In-Class Exercise 1: Each Chick Weight and Time
Load data file
## weight Time Chick Diet
## 1 42 0 1 1
## 2 51 2 1 1
## 3 59 4 1 1
## 4 64 6 1 1
## 5 76 8 1 1
## 6 93 10 1 1
Extract separate slope estimates of regressing weight onto Time for each chick
m0 <- lapply(split(dta[, 1:2],
list(dta$Chick, dta$Time)),
function(x) lm(weight ~ Time, data=dta))
sapply(m0, coef)## 18.0 16.0 15.0 13.0 9.0 20.0
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 10.0 8.0 17.0 19.0 4.0 6.0
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 11.0 3.0 1.0 12.0 2.0 5.0
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 14.0 7.0 24.0 30.0 22.0 23.0
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 27.0 28.0 26.0 25.0 29.0 21.0
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 33.0 37.0 36.0 31.0 39.0 38.0
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 32.0 40.0 34.0 35.0 44.0 45.0
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 43.0 41.0 47.0 49.0 46.0 50.0
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 42.0 48.0 18.2 16.2 15.2 13.2
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 9.2 20.2 10.2 8.2 17.2 19.2
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 4.2 6.2 11.2 3.2 1.2 12.2
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 2.2 5.2 14.2 7.2 24.2 30.2
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 22.2 23.2 27.2 28.2 26.2 25.2
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 29.2 21.2 33.2 37.2 36.2 31.2
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 39.2 38.2 32.2 40.2 34.2 35.2
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 44.2 45.2 43.2 41.2 47.2 49.2
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 46.2 50.2 42.2 48.2 18.4 16.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 15.4 13.4 9.4 20.4 10.4 8.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 17.4 19.4 4.4 6.4 11.4 3.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 1.4 12.4 2.4 5.4 14.4 7.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 24.4 30.4 22.4 23.4 27.4 28.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 26.4 25.4 29.4 21.4 33.4 37.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 36.4 31.4 39.4 38.4 32.4 40.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 34.4 35.4 44.4 45.4 43.4 41.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 47.4 49.4 46.4 50.4 42.4 48.4
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 18.6 16.6 15.6 13.6 9.6 20.6
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 10.6 8.6 17.6 19.6 4.6 6.6
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 11.6 3.6 1.6 12.6 2.6 5.6
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 14.6 7.6 24.6 30.6 22.6 23.6
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 27.6 28.6 26.6 25.6 29.6 21.6
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 33.6 37.6 36.6 31.6 39.6 38.6
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 32.6 40.6 34.6 35.6 44.6 45.6
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 43.6 41.6 47.6 49.6 46.6 50.6
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 42.6 48.6 18.8 16.8 15.8 13.8
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 9.8 20.8 10.8 8.8 17.8 19.8
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 4.8 6.8 11.8 3.8 1.8 12.8
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 2.8 5.8 14.8 7.8 24.8 30.8
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 22.8 23.8 27.8 28.8 26.8 25.8
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 29.8 21.8 33.8 37.8 36.8 31.8
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 39.8 38.8 32.8 40.8 34.8 35.8
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 44.8 45.8 43.8 41.8 47.8 49.8
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 46.8 50.8 42.8 48.8 18.10 16.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 15.10 13.10 9.10 20.10 10.10 8.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 17.10 19.10 4.10 6.10 11.10 3.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 1.10 12.10 2.10 5.10 14.10 7.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 24.10 30.10 22.10 23.10 27.10 28.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 26.10 25.10 29.10 21.10 33.10 37.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 36.10 31.10 39.10 38.10 32.10 40.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 34.10 35.10 44.10 45.10 43.10 41.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 47.10 49.10 46.10 50.10 42.10 48.10
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 18.12 16.12 15.12 13.12 9.12 20.12
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 10.12 8.12 17.12 19.12 4.12 6.12
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 11.12 3.12 1.12 12.12 2.12 5.12
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 14.12 7.12 24.12 30.12 22.12 23.12
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 27.12 28.12 26.12 25.12 29.12 21.12
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 33.12 37.12 36.12 31.12 39.12 38.12
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 32.12 40.12 34.12 35.12 44.12 45.12
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 43.12 41.12 47.12 49.12 46.12 50.12
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 42.12 48.12 18.14 16.14 15.14 13.14
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 9.14 20.14 10.14 8.14 17.14 19.14
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 4.14 6.14 11.14 3.14 1.14 12.14
