Historically women are amoung the many underrepresenting populations in higher education. Recently this trend has been changing and headlines indicating that female college graduates surpassing their male counterparts have appeared. In this projroject the trends involving gender amoung PhD recipients are explored.
According to UNESCO, 17 women have won a Nobel Prize in physics, chemistry or medicine since Marie Curie in 1903 compared to 572 men, and only 28% of all of the world’s researchers are women. These global numbers are a direct result of discrimination, bias, and societal norms influencing the quality of education that women recieve and the career choices they make. The goal for this project is to analyze data from the National Science Foundation on PhD recipients in the United States and confirm that these same disparities in gender are presentin the US, despite efforts to decrease the gender gap. According to the 2030 Agenda for Sustainable Development adopted by the United Nations, innovations in science, engineering and technology is essential to address key global issues such as climate change, food security, healthcare, natural resources and conserving biodiversity for Earth’s ecosystems. Gender equality is essential to developing sustainable solutions to global issues because these threats to humanity require the collective intellegence of humanity, including the untapped potential of underrepresented groups.
Data was taken from tables from the Survey of Earned Doctorites - National Science Foundation and uploaded into this GitHub Repository. The Survey of Earned Doctorites “is an annual census conducted since 1957 of all individuals receiving a research doctorate from an accredited U.S. institution in a given academic year.” Upon initial analysis a subset of data was selected from categories where females were initially under represented. The categories idenitfied were: Physical Science, Engineering and Math/CS Each case represents the number of male and female PhD recipients for a specific state in a specific year (2008, 2015 & 2018). There is one case for every state between these years EXCEPT for the category of Math/CS - there is one case for male and female PhD recipients between 2015 and 2018.
Each case represents the number of male and female PhD recipients for a specific state in a specific year between 2008 and 2018 (excluding states that were omitted from the data). There is one case for every state between these years EXCEPT for the category of Math/CS - there is one case for male and female PhD recipients between 2015 and 2018.
The response variable is the proportional difference between number of males and females in each category (Math/CS, Engineering and Physical Science) and is numerical (between 0 and 1).
The explanitory Variables:
Discipline - Category of Discipline that granted PhD (categorical/nominal variable)
Year - Year when PhD was granted (categorical/ ordinal variable)
State - State where PhD was granted (categorical/nominal variable)
Sex - Male or Female
Proportion - Two proportions were calculated and analyzed as a functin of year: proportion of males or females to the total number of PhDs granted in the country, and proportion of males and females to total number of PhDs granted in a specific state
In this respect, the sample of data included in this analysis excludes some states for a given category and year.
This is an observational study that attempts to use linear regression to model trends between male and female PhD recipients in the USA.
The population of interest are all PhD recipients in the USA. The findings in this study can be generalized this population because the number of cases exceed 30, and the sample is assumed to be a simple random sample. A potential source of bias here is that some states were omitted from the dataset due to confidentiallity reasons that are not specified on the NSF website. This data cannot be used to establish a causal link between variables of interest because there are a plethora of socio-economic factors that are involved in gender inequality in higher education. See this source for more information.
RCurl Library was used to read in the csv files into dataframes and dplyr was used to transform and tidy data into dataframes where each row is an observation (state) and each column corresponded to the number of males or females who earned a PhD in each category. Column names were also changes to reflect the variables of interest (Major and gender)
#Load url from Github
url<- "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2009Doc.csv"
raw <- getURL(url)
#Rename Columns, omit unessesary rows, rename columns to include sex, field pivot into long format
dataFrame09 <- read.csv(text = raw) %>%
data.frame() %>%
select(TABLE.6...Doctorates.awarded.by.state.location..by.broad.field.of.study.and.sex.of.doctorate.recipients..2009, X, X.1, X.6, X.7, X.12, X.13) %>% rename(State= TABLE.6...Doctorates.awarded.by.state.location..by.broad.field.of.study.and.sex.of.doctorate.recipients..2009, TotalMale = X, TotalFemale = X.1, PhysciMale = X.6, PhysciFemale = X.7, EngMale = X.12, EngFemale = X.13) %>%
slice(3:62) %>%
pivot_longer(-State, "Cat") %>%
filter(value != "D")
#Change all values in the value column - delete "," and cast values as numeric types
dataFrame09$value <-
as.numeric(unlist(str_remove_all(dataFrame09$value, ',')))
#Drop NA Values (extra rows) and place data back in wide format
dataFrame09 <- dataFrame09 %>%
drop_na() %>%
spread(Cat,value)
#Display
kable(dataFrame09)%>%
kable_styling() %>%
scroll_box(width = "100%", height = "200px")
| State | EngFemale | EngMale | PhysciFemale | PhysciMale | TotalFemale | TotalMale |
|---|---|---|---|---|---|---|
| Alabama | 20 | 74 | 31 | 60 | 299 | 331 |
| Alaska | NA | NA | 6 | 6 | 16 | 21 |
| Arizona | 34 | 130 | 51 | 117 | 505 | 543 |
| Arkansas | 10 | 19 | 6 | 11 | 97 | 111 |
| California | 257 | 825 | 318 | 871 | 2708 | 3258 |
| Colorado | 24 | 89 | 54 | 127 | 390 | 431 |
| Connecticut | 16 | 31 | 34 | 70 | 320 | 331 |
| Delaware | 11 | 37 | 21 | 40 | 135 | 138 |
| District of Columbia | 10 | 41 | 20 | 36 | 310 | 277 |
| Florida | 69 | 263 | 97 | 226 | 955 | 1071 |
| Georgia | 71 | 261 | 64 | 153 | 670 | 759 |
| Hawaii | NA | NA | 9 | 14 | 92 | 92 |
| Idaho | NA | NA | 5 | 15 | 50 | 72 |
| Illinois | 85 | 281 | 131 | 298 | 1093 | 1229 |
| Indiana | 45 | 208 | 64 | 171 | 574 | 757 |
| Iowa | 29 | 95 | 39 | 61 | 294 | 377 |
| Kansas | 7 | 42 | 16 | 48 | 205 | 228 |
| Kentucky | 11 | 42 | 14 | 27 | 221 | 215 |
| Louisiana | 16 | 48 | 22 | 62 | 212 | 294 |
| Maine | NA | NA | NA | NA | 34 | 24 |
| Maryland | 48 | 161 | 52 | 164 | 588 | 611 |
| Massachusetts | 88 | 365 | 153 | 354 | 1146 | 1472 |
| Michigan | 54 | 313 | 92 | 200 | 785 | 988 |
| Minnesota | 12 | 66 | 30 | 66 | 510 | 449 |
| Mississippi | NA | NA | 11 | 32 | 212 | 208 |
| Missouri | 23 | 68 | 46 | 71 | 415 | 453 |
| Montana | NA | NA | NA | NA | 59 | 49 |
| Nebraska | 5 | 22 | 12 | 22 | 154 | 150 |
| Nevada | NA | NA | NA | NA | 109 | 106 |
| New Hampshire | NA | NA | 13 | 26 | 68 | 75 |
| New Jersey | 42 | 130 | 55 | 163 | 465 | 607 |
| New Mexico | 10 | 38 | 13 | 55 | 116 | 164 |
| New York | 105 | 318 | 171 | 462 | 1883 | 1967 |
| North Carolina | 53 | 153 | 88 | 160 | 714 | 708 |
| North Dakota | NA | 10 | NA | NA | 54 | 67 |
| Ohio | 56 | 269 | 87 | 184 | 874 | 986 |
| Oklahoma | 13 | 40 | 20 | 41 | 186 | 233 |
| Oregon | 8 | 41 | 26 | 65 | 204 | 249 |
| Pennsylvania | 104 | 331 | 116 | 334 | 1184 | 1385 |
| Puerto Rico | NA | NA | 10 | 13 | 124 | 76 |
| Rhode Island | 6 | 26 | 30 | 50 | 117 | 144 |
| South Carolina | 13 | 49 | 22 | 66 | 223 | 244 |
| South Dakota | NA | NA | NA | NA | 54 | 47 |
| Tennessee | 30 | 93 | 30 | 78 | 398 | 439 |
| Texas | 106 | 437 | 153 | 371 | 1562 | 1801 |
| United Statese | 1623 | 6006 | 2450 | 5868 | 23190 | 26338 |
| Utah | 10 | 84 | 29 | 59 | 201 | 282 |
| Vermont | NA | NA | NA | 6 | 26 | 22 |
| Virginia | 44 | 185 | 67 | 116 | 598 | 694 |
| Washington | 25 | 77 | 56 | 77 | 433 | 421 |
| West Virginia | NA | 22 | 7 | 13 | 80 | 83 |
| Wisconsin | 27 | 112 | 38 | 135 | 439 | 561 |
| Wyoming | NA | NA | NA | NA | 29 | 38 |
# Load data from Github
#Load url
url<- "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2015Doc.csv"
raw <- getURL(url)
#Rename Columns, omit unessesary rows, rename columns to include sex, field pivot into long format
dataFrame15 <- read.csv(text = raw) %>%
data.frame() %>%
select(State= Table.6..Doctorates.awarded..by.state.or.location..broad.field.of.study..and.sex.of.doctorate.recipients..2015, TotalMale = X, TotalFemale = X.1, PhysciMale = X.4, PhysciFemale = X.5, MathMale = X.6,MathFemale = X.7, EngMale = X.10, EngFemale = X.11) %>%
slice(5:57) %>%
pivot_longer(-State, "Cat") %>%
filter(value != "D")
#Change all values in the value column - delete "," and cast values as numeric types
dataFrame15$value <-
as.numeric(unlist(str_remove_all(dataFrame15$value, ',')))
#Drop NA Values (extra rows) and place data back in wide format
dataFrame15 <- dataFrame15 %>%
drop_na() %>%
spread(Cat,value)
#Display
kable(dataFrame15)%>%
kable_styling() %>%
scroll_box(width = "100%", height = "200px")
| State | EngFemale | EngMale | MathFemale | MathMale | PhysciFemale | PhysciMale | TotalFemale | TotalMale |
|---|---|---|---|---|---|---|---|---|
| Alabama | 28 | 105 | 9 | 37 | 15 | 23 | 309 | 386 |
| Alaska | NA | NA | NA | NA | NA | NA | 14 | 27 |
| Arizona | 29 | 120 | 12 | 51 | 45 | 93 | 449 | 541 |
| Arkansas | 12 | 46 | NA | NA | NA | NA | 95 | 130 |
| California | 265 | 893 | 83 | 384 | 245 | 510 | 2686 | 3386 |
| Colorado | 61 | 164 | 19 | 45 | 63 | 104 | 439 | 567 |
| Connecticut | 28 | 63 | 13 | 36 | 30 | 67 | 387 | 392 |
| Delaware | 16 | 43 | 9 | 17 | 14 | 24 | 100 | 127 |
| District of Columbia | 18 | 49 | NA | NA | 7 | 23 | 311 | 265 |
| Florida | 83 | 303 | 33 | 132 | 84 | 189 | 1127 | 1237 |
| Georgia | 90 | 269 | 37 | 89 | 43 | 69 | 696 | 785 |
| Hawaii | NA | NA | NA | NA | 6 | 20 | 118 | 122 |
| Idaho | NA | NA | NA | NA | 6 | 12 | 47 | 68 |
| Illinois | 104 | 360 | 36 | 134 | 82 | 170 | 1066 | 1413 |
| Indiana | 80 | 264 | 44 | 94 | 65 | 106 | 711 | 870 |
| Iowa | 17 | 96 | 12 | 34 | 33 | 48 | 293 | 393 |
| Kansas | 19 | 51 | 7 | 23 | 23 | 32 | 275 | 301 |
| Kentucky | 17 | 62 | 7 | 26 | 6 | 21 | 199 | 304 |
| Louisiana | 22 | 63 | 6 | 35 | 24 | 39 | 299 | 333 |
| Maine | NA | NA | NA | NA | 6 | 7 | 39 | 33 |
| Maryland | 59 | 179 | 32 | 87 | 39 | 98 | 660 | 745 |
| Massachusetts | 142 | 367 | 42 | 158 | 133 | 238 | 1266 | 1570 |
| Michigan | 82 | 346 | 32 | 100 | 92 | 134 | 889 | 1103 |
