6452991  0.5806773  0.4842649
##   12                  150     0.6397389  0.5871918  0.4785054
##   12                  200     0.6398262  0.5868024  0.4777340
##   12                  250     0.6383316  0.5885135  0.4755537
##   12                  300     0.6360392  0.5915203  0.4740776
##   12                  350     0.6342028  0.5938924  0.4721237
##   12                  400     0.6334482  0.5948655  0.4706047
##   12                  450     0.6337871  0.5944656  0.4708441
##   12                  500     0.6335257  0.5948480  0.4707309
##   12                  550     0.6327589  0.5957665  0.4700928
##   12                  600     0.6323707  0.5963298  0.4698991
##   12                  650     0.6319040  0.5969609  0.4693943
##   12                  700     0.6320646  0.5967830  0.4694157
##   12                  750     0.6321819  0.5966641  0.4693776
##   12                  800     0.6323883  0.5964109  0.4694895
##   12                  850     0.6322276  0.5966445  0.4691631
##   12                  900     0.6320067  0.5969190  0.4690007
##   12                  950     0.6319915  0.5969546  0.4688224
##   12                 1000     0.6320999  0.5968290  0.4688976
##   13                   50     0.6530382  0.5731567  0.4963740
##   13                  100     0.6409785  0.5858182  0.4844564
##   13                  150     0.6386480  0.5881768  0.4810303
##   13                  200     0.6350965  0.5925414  0.4752586
##   13                  250     0.6340065  0.5941265  0.4731515
##   13                  300     0.6338134  0.5942956  0.4717774
##   13                  350     0.6334163  0.5949196  0.4713827
##   13                  400     0.6318425  0.5969414  0.4707126
##   13                  450     0.6316813  0.5972654  0.4700285
##   13                  500     0.6317466  0.5972522  0.4696822
##   13                  550     0.6315873  0.5975527  0.4696678
##   13                  600     0.6312374  0.5980113  0.4693953
##   13                  650     0.6311433  0.5981722  0.4694274
##   13                  700     0.6308254  0.5985794  0.4692756
##   13                  750     0.6307363  0.5987135  0.4689086
##   13                  800     0.6305085  0.5989794  0.4688086
##   13                  850     0.6305870  0.5989130  0.4687831
##   13                  900     0.6307837  0.5986777  0.4689020
##   13                  950     0.6307011  0.5987920  0.4688024
##   13                 1000     0.6307473  0.5987411  0.4687918
##   14                   50     0.6421990  0.5893094  0.4881080
##   14                  100     0.6359272  0.5926956  0.4793784
##   14                  150     0.6318247  0.5973020  0.4730428
##   14                  200     0.6285945  0.6014474  0.4714381
##   14                  250     0.6279109  0.6024122  0.4704781
##   14                  300     0.6262379  0.6047361  0.4683470
##   14                  350     0.6258434  0.6053589  0.4675324
##   14                  400     0.6257910  0.6054434  0.4670927
##   14                  450     0.6251759  0.6063712  0.4667500
##   14                  500     0.6259411  0.6054707  0.4673077
##   14                  550     0.6259643  0.6054375  0.4671738
##   14                  600     0.6258854  0.6055921  0.4669004
##   14                  650     0.6259469  0.6055170  0.4669554
##   14                  700     0.6257160  0.6057517  0.4666790
##   14                  750     0.6257700  0.6056971  0.4667734
##   14                  800     0.6257784  0.6056630  0.4666410
##   14                  850     0.6258974  0.6055291  0.4667359
##   14                  900     0.6258441  0.6055947  0.4665939
##   14                  950     0.6258078  0.6056613  0.4665970
##   14                 1000     0.6258534  0.6056090  0.4666476
##   15                   50     0.6466405  0.5816747  0.4869157
##   15                  100     0.6367262  