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 2.14 5.14 14.14 7.14 24.14 30.14
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 22.14 23.14 27.14 28.14 26.14 25.14
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 29.14 21.14 33.14 37.14 36.14 31.14
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 39.14 38.14 32.14 40.14 34.14 35.14
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 44.14 45.14 43.14 41.14 47.14 49.14
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 46.14 50.14 42.14 48.14 18.16 16.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 15.16 13.16 9.16 20.16 10.16 8.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 17.16 19.16 4.16 6.16 11.16 3.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 1.16 12.16 2.16 5.16 14.16 7.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 24.16 30.16 22.16 23.16 27.16 28.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 26.16 25.16 29.16 21.16 33.16 37.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 36.16 31.16 39.16 38.16 32.16 40.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 34.16 35.16 44.16 45.16 43.16 41.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 47.16 49.16 46.16 50.16 42.16 48.16
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 18.18 16.18 15.18 13.18 9.18 20.18
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 10.18 8.18 17.18 19.18 4.18 6.18
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 11.18 3.18 1.18 12.18 2.18 5.18
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 14.18 7.18 24.18 30.18 22.18 23.18
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 27.18 28.18 26.18 25.18 29.18 21.18
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 33.18 37.18 36.18 31.18 39.18 38.18
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 32.18 40.18 34.18 35.18 44.18 45.18
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 43.18 41.18 47.18 49.18 46.18 50.18
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 42.18 48.18 18.20 16.20 15.20 13.20
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 9.20 20.20 10.20 8.20 17.20 19.20
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 4.20 6.20 11.20 3.20 1.20 12.20
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 2.20 5.20 14.20 7.20 24.20 30.20
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 22.20 23.20 27.20 28.20 26.20 25.20
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 29.20 21.20 33.20 37.20 36.20 31.20
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 39.20 38.20 32.20 40.20 34.20 35.20
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 44.20 45.20 43.20 41.20 47.20 49.20
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 46.20 50.20 42.20 48.20 18.21 16.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 15.21 13.21 9.21 20.21 10.21 8.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 17.21 19.21 4.21 6.21 11.21 3.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 1.21 12.21 2.21 5.21 14.21 7.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 24.21 30.21 22.21 23.21 27.21 28.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 26.21 25.21 29.21 21.21 33.21 37.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 36.21 31.21 39.21 38.21 32.21 40.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 34.21 35.21 44.21 45.21 43.21 41.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
## 47.21 49.21 46.21 50.21 42.21 48.21
## (Intercept) 27.467425 27.467425 27.467425 27.467425 27.467425 27.467425
## Time 8.803039 8.803039 8.803039 8.803039 8.803039 8.803039
Plot the Weight across time by individualy chick
In-Class Exercise 2: What does the code do (lapply(lapply(search(), ls), length))
The search function shows that ‘Gives a list of attached packages (see library), and R objects, usually data.frames.’
List the pachage and R objects
## [1] ".GlobalEnv" "package:lattice" "package:stats"
## [4] "package:graphics" "package:grDevices" "package:utils"
## [7] "package:datasets" "package:methods" "Autoloads"
## [10] "package:base"
Show the number of function or datasets by each package.
## [[1]]
## [1] 2
##
## [[2]]
## [1] 151
##
## [[3]]
## [1] 448
##
## [[4]]
## [1] 87
##
## [[5]]
## [1] 109
##
## [[6]]
## [1] 215
##
## [[7]]
## [1] 104
##
## [[8]]
## [1] 218
##
## [[9]]
## [1] 0
##
## [[10]]
## [1] 1229
In-Class Exercise 3: Cushings example
Calculate mean Tetrahydrocortisone and Pregnanetriol by each type
method 1
## Type Tetrahydrocortisone Pregnanetriol
## 1 a 2.966667 2.44
## 2 b 8.180000 1.12
## 3 c 19.720000 5.50
## 4 u 14.016667 1.20
method 2
## a b c u
## Tetrahydrocortisone 2.966667 8.18 19.72 14.01667
## Pregnanetriol 2.440000 1.12 5.50 1.20000
method 3
do.call("rbind", as.list(
by(Cushings, list(Cushings$Type), function(x) {
y <- subset(x, select = -Type)
apply(y, 2, mean)
}
)))
## The output is a matrix and more like a long format.
## The code chunck is a little bit complicated for me.
method 4
Cushings %>%
group_by(Type) %>%
summarize( t_m = mean(Tetrahydrocortisone), p_m = mean(Pregnanetriol))## # A tibble: 4 x 3
## Type t_m p_m
## <fct> <dbl> <dbl>
## 1 a 2.97 2.44
## 2 b 8.18 1.12
## 3 c 19.7 5.5
## 4 u 14.0 1.2
method 5
Cushings %>%
nest(-Type) %>%
mutate(avg = map(data, ~ apply(., 2, mean)),
res_1 = map_dbl(avg, "Tetrahydrocortisone"),
res_2 = map_dbl(avg, "Pregnanetriol")) ## Warning: All elements of `...` must be named.