| Minnesota | 30 | 103 | 12 | 44 | 17 | 51 | 714 | 594 |
| Mississippi | 11 | 33 | 10 | 13 | NA | NA | 232 | 214 |
| Missouri | 37 | 118 | 15 | 47 | 33 | 65 | 464 | 522 |
| Montana | NA | NA | NA | NA | 7 | 21 | 58 | 70 |
| Nebraska | 7 | 39 | 7 | 10 | 11 | 18 | 176 | 196 |
| Nevada | NA | NA | NA | NA | 13 | 19 | 102 | 109 |
| New Hampshire | 6 | 18 | 7 | 7 | 9 | 17 | 80 | 89 |
| New Jersey | 54 | 158 | 17 | 91 | 30 | 114 | 468 | 660 |
| New Mexico | 20 | 51 | 5 | 18 | 17 | 41 | 169 | 176 |
| New York | 138 | 437 | 84 | 204 | 138 | 289 | 1996 | 2090 |
| North Carolina | 83 | 212 | 37 | 110 | 58 | 89 | 846 | 857 |
| North Dakota | 5 | 29 | NA | NA | 6 | 13 | 88 | 87 |
| Ohio | 93 | 323 | 26 | 84 | 68 | 126 | 924 | 1069 |
| Oklahoma | 21 | 71 | 6 | 22 | 13 | 39 | 219 | 296 |
| Oregon | 15 | 48 | 9 | 21 | 25 | 50 | 237 | 252 |
| Pennsylvania | 154 | 464 | 72 | 143 | 81 | 171 | 1186 | 1442 |
| Puerto Rico | 5 | 8 | NA | NA | NA | NA | 129 | 65 |
| Rhode Island | 12 | 23 | 9 | 27 | NA | NA | 160 | 160 |
| South Carolina | 27 | 117 | 15 | 29 | 13 | 38 | 266 | 320 |
| South Dakota | NA | NA | 0 | 7 | NA | NA | 46 | 64 |
| Tennessee | 34 | 118 | 9 | 26 | 23 | 46 | 436 | 464 |
| Texas | 189 | 636 | 77 | 192 | 136 | 281 | 1842 | 2224 |
| United Statesd | 2301 | 7596 | 943 | 2880 | 1988 | 3935 | 25403 | 29596 |
| Utah | 26 | 113 | 7 | 34 | 16 | 49 | 211 | 365 |
| Vermont | NA | NA | NA | NA | NA | NA | 34 | 42 |
| Virginia | 52 | 253 | 23 | 92 | 54 | 91 | 709 | 826 |
| Washington | 41 | 112 | 23 | 61 | 37 | 69 | 456 | 502 |
| West Virginia | 5 | 32 | NA | NA | NA | NA | 101 | 116 |
| Wisconsin | 43 | 135 | 17 | 50 | 47 | 88 | 546 | 575 |
| Wyoming | NA | NA | NA | NA | NA | NA | 33 | 52 |
# Load data from Github
url<- "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2018Doc.csv"
raw <- getURL(url)
#Rename Columns, omit unessesary rows, rename columns to include sex, field pivot into long format
dataFrame18 <- read.csv(text = raw) %>%
data.frame() %>%
slice(5:57) %>%
select(State= Table.6, TotalMale = X, TotalFemale = X.1, PhysciMale = X.4, PhysciFemale = X.5, MathMale = X.6, MathFemale = X.7, EngMale = X.10, EngFemale = X.11)%>%
pivot_longer(-State, "Cat") %>%
filter(value != "D")
#Change all values in the value column - delete "," and cast values as numeric types
dataFrame18$value <-
as.numeric(unlist(str_remove_all(dataFrame18$value, ',')))
#Place data back in wide format
dataFrame18 <- spread(dataFrame18, Cat,value)
#Display
kable(dataFrame18)%>%
kable_styling() %>%
scroll_box(width = "100%", height = "200px")
| State | EngFemale | EngMale | MathFemale | MathMale | PhysciFemale | PhysciMale | TotalFemale | TotalMale |
|---|---|---|---|---|---|---|---|---|
| Alabama | 25 | 103 | 12 | 23 | 11 | 31 | 329 | 338 |
| Alaska | NA | NA | 0 | 0 | 8 | 7 | 27 | 29 |
| Arizona | 43 | 100 | 10 | 42 | 30 | 65 | 364 | 399 |
| Arkansas | 10 | 44 | NA | NA | 9 | 14 | 104 | 162 |
| California | 300 | 889 | 108 | 377 | 286 | 597 | 2647 | 3427 |
| Colorado | 60 | 160 | 17 | 45 | 59 | 122 | 478 | 574 |
| Connecticut | 33 | 79 | 10 | 40 | 37 | 79 | 363 | 422 |
| Delaware | 24 | 59 | NA | NA | 21 | 27 | 98 | 140 |
| District of Columbia | 14 | 52 | 5 | 28 | 20 | 18 | 296 | 292 |
| Florida | 87 | 327 | 59 | 142 | 96 | 180 | 1094 | 1252 |
| Georgia | 68 | 268 | 23 | 97 | 51 | 91 | 684 | 827 |
| Hawaii | NA | NA | NA | NA | 12 | 15 | 104 | 96 |
| Idaho | 6 | 19 | NA | NA | NA | NA | 41 | 56 |
| Illinois | 97 | 350 | 70 | 156 | 98 | 199 | 1107 | 1408 |
| Indiana | 78 | 255 | 34 | 108 | 64 | 116 | 708 | 923 |
| Iowa | 31 | 121 | 16 | 44 | 21 | 54 | 334 | 409 |
| Kansas | 11 | 57 | 11 | 21 | 28 | 34 | 250 | 284 |
| Kentucky | 10 | 45 | 10 | 16 | 11 | 27 | 223 | 271 |
| Louisiana | 21 | 66 | 13 | 27 | 25 | 34 | 281 | 295 |
| Maine | NA | NA | 0 | 0 | NA | NA | 28 | 22 |
| Maryland | 64 | 182 | 31 | 99 | 54 | 78 | 665 | 699 |
| Massachusetts | 178 | 428 | 38 | 161 | 139 | 258 | 1330 | 1616 |
| Michigan | 97 | 325 | 34 | 115 | 76 | 147 | 863 | 1090 |
| Minnesota | 41 | 114 | 10 | 32 | 27 | 51 | 795 | 642 |
| Mississippi | 6 | 37 | 7 | 13 | 14 | 29 | 226 | 245 |
| Missouri | 43 | 159 | 15 | 40 | 21 | 70 | 430 | 546 |
| Montana | NA | NA | NA | NA | 6 | 10 | 56 | 56 |
| Nebraska | 7 | 27 | 10 | 18 | 8 | 25 | 164 | 177 |
| Nevada | 9 | 25 | NA | NA | 17 | 24 | 125 | 115 |
| New Hampshire | 15 | 25 | NA | NA | 12 | 21 | 73 | 92 |
| New Jersey | 57 | 153 | 19 | 82 | 38 | 89 | 529 | 595 |
| New Mexico | 15 | 42 | NA | NA | 15 | 40 | 161 | 161 |
| New York | 153 | 447 | 72 | 266 | 150 | 301 | 2051 | 2207 |
| North Carolina | 74 | 235 | 44 | 113 | 67 | 111 | 843 | 890 |
| North Dakota | 8 | 18 | NA | NA | 7 | 14 | 104 | 89 |
| Ohio | 92 | 299 | 27 | 98 | 84 | 178 | 957 | 1094 |
| Oklahoma | 15 | 67 | NA | NA | 11 | 36 | 235 | 269 |
| Oregon | 20 | 70 | 8 | 32 | 28 | 62 | 237 | 300 |
| Pennsylvania | 144 | 456 | 53 | 172 | 70 | 165 | 1165 | 1457 |
| Puerto Rico | NA | NA | NA | NA | NA | NA | 88 | 59 |
| Rhode Island | 9 | 30 | 9 | 26 | 20 | 33 | 140 | 186 |
| South Carolina | 36 | 103 | 11 | 25 | 16 | 40 | 262 | 306 |
| South Dakota | 8 | 16 | NA | NA | NA | NA | 51 | 63 |
| Tennessee | 58 | 134 | 11 | 39 | 17 | 57 | 467 | 488 |
| Texas | 193 | 702 | 76 | 213 | 132 | 325 | 1771 | 2297 |
| United Statesd | 2453 | 7726 | 983 | 3043 | 2118 | 4214 | 25368 | 29798 |
| Utah | 18 | 92 | 15 | 27 | 23 | 38 | 200 | 311 |
| Vermont | NA | NA | NA | NA | NA | NA | 32 | 31 |
| Virginia | 79 | 236 | 26 | 92 | 48 | 103 | 687 | 826 |
| Washington | 31 | 104 | 21 | 51 | 50 | 68 | 463 | 501 |
| West Virginia | 6 | 32 | 6 | 5 | 6 | 14 | 96 | 123 |
| Wisconsin | 39 | 115 | 13 | 57 | 51 | 74 | 506 | 575 |
| Wyoming | 6 | 16 | NA | NA | NA | NA | 36 | 66 |
#Select only total and gather sex and graduates into long format
Total09 <- select(dataFrame09, State, Male = TotalMale, Female = TotalFemale) %>%
gather(sex, graduates, Male:Female) %>%
mutate(year = 2009)
#Isolate totals for country (for bar chart 1)
TotalUS09<- filter(Total09, State == "United Statese") %>%
mutate(gradSum = sum(graduates))
#Select only total and gather sex and graduates into long format
Total15 <- select(dataFrame15, State, Male = TotalMale, Female = TotalFemale) %>%
gather(sex, graduates, Male:Female) %>%
mutate(year = 2015)
#Isolate totals for country (for bar chart 1)
TotalUS15<- filter(Total15, State == "United Statesd") %>%
mutate(gradSum = sum(graduates))
#Select only total and gather sex and graduates into long format
Total18 <- select(dataFrame18, State, Male = TotalMale, Female = TotalFemale)%>%
gather(sex, graduates, Male:Female) %>%
mutate(year = 2018)
#Isolate totals for country (for bar chart 1)
TotalUS18<- filter(Total18, State == "United Statesd") %>%
mutate(gradSum = sum(graduates))
# Stack them
TotalUS <- Stack(TotalUS09, TotalUS15)
TotalUS <- Stack(TotalUS, TotalUS18)
TotalUS$year <- as.factor(TotalUS$year)
#Calculate proportion
TotalUS <- TotalUS %>%
mutate(propGrad = graduates/gradSum)
#Bar Plot
ggplot(TotalUS) +
geom_col(aes(x = year, y = propGrad, fill = sex), position = "dodge") +
scale_fill_manual(values=c("yellow","lightgreen"))+
labs(y = "Proportion of Graduates", x ="Year/Sex", title = "Proportion of PhDs Granted in the USA") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
#Calculate differences between male and female proportions
TotalUS <- TotalUS %>%
select(year, propGrad, sex) %>%
spread(sex, propGrad) %>%
mutate(difference = Male - Female)
#Plot proportional differences
ggplot(TotalUS) +
geom_col(aes(x = year, y = difference, fill = year), position = "dodge") +
scale_fill_manual(values=c("darkblue","blue", "lightblue")) +
labs(y = "Difference (Male - Female)", x ="Year", title = "Proportion Difference Between Male & Female PhD Grads") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top") +
geom_text(aes(x = year, y = difference + 0.01, label = round(difference, 3)))
The total number of PhD recipients were analyzed per year (2009, 2015 & 2018) by state (only states with included data). Note: PhD recipients from all diciplines are included in State totals.
#Isolate totals for other states and drop all NA values (for boxplot 1)
TotalStates09 <- filter(Total09, State != "United Statese") %>% drop_na()
TotalStates15 <- filter(Total15, State != "United Statesd") %>% drop_na()
#Isolate totals for other states and drop all NA values (for boxplot 1)
TotalStates18 <- filter(Total18, State != "United Statesd") %>% drop_na()
TotalStates <- Stack(TotalStates09, TotalStates15)
TotalStates <- Stack(TotalStates, TotalStates18)
TotalStates$year <- as.factor(TotalStates$year)
TotalStates$State <- as.factor(TotalStates$State)
#Box Plot of distribution of PhD's in each state
ggplot(TotalStates, aes(x = year, y = graduates, fill = sex)) +
geom_boxplot() +
scale_fill_manual(values= c("yellow", "lightgreen")) +
labs(y = "Graduates", x ="Sex", title = "Distribution for PhDs Granted in States") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
#Print Medians for each year
#2009
TotalStates09 <- TotalStates09 %>%
spread(sex, graduates)
male09 <- median(TotalStates09$Male)
female09 <- median(TotalStates09$Female)
#2015
TotalStates15 <- TotalStates15 %>%
spread(sex, graduates)
male15 <- median(TotalStates15$Male)
female15 <- median(TotalStates15$Female)
#2018
TotalStates18 <- TotalStates18 %>%
spread(sex, graduates)
male18 <- median(TotalStates18$Male)
female18 <- median(TotalStates18$Female)
#Create dataframe with medians for plotting
mediansDf <- data.frame(Year = as.factor(c(2009, 2015, 2018)),
Male = c(male09, male15, male18),
Female = c(female09, female15, female18)) %>%
gather(sex, median, Male:Female)
#Plot medians
ggplot(mediansDf) +
geom_col(aes(x = Year, y = median, fill = sex), position = "dodge") +
scale_fill_manual(values=c("yellow", "lightgreen")) +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top") +
labs(y = "Median", x ="Year", title = "Median PhDs Granted in States") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
Preliminary data exploration uncovered that the number of PhD’s granted to females are greater than the PhD’s granted for males in the following fields: Social Sciences (including Psychology), Education, “Other” (non STEM), Humanities and Life Sciences.
In the following fields the number of male PhD recipients were greater than females: Engineering, Physical Science, Math/CS, and Total for all categories.
Thus I decided to focus on the feilds where women were underrepresented, because it is these fields that are tipping the scale in favor for males gaining more PhD’s than females as a total in the United States.
First total number of PhD recipients were analyzed per discipline for each year.
