2) f(x) = e^x

\[f^0(x) = e^{x}\,,\, f^0(0) = e^{0} = 1 \\ f^1(x) = e^{x}\,,\, f^1(0) = e^{0} = 1\\ f^2(x) = e^{x}\,,\, f^2(0) = e^{0} = 1\\ f^3(x) = e^{x}\,,\, f^3(0) = e^{0} = 1\\ In\, general\,the\,pattern\,is:\\ f^n(x) = e^{x}\,,\, f^n(0) = e^{0} = 1\\ \] The radius of convergence is in this case is: \[|+\infty,-\infty|\]

Using Taylor’s formula: \[f(x) = \sum_{n=0}^{\infty} f^n(a)(x-a)^n/n!\] Since all the derivatives are = 1, we get: \[f(0) = \sum_{n=0}^{\infty}(x)^n/n!\] Using R to confirm:

f<-function(x) {exp(x)}
s<-taylor(f,x0=0, n=4)
s
## [1] 0.04166657 0.16666673 0.50000000 1.00000000 1.00000000

###3) f(x) = ln(1 + x)

\[f^0(x) = ln(1+x)\,,\, f^0(0) = 1/(1+0)= 0 \\ f^1(x) = (1+x)^{-1}\,,\, f^1(0) = 1/(1+0)^{1} = 1\\ f^2(x) = -1(1+x)^{-2}\,,\, f^2(0) = -1/(1+0)^{2} = -1\\ f^3(x) = (-1)(-2)(1+x)^{-3}\,,\, f^3(0) = 2/(1+0)^{3} = 2\\ f^4(x) = (2)(-3)(1+x)^{-4}\,,\, f^3(0) = -6/(1+0)^{4} = -6\\ In\, general\,the\,pattern\,is:\\ f^n(x) = (-1)^{n-1}(n-1)!/(1+x)^n\,,\, f^n(0) = (-1)^{n-1}(n-1)!\\ \] The radius of convergence is |-1,1|

Using Taylor’s formula: \[f(x) = \sum_{n=0}^{\infty} f^n(a)(x-a)^n/n!\] We get: \[f(x) = 0+x-x^2/2!+2x^3/3!-6x^4/4!+....\\ f(x) = x-x^2/2+x^3/3-x^4/4+....\\ \] Using R to confirm:

f<-function(x) {log(1+x)}
s<-taylor(f,x0=0,n=4)
s
## [1] -0.2500044  0.3333339 -0.5000000  1.0000000  0.0000000