## Did you want `data = c(Tetrahydrocortisone, Pregnanetriol)`?
## # A tibble: 4 x 5
## Type data avg res_1 res_2
## <fct> <list> <list> <dbl> <dbl>
## 1 a <tibble [6 × 2]> <dbl [2]> 2.97 2.44
## 2 b <tibble [10 × 2]> <dbl [2]> 8.18 1.12
## 3 c <tibble [5 × 2]> <dbl [2]> 19.7 5.5
## 4 u <tibble [6 × 2]> <dbl [2]> 14.0 1.2
In-Class Exercise 4: A Case Study
keep the school names with white spaces
Show the data structure
## 'data.frame': 2571 obs. of 6 variables:
## $ ID : int 1015 1052 1062 1092 1130 1018 1029 1030 1588 1154 ...
## $ Name: chr "Hora Hora School" "Morningside School" "Onerahi School" "Raurimu Avenue School" ...
## $ City: Factor w/ 541 levels "Ahaura","Ahipara",..: 533 533 533 533 533 533 533 533 533 533 ...
## $ Auth: Factor w/ 4 levels "Other","Private",..: 3 3 3 3 3 3 3 3 4 3 ...
## $ Dec : int 2 3 4 2 4 8 5 5 6 1 ...
## $ Roll: int 318 200 455 86 577 329 637 395 438 201 ...
binning
Create a new variable to discriminate the school size by median of roll
Delete the Size column
Show the first 6 rows
## ID Name City Auth Dec Roll
## 1 1015 Hora Hora School Whangarei State 2 318
## 2 1052 Morningside School Whangarei State 3 200
## 3 1062 Onerahi School Whangarei State 4 455
## 4 1092 Raurimu Avenue School Whangarei State 2 86
## 5 1130 Whangarei School Whangarei State 4 577
## 6 1018 Hurupaki School Whangarei State 8 329
Create a new variable to discriminate the school size by each 1/3 of roll
sorting
Create a new variable of RollOrd to show the order of roll and order the data by roll
Show the first six rows of the data ordered by RollOrd
## ID Name City Auth Dec Roll Size RollOrd
## 1726 498 Correspondence School Wellington State NA 5546 Large 753
## 301 28 Rangitoto College Auckland State 10 3022 Mediam 353
## 376 78 Avondale College Auckland State 4 2613 Mediam 712
## 2307 319 Burnside High School Christchurch State 8 2588 Mediam 709
## 615 41 Macleans College Auckland State 10 2476 Mediam 1915
## 199 43 Massey High School Auckland State 5 2452 Mediam 1683
Show the lase six rows of the data ordered by RollOrd
## ID Name City Auth Dec Roll Size
## 2401 1641 Amana Christian School Dunedin Private 9 7 Small
## 1590 2461 Tangimoana School Manawatu State 4 6 Small
## 1996 3598 Woodbank School Kaikoura State 4 6 Small
## 2112 3386 Jacobs River School Jacobs River State 5 6 Small
## 1514 2407 Ngamatapouri School Sth Taranaki District State 9 5 Small
## 1575 2420 Papanui Junction School Taihape State 5 5 Small
## RollOrd
## 2401 2562
## 1590 266
## 1996 2478
## 2112 1501
## 1514 2377
## 1575 1542
Show the first six rows of the data ordered by City and Roll
## ID Name City Auth Dec Roll Size RollOrd
## 2548 401 Menzies College Wyndham State 4 356 Small 859
## 2549 4054 Wyndham School Wyndham State 5 94 Small 1163
## 1611 2742 Woodville School Woodville State 3 147 Small 726
## 1630 2640 Papatawa School Woodville State 7 27 Small 2273
## 2041 3600 Woodend School Woodend State 9 375 Small 1401
## 1601 399 Central Southland College Winton State 7 549 Small 450
Show the last six rows of the data ordered by City and Roll
## ID Name City Auth Dec Roll Size RollOrd
## 2169 3273 Albury School Albury State 8 30 Small 1010
## 2018 350 Akaroa Area School Akaroa State 8 125 Small 1051
## 2023 3332 Duvauchelle School Akaroa State 9 41 Small 749
## 335 1200 Ahuroa School Ahuroa State 7 22 Small 193
## 99 1000 Ahipara School Ahipara State 3 241 Small 1963
## 2117 2105 Awahono School - Grey Valley Ahaura State 4 119 Small 364
counting
Show the numbers of school by each Auth
##
## Other Private State State Integrated
## 1 99 2144 327
Create a table to show the numbers of school by each Auth
##
## Other Private State State Integrated
## 1 99 2144 327
Show the data which Auth is Other
## ID Name City Auth Dec Roll Size RollOrd
## 2315 518 Kingslea School Christchurch Other 1 51 Small 1579
Show the numbers of school by each Auth and Dec
## Dec
## Auth 1 2 3 4 5 6 7 8 9 10
## Other 1 0 0 0 0 0 0 0 0 0
## Private 0 0 2 6 2 2 6 11 12 38
## State 259 230 208 219 214 215 188 200 205 205
## State Integrated 12 22 35 28 38 34 45 45 37 31
aggregating
Calculate the mean of roll which Auth is Private
## [1] 308.798
Calculate the mean of roll by each Auth
## Group.1 Roll
## 1 Other 51.0000
## 2 Private 308.7980
## 3 State 300.6301
## 4 State Integrated 258.3792
Create a new variable to distinguish the rich by Dec is larger than 5
## [1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
## [25] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
## [49] FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
## [61] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE
## [145] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [157] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
## [169] TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [181] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [193] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
## [205] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [217] TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE TRUE TRUE FALSE TRUE
## [229] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
## [241] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [253] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [265] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
## [277] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
## [289] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE NA NA
## [301] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
## [313] FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
## [325] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
## [337] TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [349] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [361] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
## [373] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [385] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [397] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
## [409] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [421] TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
## [433] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
## [445] TRUE FALSE TRUE TRUE FALSE NA TRUE TRUE FALSE TRUE FALSE FALSE
## [457] TRUE TRUE FALSE TRUE TRUE NA TRUE FALSE NA TRUE TRUE FALSE
## [469] TRUE NA FALSE TRUE TRUE FALSE TRUE FALSE NA TRUE FALSE TRUE
## [481] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
## [493] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## [505] FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