#Subset Engineering Degrees data '09
engData09 <- select(dataFrame09, State, Male = EngMale, Female = EngFemale)%>%
gather(sex, graduates, Male:Female) %>%
mutate(year = as.factor(2009))
#Isolate totals for country
TotalEng09<- filter(engData09, State == "United Statese") %>%
mutate(prop = graduates/TotalUS09$gradSum[1])
#Isolate totals for other states and drop all NA values (for boxplot 1)
TotalEngStates09 <- filter(engData09, State != "United Statese") %>% drop_na()
#Subset Engineering Degrees data '15
engData15 <- select(dataFrame15, State, Male = EngMale, Female = EngFemale)%>%
gather(sex, graduates, Male:Female) %>%
mutate(year = as.factor(2015))
#Isolate totals for country
TotalEng15<- filter(engData15, State == "United Statesd") %>%
mutate(prop = graduates/TotalUS15$gradSum[1])
#Isolate totals for other states and drop all NA values
TotalEngStates15 <- filter(engData15, State != "United Statesd") %>% drop_na()
#Subset Engineering Degrees data '15
engData18 <- select(dataFrame18, State, Male = EngMale, Female = EngFemale)%>%
gather(sex, graduates, Male:Female) %>%
mutate(year = as.factor(2018))
#Isolate totals for country
TotalEng18<- filter(engData18, State == "United Statesd") %>%
mutate(prop = graduates/TotalUS18$gradSum[1])
#Isolate totals for other states and drop all NA values
TotalEngStates18 <- filter(engData18, State != "United Statesd") %>% drop_na()
#Totals
TotalEng <- Stack(TotalEng09, TotalEng15)
TotalEng <- Stack(TotalEng, TotalEng18)
#Bar Plot of proportions
ggplot(TotalEng) +
geom_col(aes(x = year, y = prop, fill = sex), position = "dodge") +
scale_fill_manual(values=c("yellow", "lightgreen"))+
labs(y = "Proportion of Total Graduates", x ="Year", title = "Proportion of Engineering PhDs in USA") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
#Calculate Difference
TotalEng <- TotalEng %>%
select(sex, year, prop) %>%
spread(sex, prop) %>%
mutate(propDiff = Male - Female)
#Plot proportional differences
ggplot(TotalEng) +
geom_col(aes(x = year, y = propDiff, fill = year), position = "dodge") +
scale_fill_manual(values=c("darkblue","blue", "lightblue")) +
labs(y = "Difference (Male - Female)", x ="Year", title = "Proportion Difference Between Male & Female Engineering PhD Grads") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top") +
geom_text(aes(x = year, y = propDiff + 0.01, label = round(propDiff, 4)))
#Consolidate state dataframes
TotalEngStates <- Stack(TotalEngStates09, TotalEngStates15)
TotalEngStates <- Stack(TotalEngStates, TotalEngStates18)
#Box Plot of distribution of PhD's in each state
ggplot(TotalEngStates, aes(x = year, y = graduates, fill = sex)) +
geom_boxplot() +
scale_fill_manual(values= c("yellow", "lightgreen")) +
labs(y = "Graduates", x ="Sex", title = "Distribution for PhDs in Engineering in States") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
#Subset Physical Science Data
Physci09 <- select(dataFrame09, State, Male = PhysciMale, Female = PhysciFemale) %>%
gather(sex, graduates, Male:Female) %>%
mutate(year = as.factor(2009))
#Isolate totals for country (for bar chart 1)
TotalPhysci09<- filter(Physci09, State == "United Statese")%>%
mutate(prop = graduates/TotalUS09$gradSum[1])
#Isolate totals for other states and drop all NA values (for boxplot 1)
TotalPhysciStates09 <- filter(Physci09, State != "United Statese") %>% drop_na()
#Subset Engineering Degrees data '15
Physci15 <- select(dataFrame15, State, Male = PhysciMale, Female = PhysciFemale)%>%
gather(sex, graduates, Male:Female) %>%
mutate(year = as.factor(2015))
#Isolate totals for country
TotalPhysci15<- filter(Physci15, State == "United Statesd") %>%
mutate(prop = graduates/TotalUS15$gradSum[1])
#Isolate totals for other states and drop all NA values
TotalPhysciStates15 <- filter(Physci15, State != "United Statesd") %>% drop_na()
#Subset Engineering Degrees data '18
Physci18 <- select(dataFrame18, State, Male = PhysciMale, Female = PhysciFemale)%>%
gather(sex, graduates, Male:Female) %>%
mutate(year = as.factor(2018))
#Isolate totals for country
TotalPhysci18<- filter(Physci18, State == "United Statesd") %>%
mutate(prop = graduates/TotalUS18$gradSum[1])
#Isolate totals for other states and drop all NA values
TotalPhysciStates18 <- filter(Physci18, State != "United Statesd") %>% drop_na()
#Totals
TotalPhysci <- Stack(TotalPhysci09, TotalPhysci15)
TotalPhysci <- Stack(TotalPhysci, TotalPhysci18)
#Bar Plot of proportions
ggplot(TotalPhysci) +
geom_col(aes(x = year, y = prop, fill = sex), position = "dodge") +
scale_fill_manual(values=c("yellow", "lightgreen"))+
labs(y = "Proportion of Total Graduates", x ="Year", title = "Proportion of Physical Science PhDs in USA") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
#Calculate Difference
TotalPhysci <- TotalPhysci%>%
select(sex, year, prop) %>%
spread(sex, prop) %>%
mutate(propDiff = Male - Female)
#Plot proportional differences
ggplot(TotalPhysci) +
geom_col(aes(x = year, y = propDiff, fill = year), position = "dodge") +
scale_fill_manual(values=c("darkblue","blue", "lightblue")) +
labs(y = "Difference (Male - Female)", x ="Year", title = "Proportion Difference Between Male & Female Physical Science PhD Grads") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top") +
geom_text(aes(x = year, y = propDiff + 0.01, label = round(propDiff, 4)))
#Consolidate state dataframes
TotalPhysciStates <- Stack(TotalPhysciStates09, TotalPhysciStates15)
TotalPhysciStates <- Stack(TotalPhysciStates, TotalPhysciStates18)
#Box Plot of distribution of PhD's in each state
ggplot(TotalPhysciStates, aes(x = year, y = graduates, fill = sex)) +
geom_boxplot() +
scale_fill_manual(values= c("yellow", "lightgreen")) +
labs(y = "Graduates", x ="Sex", title = "Distribution for PhDs in Physical Science in States") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
Note: Math and CS was not categorized as a dicipline in this data set before 2015.
Findings:#Subset Engineering Degrees data '15
MathCS15 <- select(dataFrame15, State, Male = MathMale, Female = MathFemale)%>%
gather(sex, graduates, Male:Female) %>%
mutate(year = as.factor(2015))
#Isolate totals for country
TotalMathCS15<- filter(MathCS15, State == "United Statesd") %>%
mutate(prop = graduates/TotalUS15$gradSum[1])
#Isolate totals for other states and drop all NA values
TotalMathCSStates15 <- filter(MathCS15, State != "United Statesd") %>% drop_na()
#Subset Engineering Degrees data '18
MathCS18 <- select(dataFrame18, State, Male = MathMale, Female = MathFemale)%>%
gather(sex, graduates, Male:Female) %>%
mutate(year = as.factor(2018))
#Isolate totals for country
TotalMathCS18<- filter(MathCS18, State == "United Statesd") %>%
mutate(prop = graduates/TotalUS18$gradSum[1])
#Isolate totals for other states and drop all NA values
TotalMathCSStates18 <- filter(MathCS18, State != "United Statesd") %>% drop_na()
#Totals
TotalMathCS <- Stack(TotalMathCS15, TotalMathCS18)
#Bar Plot of proportions
ggplot(TotalMathCS) +
geom_col(aes(x = year, y = prop, fill = sex), position = "dodge") +
scale_fill_manual(values=c("yellow", "lightgreen"))+
labs(y = "Proportion of Total Graduates", x ="Year", title = "Proportion of Math/CS PhDs in USA") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
#Calculate Difference
TotalMathCS <- TotalMathCS %>%
select(sex, year, prop) %>%
spread(sex, prop) %>%
mutate(propDiff = Male - Female)
#Plot proportional differences
ggplot(TotalMathCS) +
geom_col(aes(x = year, y = propDiff, fill = year), position = "dodge") +
scale_fill_manual(values=c("darkblue","blue", "lightblue")) +
labs(y = "Difference (Male - Female)", x ="Year", title = "Proportion Difference Between Male & Female Math/CS PhD Grads") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top") +
geom_text(aes(x = year, y = propDiff + 0.003, label = round(propDiff, 4)))
#Consolidate state dataframes
TotalMathCSStates <- Stack(TotalMathCSStates15, TotalMathCSStates18)
#Box Plot of distribution of PhD's in each state
ggplot(TotalMathCSStates, aes(x = year, y = graduates, fill = sex)) +
geom_boxplot() +
scale_fill_manual(values= c("yellow", "lightgreen")) +
labs(y = "Graduates", x ="Sex", title = "Distribution for PhDs in Math/CS in States") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "top")
Data for all years from 2008 - 2018 were loaded into one large dataframe. RCurl Library was used to read in the csv files from a Github repo into dataframes and dplyr was used to transform and tidy data into dataframes where each row is an observation (state) and each column corresponded to the number of males or females who earned a PhD in each category. Column names were also changed to reflect the variables of interest (Major and gender)
This was done in two sections because the introduction of Math and CS as a dicipline affected the automated importing process. CSV files were uploaded on Github, accessed through url and saved in vectors. A for loop iterated through the vector; data was cleaned and stacked into one data frame.
#Load first dataframe
#Load url from Github
data <- c("https://raw.githubusercontent.com/MsQCompSci/606Project/master/2009Doc.csv", "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2010Doc.csv", "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2011Doc.csv", "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2012Doc.csv", "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2013Doc.csv", "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2014Doc.csv")
#Get data
raw<- getURL(data[1])
#Rename Columns, omit unessesary rows and columns, rename columns to include sex & field pivot into long format and remove "D" values
GIANTdf<- read.csv(text = raw) %>%
data.frame() %>%
select(State = starts_with("TABLE"), TotalMale = X, TotalFemale = X.1, PhysciMale = X.6, PhysciFemale = X.7, EngMale = X.12, EngFemale = X.13) %>%
slice(3:62) %>%
pivot_longer(-State, "Cat") %>%
filter(value != "D")