0.5909857  0.4768146
##   15                  150     0.6362986  0.5910301  0.4756273
##   15                  200     0.6357242  0.5919382  0.4750880
##   15                  250     0.6324705  0.5962026  0.4724182
##   15                  300     0.6314381  0.5975711  0.4722730
##   15                  350     0.6317789  0.5972661  0.4716165
##   15                  400     0.6324475  0.5964755  0.4720450
##   15                  450     0.6318574  0.5971986  0.4718860
##   15                  500     0.6310692  0.5981880  0.4711371
##   15                  550     0.6310996  0.5981156  0.4709605
##   15                  600     0.6309213  0.5983717  0.4708285
##   15                  650     0.6307618  0.5985618  0.4704831
##   15                  700     0.6309515  0.5983738  0.4706997
##   15                  750     0.6311117  0.5981821  0.4707738
##   15                  800     0.6311141  0.5981673  0.4707193
##   15                  850     0.6310015  0.5983138  0.4706583
##   15                  900     0.6308958  0.5984466  0.4705340
##   15                  950     0.6309464  0.5983801  0.4706423
##   15                 1000     0.6309470  0.5983784  0.4706059
##   16                   50     0.6402362  0.5890132  0.4856879
##   16                  100     0.6296643  0.5996753  0.4721629
##   16                  150     0.6283752  0.6013113  0.4691445
##   16                  200     0.6254496  0.6047207  0.4650736
##   16                  250     0.6239750  0.6065685  0.4629154
##   16                  300     0.6229071  0.6078516  0.4623176
##   16                  350     0.6233526  0.6072790  0.4629715
##   16                  400     0.6233746  0.6073441  0.4631065
##   16                  450     0.6234806  0.6072637  0.4631642
##   16                  500     0.6230952  0.6077560  0.4628111
##   16                  550     0.6232005  0.6076396  0.4626725
##   16                  600     0.6230882  0.6077728  0.4628150
##   16                  650     0.6229312  0.6079555  0.4626951
##   16                  700     0.6228709  0.6080382  0.4625919
##   16                  750     0.6226541  0.6082974  0.4624600
##   16                  800     0.6226195  0.6083465  0.4624315
##   16                  850     0.6226036  0.6083756  0.4624305
##   16                  900     0.6225660  0.6084264  0.4624038
##   16                  950     0.6225470  0.6084549  0.4623686
##   16                 1000     0.6225389  0.6084674  0.4623128
##   17                   50     0.6469284  0.5798829  0.4862986
##   17                  100     0.6349791  0.5930488  0.4716407
##   17                  150     0.6310431  0.5982012  0.4681924
##   17                  200     0.6295102  0.6002640  0.4662501
##   17                  250     0.6275048  0.6029223  0.4649923
##   17                  300     0.6264223  0.6042264  0.4637038
##   17                  350     0.6252147  0.6058527  0.4628510
##   17                  400     0.6252036  0.6058965  0.4628203
##   17                  450     0.6245456  0.6067106  0.4625688
##   17                  500     0.6243666  0.6070255  0.4627357
##   17                  550     0.6244720  0.6069403  0.4630668
##   17                  600     0.6243175  0.6071152  0.4627768
##   17                  650     0.6242850  0.6071573  0.4626343
##   17                  700     0.6240605  0.6074572  0.4625840
##   17                  750     0.6242068  0.6072705  0.4627207
##   17                  800     0.6242653  0.6072105  0.4627459
##   17                  850     0.6243746  0.6070808  0.4627857
##   17                  900     0.6244208  0.6070221  0.4628419
##   17                  950     0.6244354  0.6070057  0.4628886
##   17                 1000     0.6244106  0.6070381  0.4628644
##   18                   50     0.6366267  0.5934726  0.4785109
##   18                  100     0.6350115  0.5927431  