library(readr)
library(dplyr)
library(knitr)
hombres<-read.csv("../Datos/hombres.csv", encoding = "UTF-8")
kable(head(hombres,10))
| nombre | frec | edad_media |
|---|---|---|
| JOSE LUIS | 7028 | 45.13 |
| MIGUEL ANGEL | 5137 | 41.78 |
| FRANCISCO | 4853 | 46.73 |
| JUAN | 4655 | 47.27 |
| JESUS | 4198 | 44.66 |
| ALEJANDRO | 4042 | 41.72 |
| ANTONIO | 3961 | 46.33 |
| JORGE | 3847 | 45.30 |
| PEDRO | 3830 | 46.09 |
| CARLOS | 3765 | 45.34 |
kable(tail(hombres,10))
| nombre | frec | edad_media | |
|---|---|---|---|
| 5350 | WALTERIO | 5 | 44.2 |
| 5351 | WBALDO | 5 | 39.4 |
| 5352 | WILBERT FERNANDO | 5 | 53.6 |
| 5353 | WILBERT MANUEL | 5 | 47.8 |
| 5354 | WILIULFO | 5 | 48.0 |
| 5355 | WILLY | 5 | 29.4 |
| 5356 | YASSER | 5 | 30.8 |
| 5357 | YEUDIEL | 5 | 35.4 |
| 5358 | YOSIMAR | 5 | 23.0 |
| 5359 | ZOZIMO | 5 | 46.2 |
mujeres<-read.csv("../Datos/mujeres.csv", encoding = "UTF-8")
kable(head(mujeres,10))
| nombre | frec | edad_media |
|---|---|---|
| MARIA GUADALUPE | 7105 | 42.81 |
| LETICIA | 5848 | 43.66 |
| PATRICIA | 5422 | 42.41 |
| GUADALUPE | 5348 | 43.38 |
| MARIA DEL CARMEN | 4881 | 44.04 |
| VERONICA | 4772 | 38.18 |
| MARGARITA | 4674 | 45.41 |
| ELIZABETH | 4661 | 38.18 |
| SILVIA | 4223 | 45.43 |
| ROSA MARIA | 4107 | 46.97 |
kable(tail(mujeres,10))
| nombre | frec | edad_media | |
|---|---|---|---|
| 10752 | ZAIRA GUADALUPE | 5 | 28.0 |
| 10753 | ZAIRA LIZETH | 5 | 26.6 |
| 10754 | ZARAHI | 5 | 30.6 |
| 10755 | ZAYURI | 5 | 25.6 |
| 10756 | ZENDY | 5 | 32.5 |
| 10757 | ZENIA | 5 | 35.2 |
| 10758 | ZITLALLY | 5 | 30.2 |
| 10759 | ZOILA LIBERTAD | 5 | 44.2 |
| 10760 | ZOILA LUZ | 5 | 41.2 |
| 10761 | ZUGEY | 5 | 32.6 |
apellidos<-read.csv("../Datos/apellidos.csv", encoding = "UTF-8")
kable(head(apellidos,10))
| apellido | frec_pri | frec_seg |
|---|---|---|
| HERNANDEZ | 44095 | 44333 |
| GARCIA | 33010 | 33351 |
| MARTINEZ | 31080 | 31087 |
| LOPEZ | 30288 | 30188 |
| GONZALEZ | 25356 | 25362 |
| RODRIGUEZ | 22642 | 22490 |
| PEREZ | 22470 | 22353 |
| SANCHEZ | 21801 | 21782 |
| RAMIREZ | 18806 | 18632 |
| FLORES | 14160 | 13907 |
kable(tail(apellidos,10))
| apellido | frec_pri | frec_seg | |
|---|---|---|---|
| 7914 | Y TINOCO | 0 | 5 |
| 7915 | Y TORRES | 0 | 6 |
| 7916 | Y TUN | 0 | 7 |
| 7917 | Y VARGAS | 0 | 7 |
| 7918 | Y VAZQUEZ | 0 | 16 |
| 7919 | Y YAM | 0 | 5 |
| 7920 | Y ZAPATA | 0 | 5 |
| 7921 | YOLANDA | 0 | 6 |
| 7922 | ZACATECO | 0 | 6 |
| 7923 | ZASUETA | 0 | 5 |
entidades<-read.csv("../Datos/entidades.csv", encoding = "UTF-8")
kable(head(entidades,10))
| entidades |
|---|
| Aguascalientes |
| Baja California |
| Baja California Sur |
| Campeche |
| Coahuila de Zaragoza |
| Colima |
| Chiapas |