#Data as numeric removing commas
GIANTdf$value <- as.numeric(unlist(str_remove_all(GIANTdf$value, ',')))
#Drop NA Values (extra rows) and place data back in wide format
GIANTdf <- GIANTdf %>%
drop_na() %>%
spread(Cat,value) %>%
mutate(year= as.factor(2009))
#same as above for each csv url
for(x in 2:length(data)){
raw<- getURL(data[x])
dataFrame <- read.csv(text = raw) %>%
data.frame() %>%
select(State = starts_with("TABLE"), TotalMale = X, TotalFemale = X.1, PhysciMale = X.6, PhysciFemale = X.7, EngMale = X.12, EngFemale = X.13) %>%
slice(3:62) %>%
pivot_longer(-State, "Cat") %>%
filter(value != "D")
dataFrame$value <- as.numeric(unlist(str_remove_all(dataFrame$value, ',')))
calYear <- 2009+x-1
dataFrame <-dataFrame %>%
drop_na() %>%
spread(Cat,value)%>%
mutate(year= as.factor(calYear))
GIANTdf <- Stack(GIANTdf, dataFrame)
}
kable(GIANTdf)%>%
kable_styling() %>%
scroll_box(width = "100%", height = "200px")
| State | EngFemale | EngMale | PhysciFemale | PhysciMale | TotalFemale | TotalMale | year |
|---|---|---|---|---|---|---|---|
| Alabama | 20 | 74 | 31 | 60 | 299 | 331 | 2009 |
| Alaska | NA | NA | 6 | 6 | 16 | 21 | 2009 |
| Arizona | 34 | 130 | 51 | 117 | 505 | 543 | 2009 |
| Arkansas | 10 | 19 | 6 | 11 | 97 | 111 | 2009 |
| California | 257 | 825 | 318 | 871 | 2708 | 3258 | 2009 |
| Colorado | 24 | 89 | 54 | 127 | 390 | 431 | 2009 |
| Connecticut | 16 | 31 | 34 | 70 | 320 | 331 | 2009 |
| Delaware | 11 | 37 | 21 | 40 | 135 | 138 | 2009 |
| District of Columbia | 10 | 41 | 20 | 36 | 310 | 277 | 2009 |
| Florida | 69 | 263 | 97 | 226 | 955 | 1071 | 2009 |
| Georgia | 71 | 261 | 64 | 153 | 670 | 759 | 2009 |
| Hawaii | NA | NA | 9 | 14 | 92 | 92 | 2009 |
| Idaho | NA | NA | 5 | 15 | 50 | 72 | 2009 |
| Illinois | 85 | 281 | 131 | 298 | 1093 | 1229 | 2009 |
| Indiana | 45 | 208 | 64 | 171 | 574 | 757 | 2009 |
| Iowa | 29 | 95 | 39 | 61 | 294 | 377 | 2009 |
| Kansas | 7 | 42 | 16 | 48 | 205 | 228 | 2009 |
| Kentucky | 11 | 42 | 14 | 27 | 221 | 215 | 2009 |
| Louisiana | 16 | 48 | 22 | 62 | 212 | 294 | 2009 |
| Maine | NA | NA | NA | NA | 34 | 24 | 2009 |
| Maryland | 48 | 161 | 52 | 164 | 588 | 611 | 2009 |
| Massachusetts | 88 | 365 | 153 | 354 | 1146 | 1472 | 2009 |
| Michigan | 54 | 313 | 92 | 200 | 785 | 988 | 2009 |
| Minnesota | 12 | 66 | 30 | 66 | 510 | 449 | 2009 |
| Mississippi | NA | NA | 11 | 32 | 212 | 208 | 2009 |
| Missouri | 23 | 68 | 46 | 71 | 415 | 453 | 2009 |
| Montana | NA | NA | NA | NA | 59 | 49 | 2009 |
| Nebraska | 5 | 22 | 12 | 22 | 154 | 150 | 2009 |
| Nevada | NA | NA | NA | NA | 109 | 106 | 2009 |
| New Hampshire | NA | NA | 13 | 26 | 68 | 75 | 2009 |
| New Jersey | 42 | 130 | 55 | 163 | 465 | 607 | 2009 |
| New Mexico | 10 | 38 | 13 | 55 | 116 | 164 | 2009 |
| New York | 105 | 318 | 171 | 462 | 1883 | 1967 | 2009 |
| North Carolina | 53 | 153 | 88 | 160 | 714 | 708 | 2009 |
| North Dakota | NA | 10 | NA | NA | 54 | 67 | 2009 |
| Ohio | 56 | 269 | 87 | 184 | 874 | 986 | 2009 |
| Oklahoma | 13 | 40 | 20 | 41 | 186 | 233 | 2009 |
| Oregon | 8 | 41 | 26 | 65 | 204 | 249 | 2009 |
| Pennsylvania | 104 | 331 | 116 | 334 | 1184 | 1385 | 2009 |
| Puerto Rico | NA | NA | 10 | 13 | 124 | 76 | 2009 |
| Rhode Island | 6 | 26 | 30 | 50 | 117 | 144 | 2009 |
| South Carolina | 13 | 49 | 22 | 66 | 223 | 244 | 2009 |
| South Dakota | NA | NA | NA | NA | 54 | 47 | 2009 |
| Tennessee | 30 | 93 | 30 | 78 | 398 | 439 | 2009 |
| Texas | 106 | 437 | 153 | 371 | 1562 | 1801 | 2009 |
| United Statese | 1623 | 6006 | 2450 | 5868 | 23190 | 26338 | 2009 |
| Utah | 10 | 84 | 29 | 59 | 201 | 282 | 2009 |
| Vermont | NA | NA | NA | 6 | 26 | 22 | 2009 |
| Virginia | 44 | 185 | 67 | 116 | 598 | 694 | 2009 |
| Washington | 25 | 77 | 56 | 77 | 433 | 421 | 2009 |
| West Virginia | NA | 22 | 7 | 13 | 80 | 83 | 2009 |
| Wisconsin | 27 | 112 | 38 | 135 | 439 | 561 | 2009 |
| Wyoming | NA | NA | NA | NA | 29 | 38 | 2009 |
| Alabama | 18 | 62 | 26 | 57 | 265 | 308 | 2010 |
| Alaska | NA | NA | 5 | 8 | 20 | 25 | 2010 |
| Arizona | 33 | 105 | 52 | 111 | 430 | 467 | 2010 |
| Arkansas | 5 | 21 | 5 | 22 | 71 | 108 | 2010 |
| California | 243 | 755 | 312 | 829 | 2619 | 3153 | 2010 |
| Colorado | 30 | 97 | 45 | 115 | 372 | 428 | 2010 |
| Connecticut | 16 | 36 | 33 | 94 | 315 | 346 | 2010 |
| Delaware | NA | NA | 19 | 27 | 92 | 113 | 2010 |
| District of Columbia | 5 | 32 | 23 | 26 | 312 | 236 | 2010 |
| Florida | 85 | 296 | 120 | 233 | 1011 | 1126 | 2010 |
| Georgia | 61 | 196 | 64 | 139 | 612 | 636 | 2010 |
| Hawaii | NA | NA | 14 | 19 | 98 | 86 | 2010 |
| Idaho | NA | NA | NA | NA | 46 | 55 | 2010 |
| Illinois | 79 | 305 | 98 | 294 | 1023 | 1267 | 2010 |
| Indiana | 55 | 189 | 70 | 175 | 555 | 745 | 2010 |
| Iowa | 26 | 85 | 36 | 87 | 310 | 365 | 2010 |
| Kansas | 12 | 28 | 15 | 55 | 204 | 222 | 2010 |
| Kentucky | 5 | 31 | 16 | 37 | 210 | 252 | 2010 |
| Louisiana | 14 | 59 | 25 | 78 | 277 | 318 | 2010 |
| Maine | NA | NA | 5 | 8 | 24 | 29 | 2010 |
| Maryland | 52 | 126 | 65 | 169 | 610 | 651 | 2010 |
| Massachusetts | 129 | 325 | 135 | 343 | 1134 | 1366 | 2010 |
| Michigan | 68 | 259 | 90 | 204 | 754 | 937 | 2010 |
| Minnesota | 21 | 86 | 25 | 89 | 560 | 492 | 2010 |
| Mississippi | 12 | 36 | 19 | 36 | 246 | 200 | 2010 |
| Missouri | 24 | 77 | 48 | 85 | 369 | 378 | 2010 |
| Montana | NA | NA | 10 | 18 | 42 | 58 | 2010 |
| Nebraska | 8 | 26 | 15 | 27 | 160 | 159 | 2010 |
| Nevada | NA | NA | 8 | 26 | 80 | 111 | 2010 |
| New Hampshire | NA | NA | 15 | 28 | 66 | 88 | 2010 |
| New Jersey | 63 | 111 | 63 | 130 | 448 | 516 | 2010 |
| New Mexico | 10 | 32 | 17 | 48 | 119 | 158 | 2010 |
| New York | 101 | 353 | 189 | 438 | 1905 | 1955 | 2010 |
| North Carolina | 40 | 169 | 91 | 186 | 717 | 775 | 2010 |
| North Dakota | 5 | 7 | 6 | 14 | 76 | 56 | 2010 |
| Ohio | 70 | 271 | 94 | 210 | 856 | 997 | 2010 |
| Oklahoma | 12 | 53 | 18 | 41 | 238 | 235 | 2010 |
| Oregon | 8 | 37 | 16 | 69 | 190 | 222 | 2010 |
| Pennsylvania | 121 | 346 | 108 | 293 | 1063 | 1281 | 2010 |
| Puerto Rico | 0 | 0 | 0 | 0 | 47 | 25 | 2010 |
| Rhode Island | 7 | 23 | 23 | 50 | 137 | 158 | 2010 |
| South Carolina | 21 | 50 | 31 | 59 | 212 | 231 | 2010 |
| South Dakota | NA | NA | 5 | 5 | 23 | 30 | 2010 |
| Tennessee | 24 | 90 | 30 | 68 | 391 | 408 | 2010 |
| Texas | 110 | 449 | 159 | 396 | 1468 | 1780 | 2010 |
| United Statesf | 1743 | 5806 | 2458 | 5860 | 22505 | 25548 | 2010 |
| Utah | 11 | 64 | 28 | 63 | 172 | 268 | 2010 |
| Vermont | 0 | 5 | NA | NA | 36 | 26 | 2010 |
| Virginia | 55 | 194 | 51 | 109 | 569 | 643 | 2010 |
| Washington | 26 | 82 | 45 | 93 | 399 | 425 | 2010 |
| West Virginia | 6 | 21 | 8 | 16 | 93 | 107 | 2010 |
| Wisconsin | 20 | 99 | 51 | 111 | 436 | 498 | 2010 |
| Wyoming | NA | NA | NA | NA | 23 | 29 | 2010 |
| Alabama | 17 | 84 | 30 | 53 | 271 | 304 | 2011 |
| Alaska | NA | NA | NA | NA | 24 | 22 | 2011 |
| Arizona | 30 | 107 | 48 | 110 | 403 | 450 | 2011 |
| Arkansas | NA | NA | 9 | 19 | 89 | 88 | 2011 |
| California | 247 | 792 | 322 | 875 | 2662 | 3174 | 2011 |
| Colorado | 27 | 113 | 46 | 133 | 338 | 430 | 2011 |
| Connecticut | 18 | 53 | 23 | 89 | 300 | 347 | 2011 |
| Delaware | 18 | 41 | 18 | 36 | 101 | 119 | 2011 |
| District of Columbia | 11 | 37 | 20 | 30 | 312 | 247 | 2011 |
| Florida | 69 | 332 | 110 | 289 | 1033 | 1187 | 2011 |
| Georgia | 56 | 224 | 71 | 142 | 585 | 697 | 2011 |
| Hawaii | NA | NA | NA | NA | 92 | 120 | 2011 |
| Idaho | 0 | 8 | 6 | 15 | 43 | 51 | 2011 |
| Illinois | 73 | 308 | 107 | 303 | 1031 | 1276 | 2011 |
| Indiana | 50 | 223 | 79 | 175 | 563 | 761 | 2011 |
| Iowa | 29 | 90 | 26 | 102 | 333 | 403 | 2011 |
| Kansas | 12 | 39 | 23 | 41 | 235 | 239 | 2011 |
| Kentucky | 9 | 30 | 16 | 36 | 223 | 219 | 2011 |
| Louisiana | 15 | 43 | 30 | 56 | 225 | 271 | 2011 |
| Maine | NA | NA | 6 | 14 | 20 | 33 | 2011 |
| Maryland | 53 | 146 | 56 | 161 | 561 | 621 | 2011 |
| Massachusetts | 111 | 340 | 126 | 363 | 1074 | 1454 | 2011 |
| Michigan | 74 | 251 | 91 | 192 | 816 | 885 | 2011 |
| Minnesota | 19 | 109 | 24 | 109 | 527 | 566 | 2011 |
| Mississippi | 11 | 46 | 20 | 27 | 208 | 216 | 2011 |
| Missouri | 14 | 97 | 31 | 87 | 346 | 434 | 2011 |
| Montana | NA | NA | 7 | 17 | 44 | 54 | 2011 |
| Nebraska | 8 | 27 | 19 | 28 | 153 | 162 | 2011 |
| Nevada | 6 | 18 | 15 | 23 | 100 | 105 | 2011 |
| New Hampshire | NA | NA | 10 | 33 | 64 | 87 | 2011 |
| New Jersey | 54 | 127 | 66 | 156 | 478 | 578 | 2011 |
| New Mexico | 6 | 34 | 11 | 51 | 121 | 152 | 2011 |
| New York | 106 | 377 | 182 | 459 | 1917 | 2091 | 2011 |
| North Carolina | 64 | 160 | 83 | 184 | 700 | 741 | 2011 |
| North Dakota | NA | NA | 9 | 9 | 86 | 53 | 2011 |
| Ohio | 67 | 251 | 78 | 230 | 861 | 991 | 2011 |
| Oklahoma | 8 | 38 | 12 | 46 | 186 | 230 | 2011 |
| Oregon | 13 | 35 | 26 | 58 | 189 | 233 | 2011 |
| Pennsylvania | 135 | 358 | 137 | 322 | 1220 | 1304 | 2011 |
| Puerto Rico | NA | NA | 20 | 29 | 153 | 100 | 2011 |
| Rhode Island | 10 | 31 | 24 | 51 | 130 | 173 | 2011 |
| South Carolina | 23 | 75 | 20 | 53 | 217 | 241 | 2011 |
| South Dakota | NA | NA | NA | NA | 26 | 35 | 2011 |
| Tennessee | 27 | 76 | 36 | 78 | 387 | 416 | 2011 |
| Texas | 128 | 479 | 147 | 372 | 1445 | 1746 | 2011 |
| United Statesf | 1778 | 6218 | 2479 | 6193 | 22751 | 26237 | 2011 |
| Utah | 17 | 79 | 23 | 73 | 193 | 302 | 2011 |
| Vermont | NA | NA | 0 | 6 | 20 | 24 | 2011 |
| Virginia | 66 | 207 | 74 | 176 | 628 | 721 | 2011 |
| Washington | 28 | 83 | 62 | 109 | 444 | 422 | 2011 |
| West Virginia | NA | NA | NA | NA | 101 | 111 | 2011 |
| Wisconsin | 24 | 121 | 60 | 111 | 448 | 519 | 2011 |
| Wyoming | NA | NA | 6 | 10 | 25 | 32 | 2011 |
| Alabama | 23 | 72 | 27 | 69 | 320 | 328 | 2012 |
| Alaska | NA | NA | 5 | 10 | 21 | 29 | 2012 |
| Arizona | 25 | 133 | 48 | 112 | 397 | 491 | 2012 |
| Arkansas | NA | NA | 10 | 22 | 84 | 110 | 2012 |
| California | 272 | 906 | 317 | 882 | 2612 | 3423 | 2012 |
| Colorado | 38 | 107 | 63 | 116 | 382 | 427 | 2012 |