0.4740650
##   18                  150     0.6322341  0.5963393  0.4700647
##   18                  200     0.6306243  0.5982898  0.4689072
##   18                  250     0.6282367  0.6013506  0.4670827
##   18                  300     0.6273296  0.6026236  0.4653708
##   18                  350     0.6266833  0.6035677  0.4644081
##   18                  400     0.6269613  0.6032739  0.4645472
##   18                  450     0.6267337  0.6036412  0.4646247
##   18                  500     0.6267944  0.6035880  0.4645911
##   18                  550     0.6265530  0.6039303  0.4643194
##   18                  600     0.6265369  0.6039732  0.4642760
##   18                  650     0.6266737  0.6038050  0.4643596
##   18                  700     0.6267421  0.6037114  0.4644504
##   18                  750     0.6268859  0.6035381  0.4645438
##   18                  800     0.6269422  0.6034752  0.4645951
##   18                  850     0.6269653  0.6034534  0.4645964
##   18                  900     0.6269635  0.6034595  0.4646075
##   18                  950     0.6270498  0.6033551  0.4646890
##   18                 1000     0.6270279  0.6033853  0.4646610
##   19                   50     0.6396755  0.5897888  0.4777288
##   19                  100     0.6265556  0.6034992  0.4672689
##   19                  150     0.6233796  0.6073727  0.4650991
##   19                  200     0.6221115  0.6090879  0.4639147
##   19                  250     0.6205974  0.6111624  0.4628601
##   19                  300     0.6200860  0.6118701  0.4622773
##   19                  350     0.6193292  0.6128851  0.4613329
##   19                  400     0.6192485  0.6130575  0.4612620
##   19                  450     0.6194734  0.6128540  0.4615660
##   19                  500     0.6194843  0.6129459  0.4612967
##   19                  550     0.6196862  0.6126982  0.4613966
##   19                  600     0.6198480  0.6125282  0.4615396
##   19                  650     0.6198731  0.6124974  0.4615150
##   19                  700     0.6198856  0.6125051  0.4615290
##   19                  750     0.6198531  0.6125451  0.4615292
##   19                  800     0.6198709  0.6125224  0.4615619
##   19                  850     0.6198434  0.6125592  0.4614739
##   19                  900     0.6198192  0.6125906  0.4614694
##   19                  950     0.6198064  0.6126082  0.4614517
##   19                 1000     0.6198008  0.6126169  0.4614450
##   20                   50     0.6421045  0.5855041  0.4801030
##   20                  100     0.6310841  0.5979748  0.4718464
##   20                  150     0.6262671  0.6040727  0.4668554
##   20                  200     0.6267935  0.6035826  0.4673259
##   20                  250     0.6256186  0.6051039  0.4658910
##   20                  300     0.6259498  0.6047808  0.4659066
##   20                  350     0.6260223  0.6047259  0.4658776
##   20                  400     0.6264284  0.6041898  0.4659544
##   20                  450     0.6267353  0.6038262  0.4662161
##   20                  500     0.6264306  0.6042401  0.4660094
##   20                  550     0.6262564  0.6044344  0.4659115
##   20                  600     0.6262895  0.6044109  0.4658100
##   20                  650     0.6262391  0.6044686  0.4657837
##   20                  700     0.6261326  0.6046089  0.4656617
##   20                  750     0.6262464  0.6044618  0.4656365
##   20                  800     0.6262901  0.6044153  0.4656768
##   20                  850     0.6262710  0.6044414  0.4656432
##   20                  900     0.6263389  0.6043599  0.4656819
##   20                  950     0.6263213  0.6043854  0.4656660
##   20                 1000     0.6263141  0.6043901  0.4656787
## 
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
## 
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 400,