| Chihuahua |
| Ciudad de México |
| Durango |
kable(tail(entidades,10))
| entidades | |
|---|---|
| 23 | Quintana Roo |
| 24 | San Luis Potosí |
| 25 | Sinaloa |
| 26 | Sonora |
| 27 | Tabasco |
| 28 | Tamaulipas |
| 29 | Tlaxcala |
| 30 | Veracruz de Ignacio de la Llave |
| 31 | Yucatán |
| 32 | Zacatecas |
set.seed(2020)
# Se genera en un dataframe. Replace = TRUE: si se permite repetir el dato
personasM<- data.frame(sample(hombres$nombre, 4800, replace = TRUE), sample(apellidos$apellido, 4800, replace = TRUE), sample(apellidos$apellido, 4800, replace = TRUE), rep("M", 4800), sample(18:60, 4800, replace = TRUE), sample(entidades$entidad, 4800, replace = TRUE))
colnames(personasM)<-c("Nombre", "Paterno", "Materno", "Género", "Edad", "Entidad")
personasF<- data.frame(sample(mujeres$nombre, 5200, replace = TRUE), sample(apellidos$apellido, 5200, replace = TRUE), sample(apellidos$apellido, 5200, replace = TRUE), rep("F", 5200), sample(18:60, 5200, replace = TRUE), sample(entidades$entidad, 5200, replace = TRUE))
colnames(personasF)<-c("Nombre", "Paterno", "Materno", "Género", "Edad", "Entidad")
datos<-rbind(personasF,personasM)
kable(head(datos))
| Nombre | Paterno | Materno | Género | Edad | Entidad |
|---|---|---|---|---|---|
| MIRNA JANET | RAYGOZA | TORRECILLAS | F | 52 | Zacatecas |
| NANCY YESENIA | Y KU | TEJAS | F | 18 | Aguascalientes |
| IRMA KARINA | REMENTERIA | OLAGUEZ | F | 30 | Tabasco |
| VIANCA | BRACHO | TLAPA | F | 20 | Tabasco |
| MARIA ALMENDRA | MU?OZ | NACIANCENO | F | 50 | Morelos |
| JUANA EMMA | CHAPARRO | TIBURCIO | F | 43 | Sonora |
kable(tail(datos))
| Nombre | Paterno | Materno | Género | Edad | Entidad | |
|---|---|---|---|---|---|---|
| 9995 | RAZIEL | TORREALBA | CHAIREZ | M | 31 | Colima |
| 9996 | CARLOS IGNACIO | LLANES | BARQUIN | M | 21 | San Luis Potosí |
| 9997 | ALBERTO AGUSTIN | OLVEDA | APALE | M | 50 | Morelos |
| 9998 | FRANCISCO DAVID | PULIDO | BIU | M | 22 | Michoacán de Ocampo |
| 9999 | CORNELIO | ROSARIO | LETICIA | M | 52 | Sonora |
| 10000 | MIGUEL ESTEBAN | VILCHEZ | RICO | M | 49 | Quintana Roo |
summary(datos)
## Nombre Paterno Materno Género
## IVANHOE : 6 FITTA : 7 CORDERO : 8 F:5200
## JOSE ABEL : 6 QUEMADA : 7 MONTEAGUDO: 7 M:4800
## CECILIA MAGDALENA: 5 TECO : 7 ROJERO : 7
## MANUEL : 5 VARGAZ : 7 ANDON : 6
## MARTHA CRISTINA : 5 AGIS : 6 BARQUERA : 6
## PILAR : 5 BALCAZAR: 6 CHONGO : 6
## (Other) :9968 (Other) :9960 (Other) :9960
## Edad Entidad
## Min. :18.00 Guanajuato : 351
## 1st Qu.:28.00 Durango : 332
## Median :39.00 Coahuila de Zaragoza: 330
## Mean :38.93 Oaxaca : 329
## 3rd Qu.:50.00 Baja California Sur : 327
## Max. :60.00 Querétaro : 326
## (Other) :8005