| Connecticut | 23 | 56 | 27 | 83 | 333 | 368 | 2012 |
| Delaware | 18 | 48 | 16 | 27 | 97 | 116 | 2012 |
| District of Columbia | 12 | 42 | 19 | 40 | 294 | 273 | 2012 |
| Florida | 72 | 283 | 110 | 301 | 972 | 1180 | 2012 |
| Georgia | 64 | 238 | 62 | 141 | 659 | 715 | 2012 |
| Hawaii | NA | NA | NA | NA | 103 | 91 | 2012 |
| Idaho | 0 | 9 | 6 | 13 | 36 | 63 | 2012 |
| Illinois | 87 | 287 | 133 | 349 | 1087 | 1309 | 2012 |
| Indiana | 57 | 202 | 83 | 174 | 572 | 772 | 2012 |
| Iowa | 29 | 102 | 25 | 108 | 320 | 441 | 2012 |
| Kansas | 14 | 43 | 18 | 54 | 235 | 235 | 2012 |
| Kentucky | 12 | 47 | 21 | 43 | 246 | 273 | 2012 |
| Louisiana | 13 | 49 | 41 | 81 | 319 | 343 | 2012 |
| Maine | NA | NA | NA | NA | 23 | 36 | 2012 |
| Maryland | 44 | 168 | 45 | 160 | 658 | 624 | 2012 |
| Massachusetts | 125 | 356 | 147 | 369 | 1195 | 1463 | 2012 |
| Michigan | 83 | 314 | 107 | 203 | 808 | 989 | 2012 |
| Minnesota | 31 | 89 | 30 | 74 | 610 | 527 | 2012 |
| Mississippi | 6 | 33 | 12 | 38 | 231 | 225 | 2012 |
| Missouri | 30 | 91 | 34 | 99 | 394 | 450 | 2012 |
| Montana | NA | NA | NA | NA | 40 | 52 | 2012 |
| Nebraska | 5 | 28 | 12 | 28 | 133 | 147 | 2012 |
| Nevada | 6 | 13 | 9 | 31 | 110 | 94 | 2012 |
| New Hampshire | 7 | 13 | 14 | 20 | 63 | 78 | 2012 |
| New Jersey | 54 | 122 | 51 | 150 | 453 | 550 | 2012 |
| New Mexico | 6 | 41 | 15 | 51 | 149 | 153 | 2012 |
| New York | 113 | 358 | 195 | 481 | 1993 | 2024 | 2012 |
| North Carolina | 52 | 173 | 97 | 195 | 773 | 782 | 2012 |
| North Dakota | NA | NA | 9 | 17 | 70 | 67 | 2012 |
| Ohio | 62 | 270 | 93 | 192 | 830 | 965 | 2012 |
| Oklahoma | 11 | 58 | 16 | 54 | 202 | 267 | 2012 |
| Oregon | 8 | 39 | 22 | 80 | 206 | 266 | 2012 |
| Pennsylvania | 108 | 352 | 125 | 318 | 1144 | 1369 | 2012 |
| Puerto Rico | NA | NA | 20 | 18 | 140 | 81 | 2012 |
| Rhode Island | 8 | 29 | 22 | 51 | 151 | 174 | 2012 |
| South Carolina | 27 | 82 | 37 | 53 | 230 | 259 | 2012 |
| South Dakota | NA | NA | NA | NA | 30 | 46 | 2012 |
| Tennessee | 30 | 96 | 28 | 85 | 395 | 415 | 2012 |
| Texas | 149 | 551 | 183 | 442 | 1576 | 2062 | 2012 |
| United Statesf | 1883 | 6527 | 2551 | 6393 | 23562 | 27390 | 2012 |
| Utah | 19 | 89 | 20 | 70 | 178 | 314 | 2012 |
| Vermont | NA | NA | NA | NA | 24 | 34 | 2012 |
| Virginia | 63 | 223 | 60 | 173 | 659 | 753 | 2012 |
| Washington | 28 | 92 | 50 | 98 | 369 | 428 | 2012 |
| West Virginia | 7 | 19 | 5 | 14 | 100 | 104 | 2012 |
| Wisconsin | 28 | 111 | 43 | 121 | 520 | 559 | 2012 |
| Wyoming | 0 | 13 | NA | NA | 16 | 46 | 2012 |
| Alabama | 28 | 82 | 31 | 70 | 299 | 345 | 2013 |
| Alaska | NA | NA | NA | NA | 28 | 24 | 2013 |
| Arizona | 42 | 118 | 49 | 117 | 437 | 467 | 2013 |
| Arkansas | 8 | 30 | NA | NA | 81 | 141 | 2013 |
| California | 294 | 904 | 358 | 976 | 2800 | 3488 | 2013 |
| Colorado | 38 | 116 | 70 | 143 | 423 | 484 | 2013 |
| Connecticut | 23 | 57 | 51 | 95 | 337 | 384 | 2013 |
| Delaware | 7 | 37 | 19 | 32 | 87 | 99 | 2013 |
| District of Columbia | 13 | 44 | 13 | 24 | 316 | 269 | 2013 |
| Florida | 67 | 300 | 130 | 298 | 985 | 1182 | 2013 |
| Georgia | 60 | 247 | 60 | 154 | 632 | 726 | 2013 |
| Hawaii | NA | NA | 12 | 14 | 123 | 107 | 2013 |
| Idaho | NA | 17 | 11 | 19 | 60 | 80 | 2013 |
| Illinois | 89 | 303 | 110 | 332 | 1142 | 1398 | 2013 |
| Indiana | 58 | 225 | 76 | 207 | 602 | 826 | 2013 |
| Iowa | 27 | 94 | 37 | 104 | 357 | 423 | 2013 |
| Kansas | 10 | 42 | 27 | 56 | 224 | 287 | 2013 |
| Kentucky | 14 | 37 | 12 | 32 | 204 | 263 | 2013 |
| Louisiana | 17 | 78 | 33 | 84 | 264 | 388 | 2013 |
| Maine | NA | NA | NA | NA | 27 | 22 | 2013 |
| Maryland | 64 | 162 | 57 | 162 | 714 | 682 | 2013 |
| Massachusetts | 124 | 394 | 143 | 410 | 1171 | 1586 | 2013 |
| Michigan | 76 | 283 | 106 | 199 | 839 | 998 | 2013 |
| Minnesota | 32 | 102 | 38 | 101 | 646 | 578 | 2013 |
| Mississippi | 8 | 29 | 26 | 34 | 248 | 209 | 2013 |
| Missouri | 28 | 104 | 41 | 83 | 397 | 464 | 2013 |
| Montana | NA | 7 | 7 | 13 | 54 | 46 | 2013 |
| Nebraska | 15 | 36 | 14 | 31 | 177 | 186 | 2013 |
| Nevada | NA | NA | 7 | 30 | 89 | 122 | 2013 |
| New Hampshire | 10 | 20 | 11 | 29 | 86 | 78 | 2013 |
| New Jersey | 51 | 115 | 59 | 156 | 465 | 570 | 2013 |
| New Mexico | 9 | 45 | 15 | 50 | 148 | 177 | 2013 |
| New York | 127 | 397 | 186 | 496 | 2092 | 2113 | 2013 |
| North Carolina | 70 | 209 | 92 | 190 | 816 | 865 | 2013 |
| North Dakota | NA | 21 | NA | NA | 62 | 79 | 2013 |
| Ohio | 79 | 281 | 78 | 220 | 863 | 976 | 2013 |
| Oklahoma | 16 | 77 | 16 | 44 | 212 | 277 | 2013 |
| Oregon | 18 | 54 | 30 | 58 | 221 | 238 | 2013 |
| Pennsylvania | 113 | 373 | 123 | 313 | 1135 | 1390 | 2013 |
| Puerto Rico | NA | NA | 14 | 12 | 102 | 47 | 2013 |
| Rhode Island | 8 | 24 | NA | NA | 137 | 171 | 2013 |
| South Carolina | 23 | 83 | 22 | 46 | 235 | 256 | 2013 |
| South Dakota | NA | NA | 5 | 9 | 32 | 44 | 2013 |
| Tennessee | 35 | 95 | 37 | 73 | 416 | 413 | 2013 |
| Texas | 159 | 605 | 183 | 438 | 1615 | 2010 | 2013 |
| United Statesf | 2051 | 6910 | 2698 | 6589 | 24396 | 28353 | 2013 |
| Utah | 18 | 93 | 42 | 87 | 194 | 326 | 2013 |
| Vermont | NA | NA | NA | NA | 41 | 32 | 2013 |
| Virginia | 67 | 249 | 74 | 177 | 709 | 855 | 2013 |
| Washington | 45 | 118 | 49 | 99 | 450 | 480 | 2013 |
| West Virginia | NA | NA | 13 | 11 | 94 | 103 | 2013 |
| Wisconsin | 27 | 105 | 65 | 130 | 486 | 535 | 2013 |
| Wyoming | NA | 7 | NA | NA | 22 | 44 | 2013 |
| Alabama | 26 | 88 | 28 | 68 | 328 | 342 | 2014 |
| Alaska | NA | NA | 7 | 9 | 32 | 17 | 2014 |
| Arizona | 41 | 113 | 43 | 110 | 411 | 478 | 2014 |
| Arkansas | 5 | 14 | 16 | 27 | 94 | 114 | 2014 |
| California | 253 | 859 | 369 | 967 | 2717 | 3454 | 2014 |
| Colorado | 39 | 144 | 64 | 170 | 409 | 529 | 2014 |
| Connecticut | 28 | 62 | 37 | 94 | 339 | 393 | 2014 |
| Delaware | 25 | 38 | 18 | 22 | 95 | 100 | 2014 |
| District of Columbia | 7 | 42 | 24 | 33 | 320 | 275 | 2014 |
| Florida | 98 | 311 | 136 | 306 | 1056 | 1218 | 2014 |
| Georgia | 74 | 289 | 73 | 181 | 643 | 807 | 2014 |
| Hawaii | NA | NA | 11 | 17 | 108 | 88 | 2014 |
| Idaho | NA | NA | 9 | 18 | 47 | 86 | 2014 |
| Illinois | 98 | 313 | 127 | 343 | 1061 | 1331 | 2014 |
| Indiana | 61 | 287 | 66 | 223 | 581 | 868 | 2014 |
| Iowa | 33 | 96 | 49 | 90 | 329 | 400 | 2014 |
| Kansas | 21 | 49 | 22 | 44 | 228 | 256 | 2014 |
| Kentucky | 13 | 69 | 19 | 42 | 244 | 279 | 2014 |
| Louisiana | 18 | 62 | 39 | 84 | 280 | 327 | 2014 |
| Maine | NA | NA | NA | NA | 40 | 36 | 2014 |
| Maryland | 55 | 186 | 63 | 163 | 632 | 650 | 2014 |
| Massachusetts | 143 | 425 | 153 | 381 | 1253 | 1563 | 2014 |
| Michigan | 85 | 355 | 99 | 231 | 885 | 1071 | 2014 |
| Minnesota | 21 | 108 | 27 | 100 | 710 | 631 | 2014 |
| Mississippi | 9 | 44 | NA | NA | 202 | 213 | 2014 |
| Missouri | 26 | 95 | 41 | 107 | 413 | 475 | 2014 |
| Montana | NA | NA | 8 | 13 | 49 | 58 | 2014 |
| Nebraska | 10 | 29 | 15 | 34 | 199 | 166 | 2014 |
| Nevada | NA | NA | 11 | 17 | 91 | 107 | 2014 |
| New Hampshire | 7 | 14 | 15 | 36 | 84 | 95 | 2014 |
| New Jersey | 50 | 132 | 62 | 191 | 516 | 637 | 2014 |
| New Mexico | 16 | 49 | 20 | 46 | 160 | 177 | 2014 |
| New York | 135 | 432 | 216 | 517 | 2094 | 2218 | 2014 |
| North Carolina | 69 | 230 | 104 | 213 | 839 | 852 | 2014 |
| North Dakota | NA | NA | NA | NA | 66 | 93 | 2014 |
| Ohio | 73 | 294 | 114 | 243 | 872 | 1054 | 2014 |
| Oklahoma | 19 | 64 | 29 | 59 | 238 | 278 | 2014 |
| Oregon | 10 | 54 | 25 | 66 | 219 | 220 | 2014 |
| Pennsylvania | 125 | 324 | 119 | 370 | 1184 | 1410 | 2014 |
| Puerto Rico | NA | 5 | 11 | 17 | 127 | 61 | 2014 |
| Rhode Island | NA | NA | 37 | 57 | 184 | 149 | 2014 |
| South Carolina | 35 | 109 | 30 | 56 | 235 | 305 | 2014 |
| South Dakota | 5 | 14 | 5 | 17 | 41 | 59 | 2014 |
| Tennessee | 28 | 146 | 24 | 79 | 395 | 496 | 2014 |
| Texas | 188 | 652 | 198 | 495 | 1778 | 2180 | 2014 |
| United Statesf | 2179 | 7349 | 2820 | 7004 | 24857 | 29049 | 2014 |
| Utah | 18 | 76 | 20 | 85 | 187 | 311 | 2014 |
| Vermont | NA | NA | NA | NA | 38 | 35 | 2014 |
| Virginia | 79 | 260 | 70 | 164 | 697 | 860 | 2014 |
| Washington | 47 | 116 | 59 | 139 | 428 | 502 | 2014 |
| West Virginia | NA | NA | 5 | 25 | 95 | 97 | 2014 |
| Wisconsin | 39 | 129 | 57 | 128 | 544 | 566 | 2014 |
| Wyoming | 5 | 24 | NA | NA | 40 | 62 | 2014 |
# Load data from Github
#Load url
data<- c("https://raw.githubusercontent.com/MsQCompSci/606Project/master/2015Doc.csv", "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2016Doc.csv","https://raw.githubusercontent.com/MsQCompSci/606Project/master/2017Doc.csv", "https://raw.githubusercontent.com/MsQCompSci/606Project/master/2018Doc.csv")
#same as above for each csv url
for(x in 1:length(data)){
raw<- getURL(data[x])
dataFrame <- read.csv(text = raw) %>%
data.frame() %>%
select(State = contains("Table"), TotalMale = X, TotalFemale = X.1, PhysciMale = X.4, PhysciFemale = X.5, MathMale = X.6,MathFemale = X.7, EngMale = X.10, EngFemale = X.11) %>%
slice(5:57) %>%
pivot_longer(-State, "Cat") %>%
filter(value != "D")
dataFrame$value <- as.numeric(unlist(str_remove_all(dataFrame$value, ',')))
calYear <- 2015+x-1
dataFrame <-dataFrame %>%
drop_na() %>%
spread(Cat,value)%>%
mutate(year= as.factor(calYear))
GIANTdf <- Stack(GIANTdf, dataFrame)
}
#Display Giant Table
kable(GIANTdf)%>%
kable_styling() %>%
scroll_box(width = "100%", height = "200px")
| State | EngFemale | EngMale | PhysciFemale | PhysciMale | TotalFemale | TotalMale | year | MathFemale | MathMale |
|---|---|---|---|---|---|---|---|---|---|
| Alabama | 20 | 74 | 31 | 60 | 299 | 331 | 2009 | NA | NA |
| Alaska | NA | NA | 6 | 6 | 16 | 21 | 2009 | NA | NA |
| Arizona | 34 | 130 | 51 | 117 | 505 | 543 | 2009 | NA | NA |
| Arkansas | 10 | 19 | 6 | 11 | 97 | 111 | 2009 | NA | NA |
| California | 257 | 825 | 318 | 871 | 2708 | 3258 | 2009 | NA | NA |
| Colorado | 24 | 89 | 54 | 127 | 390 | 431 | 2009 | NA | NA |
| Connecticut | 16 | 31 | 34 | 70 | 320 | 331 | 2009 | NA | NA |