## [517] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [529] TRUE TRUE TRUE TRUE TRUE NA TRUE TRUE TRUE FALSE FALSE FALSE
## [541] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [553] NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [565] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [577] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [589] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
## [601] TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE
## [613] TRUE TRUE TRUE TRUE TRUE TRUE FALSE NA FALSE FALSE NA FALSE
## [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE NA FALSE TRUE
## [661] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [673] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [685] FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [697] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [709] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [721] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [733] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
## [745] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE
## [757] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
## [769] TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
## [781] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [793] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
## [805] TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [817] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [829] TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
## [841] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [853] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [877] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
## [889] FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
## [901] FALSE TRUE TRUE TRUE FALSE FALSE FALSE NA TRUE FALSE TRUE TRUE
## [913] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [925] TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [937] TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## [949] FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
## [961] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
## [973] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
## [985] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [997] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
## [1009] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
## [1021] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
## [1033] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [1045] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## [1057] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [1069] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1081] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1093] FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
## [1105] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
## [1117] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## [1129] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1141] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
## [1153] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
## [1165] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [1177] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
## [1189] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1201] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
## [1213] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [1225] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
## [1237] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [1249] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1261] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
## [1273] FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
## [1285] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE
## [1297] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
## [1309] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
## [1321] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [1333] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [1345] FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
## [1357] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
## [1369] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
## [1381] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [1393] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE
## [1405] FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [1417] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
## [1429] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE NA TRUE TRUE
## [1441] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [1453] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
## [1465] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1477] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## [1489] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [1501] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
## [1513] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
## [1525] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [1537] FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
## [1549] TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
## [1561] TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [1573] TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
## [1585] FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
## [1597] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
## [1609] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
## [1621] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [1633] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
## [1645] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [1657] TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [1669] TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
## [1681] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [1693] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
## [1705] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [1717] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE NA TRUE TRUE
## [1729] TRUE FALSE NA FALSE FALSE FALSE TRUE TRUE TRUE NA FALSE FALSE
## [1741] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
## [1753] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [1765] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1777] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
## [1789] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE NA
## [1801] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
## [1813] FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [1825] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [1837] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE
## [1849] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
## [1861] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [1873] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [1885] TRUE TRUE TRUE FALSE TRUE NA TRUE TRUE TRUE TRUE TRUE TRUE
## [1897] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
## [1909] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [1921] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
## [1933] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
## [1945] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
## [1957] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
## [1969] FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [1981] TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE
## [1993] TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
## [2005] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2017] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
## [2029] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
## [2041] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [2053] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [2065] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
## [2077] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2089] TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
## [2101] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE NA FALSE FALSE
## [2113] FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [2125] TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
## [2137] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [2149] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
## [2161] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
## [2173] FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
## [2185] TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
## [2197] FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
## [2209] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE
## [2221] FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
## [2233] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
## [2245] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2257] FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [2269] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
## [2281] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
## [2293] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
## [2305] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE
## [2317] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
## [2329] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
## [2341] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## [2353] TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
## [2365] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2377] TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
## [2389] TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
## [2401] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2413] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE
## [2425] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2437] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2449] TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [2461] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
## [2473] TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [2485] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
## [2497] TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [2509] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [2521] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
## [2533] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [2545] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
## [2557] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2569] FALSE TRUE TRUE
Calculate the mean of roll by each Auth and show whether the school rich
## Group.1 Group.2 Roll
## 1 Other FALSE 51.0000
## 2 Private FALSE 151.4000
## 3 State FALSE 261.7487
## 4 State Integrated FALSE 183.2370
## 5 Private TRUE 402.5362
## 6 State TRUE 338.8243
## 7 State Integrated TRUE 311.2135
Calculate the range of roll by each Auth
## : Other
## [1] 51 51
## ------------------------------------------------------------
## : Private
## [1] 7 1663
## ------------------------------------------------------------
## : State
## [1] 5 5546
## ------------------------------------------------------------
## : State Integrated
## [1] 18 1475
In-Clasee Exercise 5: A Case Study - II
Load data file
Show the data structure
## 'data.frame': 88 obs. of 4 variables:
## $ Name : chr "Al-Madinah School" "Alfriston College" "Ambury Park Centre for Riding Therapy" "Aorere College" ...
## $ Level1: num 61.5 53.9 33.3 39.5 71.2 22.1 50.8 57.3 89.3 59.8 ...
## $ Level2: num 75 44.1 20 50.2 78.9 30.8 34.8 49.8 89.7 65.7 ...
## $ Level3: num 0 0 0 30.6 55.5 26.3 48.9 44.6 88.6 50.4 ...
Show the first 6 rows
## Name Level1 Level2 Level3
## 1 Al-Madinah School 61.5 75.0 0.0
## 2 Alfriston College 53.9 44.1 0.0
## 3 Ambury Park Centre for Riding Therapy 33.3 20.0 0.0
## 4 Aorere College 39.5 50.2 30.6
## 5 Auckland Girls' Grammar School 71.2 78.9 55.5
## 6 Auckland Grammar 22.1 30.8 26.3
Calculate the mean expect for the first columns (table)
## Level1 Level2 Level3
## 62.26705 61.06818 47.97614
list apply
Calculate the mean expect for the first columns (list)
## $Level1
## [1] 62.26705
##
## $Level2
## [1] 61.06818
##
## $Level3
## [1] 47.97614
simplify the list apply
Calculate the mean expect for the first columns (matrix)
## Level1 Level2 Level3
## 62.26705 61.06818 47.97614
Calculate the range expect for the first columns (table)
## Level1 Level2 Level3
## [1,] 2.8 0.0 0.0
## [2,] 97.4 95.7 95.7
Calculate the range expect for the first columns (list)
## $Level1
## [1] 2.8 97.4
##
## $Level2
## [1] 0.0 95.7
##
## $Level3
## [1] 0.0 95.7
Calculate the range expect for the first columns (matrix)
## Level1 Level2 Level3
## [1,] 2.8 0.0 0.0
## [2,] 97.4 95.7 95.7
splitting
Split the data by roll and auth (list)
Show the data structure
## List of 4
## $ Other : int 51
## $ Private : int [1:99] 255 39 154 73 83 25 95 85 94 729 ...
## $ State : int [1:2144] 318 200 455 86 577 329 637 395 201 267 ...
## $ State Integrated: int [1:327] 438 26 191 560 151 114 126 171 211 57 ...
Calculate the mean roll by each Auth (list)
## $Other
## [1] 51
##
## $Private
## [1] 308.798
##
## $State
## [1] 300.6301
##
## $`State Integrated`
## [1] 258.3792
Calculate the mean roll by each Auth (matrix)
## Other Private State State Integrated
## 51.0000 308.7980 300.6301 258.3792