##  interaction.depth = 19, shrinkage = 0.1 and n.minobsinnode = 10.

XGBoost

## Loading required package: xgboost
## 
## Attaching package: 'xgboost'
## The following object is masked from 'package:dplyr':
## 
##     slice
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
## 
##     expand
## [1]  train-rmse:0.896485+0.006482    test-rmse:0.930151+0.027302 
## [11] train-rmse:0.349706+0.009548    test-rmse:0.637472+0.014686 
## [21] train-rmse:0.253027+0.004508    test-rmse:0.625070+0.015954 
## [31] train-rmse:0.197612+0.006486    test-rmse:0.620623+0.016156 
## [41] train-rmse:0.153593+0.005757    test-rmse:0.617564+0.016294 
## [51] train-rmse:0.120084+0.006681    test-rmse:0.616261+0.015943 
## [61] train-rmse:0.091894+0.007157    test-rmse:0.617017+0.016446 
## [71] train-rmse:0.072353+0.005130    test-rmse:0.617381+0.015654 
## [81] train-rmse:0.058606+0.004288    test-rmse:0.617013+0.015432 
## [91] train-rmse:0.046055+0.002894    test-rmse:0.616321+0.015542 
## [101]    train-rmse:0.035947+0.001527    test-rmse:0.615905+0.015464 
## [111]    train-rmse:0.029164+0.001274    test-rmse:0.615785+0.015742 
## [121]    train-rmse:0.022503+0.001495    test-rmse:0.615409+0.015547 
## [131]    train-rmse:0.017554+0.001053    test-rmse:0.615358+0.015531 
## [141]    train-rmse:0.014320+0.000815    test-rmse:0.615388+0.015463 
## [151]    train-rmse:0.011277+0.000747    test-rmse:0.615319+0.015471 
## [161]    train-rmse:0.008850+0.000520    test-rmse:0.615250+0.015461 
## [171]    train-rmse:0.007066+0.000459    test-rmse:0.615271+0.015374 
## [181]    train-rmse:0.005718+0.000473    test-rmse:0.615196+0.015426 
## [191]    train-rmse:0.004715+0.000462    test-rmse:0.615200+0.015514 
## [201]    train-rmse:0.003673+0.000207    test-rmse:0.615199+0.015490 
## [211]    train-rmse:0.002972+0.000125    test-rmse:0.615184+0.015468 
## [221]    train-rmse:0.002379+0.000110    test-rmse:0.615184+0.015468 
## [231]    train-rmse:0.001813+0.000079    test-rmse:0.615196+0.015475 
## [241]    train-rmse:0.001438+0.000070    test-rmse:0.615197+0.015473 
## [251]    train-rmse:0.001160+0.000073    test-rmse:0.615184+0.015472 
## [261]    train-rmse:0.001031+0.000039    test-rmse:0.615188+0.015471 
## [271]    train-rmse:0.001030+0.000040    test-rmse:0.615188+0.015470 
## [281]    train-rmse:0.001030+0.000040    test-rmse:0.615188+0.015470 
## [291]    train-rmse:0.001030+0.000040    test-rmse:0.615188+0.015470 
## [300]    train-rmse:0.001030+0.000040    test-rmse:0.615188+0.015470
## [1]  val-rmse:0.941474   train-rmse:0.899213 
## [11] val-rmse:0.588037   train-rmse:0.364146 
## [21] val-rmse:0.587210   train-rmse:0.292580 
## [31] val-rmse:0.580854   train-rmse:0.231058 
## [41] val-rmse:0.580917   train-rmse:0.182077 
## [51] val-rmse:0.580488   train-rmse:0.147914 
## [61] val-rmse:0.581018   train-rmse:0.120995 
## [71] val-rmse:0.579306   train-rmse:0.096742 
## [81] val-rmse:0.580135   train-rmse:0.080349 
## [91] val-rmse:0.579160   train-rmse:0.067235 
## [101]    val-rmse:0.578952   train-rmse:0.054838 
## [111]    val-rmse:0.578901   train-rmse:0.047380 
## [121]    val-rmse:0.579167   train-rmse:0.036021 
## [131]    val-rmse:0.579238   train-rmse:0.028585 
## [141]    val-rmse:0.579130   train-rmse:0.024385 
## [151]    val-rmse:0.579190   train-rmse:0.019188 
## [161]    val-rmse:0.579097   train-rmse:0.014893 
## [171]    val-rmse:0.579186   train-rmse:0.012804 
## [181]    val-rmse:0.579150   train-rmse:0.010257 
## [191]    val-rmse:0.579253   train-rmse:0.008373 
## [201]    val-rmse:0.579283   train-rmse:0.006820 
## [211]    val-rmse:0.579345   train-rmse:0.005846 
## [221]    val-rmse:0.579340   train-rmse:0.004861 
## [231]    val-rmse:0.579335   train-rmse:0.003992 
## [241]    val-rmse:0.579335   train-rmse:0.003237 
## [251]    val-rmse:0.579337   train-rmse:0.002618 
## [260]    val-rmse:0.579312   train-rmse:0.002276

2020-05-10