| Delaware | 11 | 37 | 21 | 40 | 135 | 138 | 2009 | NA | NA |
| District of Columbia | 10 | 41 | 20 | 36 | 310 | 277 | 2009 | NA | NA |
| Florida | 69 | 263 | 97 | 226 | 955 | 1071 | 2009 | NA | NA |
| Georgia | 71 | 261 | 64 | 153 | 670 | 759 | 2009 | NA | NA |
| Hawaii | NA | NA | 9 | 14 | 92 | 92 | 2009 | NA | NA |
| Idaho | NA | NA | 5 | 15 | 50 | 72 | 2009 | NA | NA |
| Illinois | 85 | 281 | 131 | 298 | 1093 | 1229 | 2009 | NA | NA |
| Indiana | 45 | 208 | 64 | 171 | 574 | 757 | 2009 | NA | NA |
| Iowa | 29 | 95 | 39 | 61 | 294 | 377 | 2009 | NA | NA |
| Kansas | 7 | 42 | 16 | 48 | 205 | 228 | 2009 | NA | NA |
| Kentucky | 11 | 42 | 14 | 27 | 221 | 215 | 2009 | NA | NA |
| Louisiana | 16 | 48 | 22 | 62 | 212 | 294 | 2009 | NA | NA |
| Maine | NA | NA | NA | NA | 34 | 24 | 2009 | NA | NA |
| Maryland | 48 | 161 | 52 | 164 | 588 | 611 | 2009 | NA | NA |
| Massachusetts | 88 | 365 | 153 | 354 | 1146 | 1472 | 2009 | NA | NA |
| Michigan | 54 | 313 | 92 | 200 | 785 | 988 | 2009 | NA | NA |
| Minnesota | 12 | 66 | 30 | 66 | 510 | 449 | 2009 | NA | NA |
| Mississippi | NA | NA | 11 | 32 | 212 | 208 | 2009 | NA | NA |
| Missouri | 23 | 68 | 46 | 71 | 415 | 453 | 2009 | NA | NA |
| Montana | NA | NA | NA | NA | 59 | 49 | 2009 | NA | NA |
| Nebraska | 5 | 22 | 12 | 22 | 154 | 150 | 2009 | NA | NA |
| Nevada | NA | NA | NA | NA | 109 | 106 | 2009 | NA | NA |
| New Hampshire | NA | NA | 13 | 26 | 68 | 75 | 2009 | NA | NA |
| New Jersey | 42 | 130 | 55 | 163 | 465 | 607 | 2009 | NA | NA |
| New Mexico | 10 | 38 | 13 | 55 | 116 | 164 | 2009 | NA | NA |
| New York | 105 | 318 | 171 | 462 | 1883 | 1967 | 2009 | NA | NA |
| North Carolina | 53 | 153 | 88 | 160 | 714 | 708 | 2009 | NA | NA |
| North Dakota | NA | 10 | NA | NA | 54 | 67 | 2009 | NA | NA |
| Ohio | 56 | 269 | 87 | 184 | 874 | 986 | 2009 | NA | NA |
| Oklahoma | 13 | 40 | 20 | 41 | 186 | 233 | 2009 | NA | NA |
| Oregon | 8 | 41 | 26 | 65 | 204 | 249 | 2009 | NA | NA |
| Pennsylvania | 104 | 331 | 116 | 334 | 1184 | 1385 | 2009 | NA | NA |
| Puerto Rico | NA | NA | 10 | 13 | 124 | 76 | 2009 | NA | NA |
| Rhode Island | 6 | 26 | 30 | 50 | 117 | 144 | 2009 | NA | NA |
| South Carolina | 13 | 49 | 22 | 66 | 223 | 244 | 2009 | NA | NA |
| South Dakota | NA | NA | NA | NA | 54 | 47 | 2009 | NA | NA |
| Tennessee | 30 | 93 | 30 | 78 | 398 | 439 | 2009 | NA | NA |
| Texas | 106 | 437 | 153 | 371 | 1562 | 1801 | 2009 | NA | NA |
| United Statese | 1623 | 6006 | 2450 | 5868 | 23190 | 26338 | 2009 | NA | NA |
| Utah | 10 | 84 | 29 | 59 | 201 | 282 | 2009 | NA | NA |
| Vermont | NA | NA | NA | 6 | 26 | 22 | 2009 | NA | NA |
| Virginia | 44 | 185 | 67 | 116 | 598 | 694 | 2009 | NA | NA |
| Washington | 25 | 77 | 56 | 77 | 433 | 421 | 2009 | NA | NA |
| West Virginia | NA | 22 | 7 | 13 | 80 | 83 | 2009 | NA | NA |
| Wisconsin | 27 | 112 | 38 | 135 | 439 | 561 | 2009 | NA | NA |
| Wyoming | NA | NA | NA | NA | 29 | 38 | 2009 | NA | NA |
| Alabama | 18 | 62 | 26 | 57 | 265 | 308 | 2010 | NA | NA |
| Alaska | NA | NA | 5 | 8 | 20 | 25 | 2010 | NA | NA |
| Arizona | 33 | 105 | 52 | 111 | 430 | 467 | 2010 | NA | NA |
| Arkansas | 5 | 21 | 5 | 22 | 71 | 108 | 2010 | NA | NA |
| California | 243 | 755 | 312 | 829 | 2619 | 3153 | 2010 | NA | NA |
| Colorado | 30 | 97 | 45 | 115 | 372 | 428 | 2010 | NA | NA |
| Connecticut | 16 | 36 | 33 | 94 | 315 | 346 | 2010 | NA | NA |
| Delaware | NA | NA | 19 | 27 | 92 | 113 | 2010 | NA | NA |
| District of Columbia | 5 | 32 | 23 | 26 | 312 | 236 | 2010 | NA | NA |
| Florida | 85 | 296 | 120 | 233 | 1011 | 1126 | 2010 | NA | NA |
| Georgia | 61 | 196 | 64 | 139 | 612 | 636 | 2010 | NA | NA |
| Hawaii | NA | NA | 14 | 19 | 98 | 86 | 2010 | NA | NA |
| Idaho | NA | NA | NA | NA | 46 | 55 | 2010 | NA | NA |
| Illinois | 79 | 305 | 98 | 294 | 1023 | 1267 | 2010 | NA | NA |
| Indiana | 55 | 189 | 70 | 175 | 555 | 745 | 2010 | NA | NA |
| Iowa | 26 | 85 | 36 | 87 | 310 | 365 | 2010 | NA | NA |
| Kansas | 12 | 28 | 15 | 55 | 204 | 222 | 2010 | NA | NA |
| Kentucky | 5 | 31 | 16 | 37 | 210 | 252 | 2010 | NA | NA |
| Louisiana | 14 | 59 | 25 | 78 | 277 | 318 | 2010 | NA | NA |
| Maine | NA | NA | 5 | 8 | 24 | 29 | 2010 | NA | NA |
| Maryland | 52 | 126 | 65 | 169 | 610 | 651 | 2010 | NA | NA |
| Massachusetts | 129 | 325 | 135 | 343 | 1134 | 1366 | 2010 | NA | NA |
| Michigan | 68 | 259 | 90 | 204 | 754 | 937 | 2010 | NA | NA |
| Minnesota | 21 | 86 | 25 | 89 | 560 | 492 | 2010 | NA | NA |
| Mississippi | 12 | 36 | 19 | 36 | 246 | 200 | 2010 | NA | NA |
| Missouri | 24 | 77 | 48 | 85 | 369 | 378 | 2010 | NA | NA |
| Montana | NA | NA | 10 | 18 | 42 | 58 | 2010 | NA | NA |
| Nebraska | 8 | 26 | 15 | 27 | 160 | 159 | 2010 | NA | NA |
| Nevada | NA | NA | 8 | 26 | 80 | 111 | 2010 | NA | NA |
| New Hampshire | NA | NA | 15 | 28 | 66 | 88 | 2010 | NA | NA |
| New Jersey | 63 | 111 | 63 | 130 | 448 | 516 | 2010 | NA | NA |
| New Mexico | 10 | 32 | 17 | 48 | 119 | 158 | 2010 | NA | NA |
| New York | 101 | 353 | 189 | 438 | 1905 | 1955 | 2010 | NA | NA |
| North Carolina | 40 | 169 | 91 | 186 | 717 | 775 | 2010 | NA | NA |
| North Dakota | 5 | 7 | 6 | 14 | 76 | 56 | 2010 | NA | NA |
| Ohio | 70 | 271 | 94 | 210 | 856 | 997 | 2010 | NA | NA |
| Oklahoma | 12 | 53 | 18 | 41 | 238 | 235 | 2010 | NA | NA |
| Oregon | 8 | 37 | 16 | 69 | 190 | 222 | 2010 | NA | NA |
| Pennsylvania | 121 | 346 | 108 | 293 | 1063 | 1281 | 2010 | NA | NA |
| Puerto Rico | 0 | 0 | 0 | 0 | 47 | 25 | 2010 | NA | NA |
| Rhode Island | 7 | 23 | 23 | 50 | 137 | 158 | 2010 | NA | NA |
| South Carolina | 21 | 50 | 31 | 59 | 212 | 231 | 2010 | NA | NA |
| South Dakota | NA | NA | 5 | 5 | 23 | 30 | 2010 | NA | NA |
| Tennessee | 24 | 90 | 30 | 68 | 391 | 408 | 2010 | NA | NA |
| Texas | 110 | 449 | 159 | 396 | 1468 | 1780 | 2010 | NA | NA |
| United Statesf | 1743 | 5806 | 2458 | 5860 | 22505 | 25548 | 2010 | NA | NA |
| Utah | 11 | 64 | 28 | 63 | 172 | 268 | 2010 | NA | NA |
| Vermont | 0 | 5 | NA | NA | 36 | 26 | 2010 | NA | NA |
| Virginia | 55 | 194 | 51 | 109 | 569 | 643 | 2010 | NA | NA |
| Washington | 26 | 82 | 45 | 93 | 399 | 425 | 2010 | NA | NA |
| West Virginia | 6 | 21 | 8 | 16 | 93 | 107 | 2010 | NA | NA |
| Wisconsin | 20 | 99 | 51 | 111 | 436 | 498 | 2010 | NA | NA |
| Wyoming | NA | NA | NA | NA | 23 | 29 | 2010 | NA | NA |
| Alabama | 17 | 84 | 30 | 53 | 271 | 304 | 2011 | NA | NA |
| Alaska | NA | NA | NA | NA | 24 | 22 | 2011 | NA | NA |
| Arizona | 30 | 107 | 48 | 110 | 403 | 450 | 2011 | NA | NA |
| Arkansas | NA | NA | 9 | 19 | 89 | 88 | 2011 | NA | NA |
| California | 247 | 792 | 322 | 875 | 2662 | 3174 | 2011 | NA | NA |
| Colorado | 27 | 113 | 46 | 133 | 338 | 430 | 2011 | NA | NA |
| Connecticut | 18 | 53 | 23 | 89 | 300 | 347 | 2011 | NA | NA |
| Delaware | 18 | 41 | 18 | 36 | 101 | 119 | 2011 | NA | NA |
| District of Columbia | 11 | 37 | 20 | 30 | 312 | 247 | 2011 | NA | NA |
| Florida | 69 | 332 | 110 | 289 | 1033 | 1187 | 2011 | NA | NA |
| Georgia | 56 | 224 | 71 | 142 | 585 | 697 | 2011 | NA | NA |
| Hawaii | NA | NA | NA | NA | 92 | 120 | 2011 | NA | NA |
| Idaho | 0 | 8 | 6 | 15 | 43 | 51 | 2011 | NA | NA |
| Illinois | 73 | 308 | 107 | 303 | 1031 | 1276 | 2011 | NA | NA |
| Indiana | 50 | 223 | 79 | 175 | 563 | 761 | 2011 | NA | NA |
| Iowa | 29 | 90 | 26 | 102 | 333 | 403 | 2011 | NA | NA |
| Kansas | 12 | 39 | 23 | 41 | 235 | 239 | 2011 | NA | NA |
| Kentucky | 9 | 30 | 16 | 36 | 223 | 219 | 2011 | NA | NA |
| Louisiana | 15 | 43 | 30 | 56 | 225 | 271 | 2011 | NA | NA |
| Maine | NA | NA | 6 | 14 | 20 | 33 | 2011 | NA | NA |
| Maryland | 53 | 146 | 56 | 161 | 561 | 621 | 2011 | NA | NA |
| Massachusetts | 111 | 340 | 126 | 363 | 1074 | 1454 | 2011 | NA | NA |
| Michigan | 74 | 251 | 91 | 192 | 816 | 885 | 2011 | NA | NA |
| Minnesota | 19 | 109 | 24 | 109 | 527 | 566 | 2011 | NA | NA |
| Mississippi | 11 | 46 | 20 | 27 | 208 | 216 | 2011 | NA | NA |
| Missouri | 14 | 97 | 31 | 87 | 346 | 434 | 2011 | NA | NA |
| Montana | NA | NA | 7 | 17 | 44 | 54 | 2011 | NA | NA |
| Nebraska | 8 | 27 | 19 | 28 | 153 | 162 | 2011 | NA | NA |
| Nevada | 6 | 18 | 15 | 23 | 100 | 105 | 2011 | NA | NA |
| New Hampshire | NA | NA | 10 | 33 | 64 | 87 | 2011 | NA | NA |
| New Jersey | 54 | 127 | 66 | 156 | 478 | 578 | 2011 | NA | NA |
| New Mexico | 6 | 34 | 11 | 51 | 121 | 152 | 2011 | NA | NA |
| New York | 106 | 377 | 182 | 459 | 1917 | 2091 | 2011 | NA | NA |
| North Carolina | 64 | 160 | 83 | 184 | 700 | 741 | 2011 | NA | NA |
| North Dakota | NA | NA | 9 | 9 | 86 | 53 | 2011 | NA | NA |
| Ohio | 67 | 251 | 78 | 230 | 861 | 991 | 2011 | NA | NA |
| Oklahoma | 8 | 38 | 12 | 46 | 186 | 230 | 2011 | NA | NA |
| Oregon | 13 | 35 | 26 | 58 | 189 | 233 | 2011 | NA | NA |
| Pennsylvania | 135 | 358 | 137 | 322 | 1220 | 1304 | 2011 | NA | NA |
| Puerto Rico | NA | NA | 20 | 29 | 153 | 100 | 2011 | NA | NA |
| Rhode Island | 10 | 31 | 24 | 51 | 130 | 173 | 2011 | NA | NA |
| South Carolina | 23 | 75 | 20 | 53 | 217 | 241 | 2011 | NA | NA |
| South Dakota | NA | NA | NA | NA | 26 | 35 | 2011 | NA | NA |
| Tennessee | 27 | 76 | 36 | 78 | 387 | 416 | 2011 | NA | NA |
| Texas | 128 | 479 | 147 | 372 | 1445 | 1746 | 2011 | NA | NA |
| United Statesf | 1778 | 6218 | 2479 | 6193 | 22751 | 26237 | 2011 | NA | NA |
| Utah | 17 | 79 | 23 | 73 | 193 | 302 | 2011 | NA | NA |
| Vermont | NA | NA | 0 | 6 | 20 | 24 | 2011 | NA | NA |
| Virginia | 66 | 207 | 74 | 176 | 628 | 721 | 2011 | NA | NA |
| Washington | 28 | 83 | 62 | 109 | 444 | 422 | 2011 | NA | NA |
| West Virginia | NA | NA | NA | NA | 101 | 111 | 2011 | NA | NA |
| Wisconsin | 24 | 121 | 60 | 111 | 448 | 519 | 2011 | NA | NA |
| Wyoming | NA | NA | 6 | 10 | 25 | 32 | 2011 | NA | NA |
| Alabama | 23 | 72 | 27 | 69 | 320 | 328 | 2012 | NA | NA |
| Alaska | NA | NA | 5 | 10 | 21 | 29 | 2012 | NA | NA |
| Arizona | 25 | 133 | 48 | 112 | 397 | 491 | 2012 | NA | NA |
| Arkansas | NA | NA | 10 | 22 | 84 | 110 | 2012 | NA | NA |
| California | 272 | 906 | 317 | 882 | 2612 | 3423 | 2012 | NA | NA |
| Colorado | 38 | 107 | 63 | 116 | 382 | 427 | 2012 | NA | NA |
| Connecticut | 23 | 56 | 27 | 83 | 333 | 368 | 2012 | NA | NA |
| Delaware | 18 | 48 | 16 | 27 | 97 | 116 | 2012 | NA | NA |
| District of Columbia | 12 | 42 | 19 | 40 | 294 | 273 | 2012 | NA | NA |
| Florida | 72 | 283 | 110 | 301 | 972 | 1180 | 2012 | NA | NA |
| Georgia | 64 | 238 | 62 | 141 | 659 | 715 | 2012 | NA | NA |
| Hawaii | NA | NA | NA | NA | 103 | 91 | 2012 | NA | NA |
| Idaho | 0 | 9 | 6 | 13 | 36 | 63 | 2012 | NA | NA |
| Illinois | 87 | 287 | 133 | 349 | 1087 | 1309 | 2012 | NA | NA |
| Indiana | 57 | 202 | 83 | 174 | 572 | 772 | 2012 | NA | NA |
| Iowa | 29 | 102 | 25 | 108 | 320 | 441 | 2012 | NA | NA |
| Kansas | 14 | 43 | 18 | 54 | 235 | 235 | 2012 | NA | NA |
| Kentucky | 12 | 47 | 21 | 43 | 246 | 273 | 2012 | NA | NA |
| Louisiana | 13 | 49 | 41 | 81 | 319 | 343 | 2012 | NA | NA |
| Maine | NA | NA | NA | NA | 23 | 36 | 2012 | NA | NA |
| Maryland | 44 | 168 | 45 | 160 | 658 | 624 | 2012 | NA | NA |
| Massachusetts | 125 | 356 | 147 | 369 | 1195 | 1463 | 2012 | NA | NA |
| Michigan | 83 | 314 | 107 | 203 | 808 | 989 | 2012 | NA | NA |
| Minnesota | 31 | 89 | 30 | 74 | 610 | 527 | 2012 | NA | NA |
| Mississippi | 6 | 33 | 12 | 38 | 231 | 225 | 2012 | NA | NA |
| Missouri | 30 | 91 | 34 | 99 | 394 | 450 | 2012 | NA | NA |
| Montana | NA | NA | NA | NA | 40 | 52 | 2012 | NA | NA |
| Nebraska | 5 | 28 | 12 | 28 | 133 | 147 | 2012 | NA | NA |
| Nevada | 6 | 13 | 9 | 31 | 110 | 94 | 2012 | NA | NA |
| New Hampshire | 7 | 13 | 14 | 20 | 63 | 78 | 2012 | NA | NA |
| New Jersey | 54 | 122 | 51 | 150 | 453 | 550 | 2012 | NA | NA |
| New Mexico | 6 | 41 | 15 | 51 | 149 | 153 | 2012 | NA | NA |
| New York | 113 | 358 | 195 | 481 | 1993 | 2024 | 2012 | NA | NA |
| North Carolina | 52 | 173 | 97 | 195 | 773 | 782 | 2012 | NA | NA |
| North Dakota | NA | NA | 9 | 17 | 70 | 67 | 2012 | NA | NA |
| Ohio | 62 | 270 | 93 | 192 | 830 | 965 | 2012 | NA | NA |
| Oklahoma | 11 | 58 | 16 | 54 | 202 | 267 | 2012 | NA | NA |
| Oregon | 8 | 39 | 22 | 80 | 206 | 266 | 2012 | NA | NA |
| Pennsylvania | 108 | 352 | 125 | 318 | 1144 | 1369 | 2012 | NA | NA |
| Puerto Rico | NA | NA | 20 | 18 | 140 | 81 | 2012 | NA | NA |
| Rhode Island | 8 | 29 | 22 | 51 | 151 | 174 | 2012 | NA | NA |
| South Carolina | 27 | 82 | 37 | 53 | 230 | 259 | 2012 | NA | NA |
| South Dakota | NA | NA | NA | NA | 30 | 46 | 2012 | NA | NA |
| Tennessee | 30 | 96 | 28 | 85 | 395 | 415 | 2012 | NA | NA |
| Texas | 149 | 551 | 183 | 442 | 1576 | 2062 | 2012 | NA | NA |
| United Statesf | 1883 | 6527 | 2551 | 6393 | 23562 | 27390 | 2012 | NA | NA |
| Utah | 19 | 89 | 20 | 70 | 178 | 314 | 2012 | NA | NA |
| Vermont | NA | NA | NA | NA | 24 | 34 | 2012 | NA | NA |
| Virginia | 63 | 223 | 60 | 173 | 659 | 753 | 2012 | NA | NA |
| Washington | 28 | 92 | 50 | 98 | 369 | 428 | 2012 | NA | NA |
| West Virginia | 7 | 19 | 5 | 14 | 100 | 104 | 2012 | NA | NA |
| Wisconsin | 28 | 111 | 43 | 121 | 520 | 559 | 2012 | NA | NA |
| Wyoming | 0 | 13 | NA | NA | 16 | 46 | 2012 | NA | NA |
| Alabama | 28 | 82 | 31 | 70 | 299 | 345 | 2013 | NA | NA |
| Alaska | NA | NA | NA | NA | 28 | 24 | 2013 | NA | NA |
| Arizona | 42 | 118 | 49 | 117 | 437 | 467 | 2013 | NA | NA |
| Arkansas | 8 | 30 | NA | NA | 81 | 141 | 2013 | NA | NA |
| California | 294 | 904 | 358 | 976 | 2800 | 3488 | 2013 | NA | NA |
| Colorado | 38 | 116 | 70 | 143 | 423 | 484 | 2013 | NA | NA |
| Connecticut | 23 | 57 | 51 | 95 | 337 | 384 | 2013 | NA | NA |
| Delaware | 7 | 37 | 19 | 32 | 87 | 99 | 2013 | NA | NA |
| District of Columbia | 13 | 44 | 13 | 24 | 316 | 269 | 2013 | NA | NA |
| Florida | 67 | 300 | 130 | 298 | 985 | 1182 | 2013 | NA | NA |
| Georgia | 60 | 247 | 60 | 154 | 632 | 726 | 2013 | NA | NA |
| Hawaii | NA | NA | 12 | 14 | 123 | 107 | 2013 | NA | NA |
| Idaho | NA | 17 | 11 | 19 | 60 | 80 | 2013 | NA | NA |
| Illinois | 89 | 303 | 110 | 332 | 1142 | 1398 | 2013 | NA | NA |
| Indiana | 58 | 225 | 76 | 207 | 602 | 826 | 2013 | NA | NA |
| Iowa | 27 | 94 | 37 | 104 | 357 | 423 | 2013 | NA | NA |
| Kansas | 10 | 42 | 27 | 56 | 224 | 287 | 2013 | NA | NA |
| Kentucky | 14 | 37 | 12 | 32 | 204 | 263 | 2013 | NA | NA |
| Louisiana | 17 | 78 | 33 | 84 | 264 | 388 | 2013 | NA | NA |
| Maine | NA | NA | NA | NA | 27 | 22 | 2013 | NA | NA |
| Maryland | 64 | 162 | 57 | 162 | 714 | 682 | 2013 | NA | NA |
| Massachusetts | 124 | 394 | 143 | 410 | 1171 | 1586 | 2013 | NA | NA |
| Michigan | 76 | 283 | 106 | 199 | 839 | 998 | 2013 | NA | NA |
| Minnesota | 32 | 102 | 38 | 101 | 646 | 578 | 2013 | NA | NA |
| Mississippi | 8 | 29 | 26 | 34 | 248 | 209 | 2013 | NA | NA |
| Missouri | 28 | 104 | 41 | 83 | 397 | 464 | 2013 | NA | NA |
| Montana | NA | 7 | 7 | 13 | 54 | 46 | 2013 | NA | NA |
| Nebraska | 15 | 36 | 14 | 31 | 177 | 186 | 2013 | NA | NA |
| Nevada | NA | NA | 7 | 30 | 89 | 122 | 2013 | NA | NA |
| New Hampshire | 10 | 20 | 11 | 29 | 86 | 78 | 2013 | NA | NA |
| New Jersey | 51 | 115 | 59 | 156 | 465 | 570 | 2013 | NA | NA |
| New Mexico | 9 | 45 | 15 | 50 | 148 | 177 | 2013 | NA | NA |
| New York | 127 | 397 | 186 | 496 | 2092 | 2113 | 2013 | NA | NA |
| North Carolina | 70 | 209 | 92 | 190 | 816 | 865 | 2013 | NA | NA |
| North Dakota | NA | 21 | NA | NA | 62 | 79 | 2013 | NA | NA |
| Ohio | 79 | 281 | 78 | 220 | 863 | 976 | 2013 | NA | NA |
| Oklahoma | 16 | 77 | 16 | 44 | 212 | 277 | 2013 | NA | NA |
| Oregon | 18 | 54 | 30 | 58 | 221 | 238 | 2013 | NA | NA |
| Pennsylvania | 113 | 373 | 123 | 313 | 1135 | 1390 | 2013 | NA | NA |
| Puerto Rico | NA | NA | 14 | 12 | 102 | 47 | 2013 | NA | NA |
| Rhode Island | 8 | 24 | NA | NA | 137 | 171 | 2013 | NA | NA |
| South Carolina | 23 | 83 | 22 | 46 | 235 | 256 | 2013 | NA | NA |
| South Dakota | NA | NA | 5 | 9 | 32 | 44 | 2013 | NA | NA |
| Tennessee | 35 | 95 | 37 | 73 | 416 | 413 | 2013 | NA | NA |
| Texas | 159 | 605 | 183 | 438 | 1615 | 2010 | 2013 | NA | NA |
| United Statesf | 2051 | 6910 | 2698 | 6589 | 24396 | 28353 | 2013 | NA | NA |
| Utah | 18 | 93 | 42 | 87 | 194 | 326 | 2013 | NA | NA |
| Vermont | NA | NA | NA | NA | 41 | 32 | 2013 | NA | NA |
| Virginia | 67 | 249 | 74 | 177 | 709 | 855 | 2013 | NA | NA |
| Washington | 45 | 118 | 49 | 99 | 450 | 480 | 2013 | NA | NA |
| West Virginia | NA | NA | 13 | 11 | 94 | 103 | 2013 | NA | NA |
| Wisconsin | 27 | 105 | 65 | 130 | 486 | 535 | 2013 | NA | NA |
| Wyoming | NA | 7 | NA | NA | 22 | 44 | 2013 | NA | NA |
| Alabama | 26 | 88 | 28 | 68 | 328 | 342 | 2014 | NA | NA |
| Alaska | NA | NA | 7 | 9 | 32 | 17 | 2014 | NA | NA |
| Arizona | 41 | 113 | 43 | 110 | 411 | 478 | 2014 | NA | NA |
| Arkansas | 5 | 14 | 16 | 27 | 94 | 114 | 2014 | NA | NA |
| California | 253 | 859 | 369 | 967 | 2717 | 3454 | 2014 | NA | NA |
| Colorado | 39 | 144 | 64 | 170 | 409 | 529 | 2014 | NA | NA |
| Connecticut | 28 | 62 | 37 | 94 | 339 | 393 | 2014 | NA | NA |
| Delaware | 25 | 38 | 18 | 22 | 95 | 100 | 2014 | NA | NA |
| District of Columbia | 7 | 42 | 24 | 33 | 320 | 275 | 2014 | NA | NA |
| Florida | 98 | 311 | 136 | 306 | 1056 | 1218 | 2014 | NA | NA |
| Georgia | 74 | 289 | 73 | 181 | 643 | 807 | 2014 | NA | NA |
| Hawaii | NA | NA | 11 | 17 | 108 | 88 | 2014 | NA | NA |
| Idaho | NA | NA | 9 | 18 | 47 | 86 | 2014 | NA | NA |
| Illinois | 98 | 313 | 127 | 343 | 1061 | 1331 | 2014 | NA | NA |
| Indiana | 61 | 287 | 66 | 223 | 581 | 868 | 2014 | NA | NA |
| Iowa | 33 | 96 | 49 | 90 | 329 | 400 | 2014 | NA | NA |
| Kansas | 21 | 49 | 22 | 44 | 228 | 256 | 2014 | NA | NA |
| Kentucky | 13 | 69 | 19 | 42 | 244 | 279 | 2014 | NA | NA |
| Louisiana | 18 | 62 | 39 | 84 | 280 | 327 | 2014 | NA | NA |
| Maine | NA | NA | NA | NA | 40 | 36 | 2014 | NA | NA |
| Maryland | 55 | 186 | 63 | 163 | 632 | 650 | 2014 | NA | NA |
| Massachusetts | 143 | 425 | 153 | 381 | 1253 | 1563 | 2014 | NA | NA |
| Michigan | 85 | 355 | 99 | 231 | 885 | 1071 | 2014 | NA | NA |
| Minnesota | 21 | 108 | 27 | 100 | 710 | 631 | 2014 | NA | NA |
| Mississippi | 9 | 44 | NA | NA | 202 | 213 | 2014 | NA | NA |
| Missouri | 26 | 95 | 41 | 107 | 413 | 475 | 2014 | NA | NA |
| Montana | NA | NA | 8 | 13 | 49 | 58 | 2014 | NA | NA |
| Nebraska | 10 | 29 | 15 | 34 | 199 | 166 | 2014 | NA | NA |
| Nevada | NA | NA | 11 | 17 | 91 | 107 | 2014 | NA | NA |
| New Hampshire | 7 | 14 | 15 | 36 | 84 | 95 | 2014 | NA | NA |
| New Jersey | 50 | 132 | 62 | 191 | 516 | 637 | 2014 | NA | NA |
| New Mexico | 16 | 49 | 20 | 46 | 160 | 177 | 2014 | NA | NA |
| New York | 135 | 432 | 216 | 517 | 2094 | 2218 | 2014 | NA | NA |
| North Carolina | 69 | 230 | 104 | 213 | 839 | 852 | 2014 | NA | NA |
| North Dakota | NA | NA | NA | NA | 66 | 93 | 2014 | NA | NA |
| Ohio | 73 | 294 | 114 | 243 | 872 | 1054 | 2014 | NA | NA |
| Oklahoma | 19 | 64 | 29 | 59 | 238 | 278 | 2014 | NA | NA |
| Oregon | 10 | 54 | 25 | 66 | 219 | 220 | 2014 | NA | NA |
| Pennsylvania | 125 | 324 | 119 | 370 | 1184 | 1410 | 2014 | NA | NA |
| Puerto Rico | NA | 5 | 11 | 17 | 127 | 61 | 2014 | NA | NA |
| Rhode Island | NA | NA | 37 | 57 | 184 | 149 | 2014 | NA | NA |
| South Carolina | 35 | 109 | 30 | 56 | 235 | 305 | 2014 | NA | NA |
| South Dakota | 5 | 14 | 5 | 17 | 41 | 59 | 2014 | NA | NA |
| Tennessee | 28 | 146 | 24 | 79 | 395 | 496 | 2014 | NA | NA |
| Texas | 188 | 652 | 198 | 495 | 1778 | 2180 | 2014 | NA | NA |
| United Statesf | 2179 | 7349 | 2820 | 7004 | 24857 | 29049 | 2014 | NA | NA |
| Utah | 18 | 76 | 20 | 85 | 187 | 311 | 2014 | NA | NA |
| Vermont | NA | NA | NA | NA | 38 | 35 | 2014 | NA | NA |
| Virginia | 79 | 260 | 70 | 164 | 697 | 860 | 2014 | NA | NA |
| Washington | 47 | 116 | 59 | 139 | 428 | 502 | 2014 | NA | NA |
| West Virginia | NA | NA | 5 | 25 | 95 | 97 | 2014 | NA | NA |
| Wisconsin | 39 | 129 | 57 | 128 | 544 | 566 | 2014 | NA | NA |
| Wyoming | 5 | 24 | NA | NA | 40 | 62 | 2014 | NA | NA |
| Alabama | 28 | 105 | 15 | 23 | 309 | 386 | 2015 | 9 | 37 |
| Alaska | NA | NA | NA | NA | 14 | 27 | 2015 | NA | NA |
| Arizona | 29 | 120 | 45 | 93 | 449 | 541 | 2015 | 12 | 51 |
| Arkansas | 12 | 46 | NA | NA | 95 | 130 | 2015 | NA | NA |
| California | 265 | 893 | 245 | 510 | 2686 | 3386 | 2015 | 83 | 384 |
| Colorado | 61 | 164 | 63 | 104 | 439 | 567 | 2015 | 19 | 45 |
| Connecticut | 28 | 63 | 30 | 67 | 387 | 392 | 2015 | 13 | 36 |
| Delaware | 16 | 43 | 14 | 24 | 100 | 127 | 2015 | 9 | 17 |
| District of Columbia | 18 | 49 | 7 | 23 | 311 | 265 | 2015 | NA | NA |
| Florida | 83 | 303 | 84 | 189 | 1127 | 1237 | 2015 | 33 | 132 |
| Georgia | 90 | 269 | 43 | 69 | 696 | 785 | 2015 | 37 | 89 |
| Hawaii | NA | NA | 6 | 20 | 118 | 122 | 2015 | NA | NA |
| Idaho | NA | NA | 6 | 12 | 47 | 68 | 2015 | NA | NA |
| Illinois | 104 | 360 | 82 | 170 | 1066 | 1413 | 2015 | 36 | 134 |
| Indiana | 80 | 264 | 65 | 106 | 711 | 870 | 2015 | 44 | 94 |
| Iowa | 17 | 96 | 33 | 48 | 293 | 393 | 2015 | 12 | 34 |
| Kansas | 19 | 51 | 23 | 32 | 275 | 301 | 2015 | 7 | 23 |
| Kentucky | 17 | 62 | 6 | 21 | 199 | 304 | 2015 | 7 | 26 |
| Louisiana | 22 | 63 | 24 | 39 | 299 | 333 | 2015 | 6 | 35 |
| Maine | NA | NA | 6 | 7 | 39 | 33 | 2015 | NA | NA |
| Maryland | 59 | 179 | 39 | 98 | 660 | 745 | 2015 | 32 | 87 |
| Massachusetts | 142 | 367 | 133 | 238 | 1266 | 1570 | 2015 | 42 | 158 |
| Michigan | 82 | 346 | 92 | 134 | 889 | 1103 | 2015 | 32 | 100 |
| Minnesota | 30 | 103 | 17 | 51 | 714 | 594 | 2015 | 12 | 44 |
| Mississippi | 11 | 33 | NA | NA | 232 | 214 | 2015 | 10 | 13 |
| Missouri | 37 | 118 | 33 | 65 | 464 | 522 | 2015 | 15 | 47 |
| Montana | NA | NA | 7 | 21 | 58 | 70 | 2015 | NA | NA |
| Nebraska | 7 | 39 | 11 | 18 | 176 | 196 | 2015 | 7 | 10 |
| Nevada | NA | NA | 13 | 19 | 102 | 109 | 2015 | NA | NA |
| New Hampshire | 6 | 18 | 9 | 17 | 80 | 89 | 2015 | 7 | 7 |
| New Jersey | 54 | 158 | 30 | 114 | 468 | 660 | 2015 | 17 | 91 |
| New Mexico | 20 | 51 | 17 | 41 | 169 | 176 | 2015 | 5 | 18 |
| New York | 138 | 437 | 138 | 289 | 1996 | 2090 | 2015 | 84 | 204 |
| North Carolina | 83 | 212 | 58 | 89 | 846 | 857 | 2015 | 37 | 110 |
| North Dakota | 5 | 29 | 6 | 13 | 88 | 87 | 2015 | NA | NA |
| Ohio | 93 | 323 | 68 | 126 | 924 | 1069 | 2015 | 26 | 84 |
| Oklahoma | 21 | 71 | 13 | 39 | 219 | 296 | 2015 | 6 | 22 |
| Oregon | 15 | 48 | 25 | 50 | 237 | 252 | 2015 | 9 | 21 |
| Pennsylvania | 154 | 464 | 81 | 171 | 1186 | 1442 | 2015 | 72 | 143 |
| Puerto Rico | 5 | 8 | NA | NA | 129 | 65 | 2015 | NA | NA |
| Rhode Island | 12 | 23 | NA | NA | 160 | 160 | 2015 | 9 | 27 |
| South Carolina | 27 | 117 | 13 | 38 | 266 | 320 | 2015 | 15 | 29 |
| South Dakota | NA | NA | NA | NA | 46 | 64 | 2015 | 0 | 7 |
| Tennessee | 34 | 118 | 23 | 46 | 436 | 464 | 2015 | 9 | 26 |
| Texas | 189 | 636 | 136 | 281 | 1842 | 2224 | 2015 | 77 | 192 |
| United Statesd | 2301 | 7596 | 1988 | 3935 | 25403 | 29596 | 2015 | 943 | 2880 |
| Utah | 26 | 113 | 16 | 49 | 211 | 365 | 2015 | 7 | 34 |
| Vermont | NA | NA | NA | NA | 34 | 42 | 2015 | NA | NA |
| Virginia | 52 | 253 | 54 | 91 | 709 | 826 | 2015 | 23 | 92 |
| Washington | 41 | 112 | 37 | 69 | 456 | 502 | 2015 | 23 | 61 |
| West Virginia | 5 | 32 | NA | NA | 101 | 116 | 2015 | NA | NA |
| Wisconsin | 43 | 135 | 47 | 88 | 546 | 575 | 2015 | 17 | 50 |
| Wyoming | NA | NA | NA | NA | 33 | 52 | 2015 | NA | NA |
| Alabama | 27 | 104 | 17 | 36 | 334 | 387 | 2016 | 12 | 34 |
| Alaska | NA | NA | 5 | 9 | 24 | 24 | 2016 | NA | NA |
| Arizona | 38 | 133 | 31 | 89 | 407 | 482 | 2016 | 11 | 36 |
| Arkansas | NA | NA | 8 | 11 | 124 | 126 | 2016 | 5 | 10 |
| California | 269 | 877 | 253 | 563 | 2741 | 3376 | 2016 | 103 | 372 |
| Colorado | 50 | 183 | 37 | 130 | 439 | 631 | 2016 | 17 | 56 |
| Connecticut | 20 | 64 | 27 | 64 | 325 | 434 | 2016 | 13 | 37 |
| Delaware | 20 | 64 | 17 | 32 | 114 | 166 | 2016 | NA | NA |
| District of Columbia | 17 | 55 | 14 | 18 | 317 | 292 | 2016 | 5 | 26 |
| Florida | 89 | 286 | 97 | 200 | 1072 | 1215 | 2016 | 58 | 122 |
| Georgia | 65 | 268 | 45 | 96 | 669 | 793 | 2016 | 29 | 87 |
| Hawaii | NA | NA | 11 | 16 | 110 | 91 | 2016 | NA | NA |
| Idaho | NA | NA | 6 | 12 | 44 | 65 | 2016 | NA | NA |
| Illinois | 98 | 286 | 83 | 201 | 1089 | 1337 | 2016 | 30 | 127 |
| Indiana | 63 | 265 | 53 | 126 | 641 | 877 | 2016 | 24 | 104 |
| Iowa | 31 | 96 | 25 | 37 | 315 | 397 | 2016 | 18 | 33 |
| Kansas | NA | NA | 18 | 22 | 252 | 262 | 2016 | NA | NA |
| Kentucky | 18 | 41 | 7 | 15 | 219 | 261 | 2016 | 7 | 26 |
| Louisiana | 15 | 71 | 28 | 42 | 293 | 365 | 2016 | 16 | 28 |
| Maine | NA | NA | NA | NA | 37 | 38 | 2016 | NA | NA |
| Maryland | 49 | 177 | 47 | 89 | 597 | 677 | 2016 | 29 | 103 |
| Massachusetts | 149 | 426 | 120 | 287 | 1257 | 1640 | 2016 | 46 | 148 |
| Michigan | 69 | 288 | 76 | 146 | 862 | 1045 | 2016 | 33 | 102 |
| Minnesota | 39 | 106 | 23 | 56 | 859 | 606 | 2016 | 15 | 40 |
| Mississippi | 7 | 23 | 15 | 23 | 240 | 208 | 2016 | 5 | 9 |
| Missouri | 32 | 112 | 29 | 65 | 419 | 498 | 2016 | 16 | 48 |
| Montana | NA | NA | 6 | 16 | 52 | 66 | 2016 | NA | NA |
| Nebraska | 12 | 38 | 6 | 19 | 197 | 191 | 2016 | 10 | 15 |
| Nevada | 14 | 22 | 10 | 22 | 120 | 109 | 2016 | 0 | 0 |
| New Hampshire | 5 | 17 | 11 | 24 | 69 | 94 | 2016 | NA | NA |
| New Jersey | 54 | 105 | 49 | 100 | 480 | 584 | 2016 | 28 | 81 |
| New Mexico | NA | NA | 13 | 30 | 133 | 172 | 2016 | 5 | 18 |
| New York | 127 | 397 | 134 | 312 | 2030 | 2165 | 2016 | 79 | 259 |
| North Carolina | 79 | 221 | 56 | 110 | 841 | 967 | 2016 | 48 | 121 |
| North Dakota | 5 | 22 | 6 | 12 | 92 | 93 | 2016 | 8 | 15 |
| Ohio | 85 | 322 | 62 | 195 | 895 | 1148 | 2016 | 20 | 106 |
| Oklahoma | 22 | 78 | 19 | 29 | 239 | 299 | 2016 | 12 | 10 |
| Oregon | 10 | 45 | 26 | 50 | 208 | 247 | 2016 | NA | NA |
| Pennsylvania | 137 | 444 | 91 | 169 | 1241 | 1480 | 2016 | 70 | 175 |
| Puerto Rico | 6 | 5 | NA | NA | 142 | 74 | 2016 | 0 | 5 |
| Rhode Island | 13 | 24 | 19 | 38 | 157 | 168 | 2016 | 8 | 17 |
| South Carolina | 31 | 91 | 23 | 34 | 272 | 272 | 2016 | 8 | 26 |
| South Dakota | NA | NA | 8 | 12 | 49 | 64 | 2016 | NA | NA |
| Tennessee | 37 | 113 | 30 | 60 | 421 | 503 | 2016 | 6 | 38 |
| Texas | 196 | 623 | 139 | 320 | 1793 | 2181 | 2016 | 73 | 216 |
| United Statesd | 2192 | 7277 | 1963 | 4286 | 25278 | 29616 | 2016 | 959 | 2998 |
| Utah | 17 | 102 | 13 | 46 | 201 | 336 | 2016 | 5 | 27 |
| Vermont | 0 | 8 | NA | NA | 36 | 39 | 2016 | 0 | 0 |
| Virginia | 62 | 219 | 51 | 82 | 723 | 802 | 2016 | 31 | 92 |
| Washington | 39 | 114 | 40 | 78 | 461 | 466 | 2016 | 17 | 40 |
| West Virginia | 5 | 35 | 9 | 19 | 112 | 131 | 2016 | NA | NA |
| Wisconsin | 27 | 122 | 37 | 86 | 482 | 623 | 2016 | 18 | 68 |
| Wyoming | NA | NA | NA | NA | 32 | 49 | 2016 | NA | NA |
| Alabama | 31 | 100 | 21 | 38 | 342 | 365 | 2017 | 13 | 35 |
| Alaska | NA | NA | 11 | 9 | 33 | 19 | 2017 | 0 | 0 |
| Arizona | 32 | 109 | 32 | 78 | 381 | 420 | 2017 | 13 | 38 |
| Arkansas | NA | NA | 11 | 6 | 104 | 98 | 2017 | NA | NA |
| California | 334 | 817 | 289 | 551 | 2817 | 3283 | 2017 | 124 | 371 |
| Colorado | 45 | 161 | 41 | 114 | 462 | 543 | 2017 | 16 | 51 |
| Connecticut | 28 | 69 | 38 | 66 | 351 | 397 | 2017 | 16 | 44 |
| Delaware | 23 | 46 | 7 | 17 | 111 | 127 | 2017 | NA | NA |
| District of Columbia | 17 | 61 | 19 | 18 | 328 | 295 | 2017 | 7 | 17 |
| Florida | 86 | 333 | 90 | 169 | 1078 | 1258 | 2017 | 36 | 109 |
| Georgia | 77 | 283 | 48 | 81 | 697 | 795 | 2017 | 22 | 77 |
| Hawaii | NA | NA | 14 | 15 | 111 | 78 | 2017 | NA | NA |
| Idaho | NA | NA | NA | NA | 46 | 57 | 2017 | NA | NA |
| Illinois | 119 | 314 | 68 | 199 | 1173 | 1357 | 2017 | 54 | 139 |
| Indiana | 55 | 274 | 67 | 128 | 641 | 928 | 2017 | 30 | 88 |
| Iowa | 37 | 115 | 22 | 57 | 305 | 410 | 2017 | 22 | 50 |
| Kansas | 18 | 56 | 15 | 29 | 249 | 281 | 2017 | 5 | 18 |
| Kentucky | 10 | 38 | 10 | 12 | 241 | 256 | 2017 | 11 | 24 |
| Louisiana | 11 | 63 | 25 | 43 | 265 | 342 | 2017 | 9 | 39 |
| Maine | NA | NA | NA | NA | 27 | 29 | 2017 | NA | NA |
| Maryland | 63 | 162 | 46 | 95 | 650 | 645 | 2017 | 37 | 81 |
| Massachusetts | 181 | 416 | 120 | 252 | 1313 | 1565 | 2017 | 51 | 126 |
| Michigan | 98 | 296 | 71 | 135 | 850 | 1056 | 2017 | 29 | 89 |
| Minnesota | 25 | 103 | 25 | 41 | 775 | 599 | 2017 | 10 | 43 |
| Mississippi | 12 | 39 | 18 | 30 | 230 | 229 | 2017 | 8 | 12 |
| Missouri | 44 | 127 | 23 | 84 | 470 | 551 | 2017 | 14 | 41 |
| Montana | NA | NA | 7 | 8 | 63 | 56 | 2017 | NA | NA |
| Nebraska | 11 | 33 | 14 | 18 | 177 | 186 | 2017 | 8 | 19 |
| Nevada | 6 | 28 | 6 | 14 | 90 | 110 | 2017 | NA | NA |
| New Hampshire | NA | NA | 14 | 18 | 80 | 78 | 2017 | NA | NA |
| New Jersey | 53 | 141 | 43 | 102 | 487 | 628 | 2017 | 20 | 80 |
| New Mexico | 14 | 60 | 10 | 34 | 120 | 179 | 2017 | NA | NA |
| New York | 158 | 409 | 138 | 273 | 1972 | 2092 | 2017 | 59 | 243 |
| North Carolina | 87 | 229 | 67 | 127 | 883 | 949 | 2017 | 52 | 103 |
| North Dakota | 7 | 23 | NA | NA | 100 | 81 | 2017 | NA | NA |
| Ohio | 85 | 325 | 72 | 188 | 900 | 1128 | 2017 | 27 | 86 |
| Oklahoma | 18 | 52 | 17 | 29 | 232 | 292 | 2017 | NA | NA |
| Oregon | 15 | 56 | 26 | 69 | 250 | 322 | 2017 | 8 | 44 |
| Pennsylvania | 138 | 407 | 85 | 163 | 1218 | 1408 | 2017 | 58 | 148 |
| Puerto Rico | NA | NA | NA | NA | 54 | 29 | 2017 | NA | NA |
| Rhode Island | 8 | 31 | 16 | 31 | 153 | 169 | 2017 | NA | NA |
| South Carolina | 49 | 92 | 27 | 32 | 240 | 266 | 2017 | 8 | 24 |
| South Dakota | NA | NA | NA | NA | 34 | 76 | 2017 | NA | NA |
| Tennessee | 48 | 137 | 28 | 59 | 508 | 524 | 2017 | 10 | 42 |
| Texas | 217 | 660 | 142 | 282 | 1879 | 2186 | 2017 | 87 | 209 |
| United Statesd | 2448 | 7389 | 2011 | 4068 | 25495 | 29146 | 2017 | 976 | 2866 |
| Utah | 17 | 82 | 14 | 40 | 193 | 315 | 2017 | 7 | 42 |
| Vermont | NA | NA | NA | NA | 32 | 29 | 2017 | NA | NA |
| Virginia | 69 | 222 | 49 | 96 | 714 | 799 | 2017 | 30 | 73 |
| Washington | 44 | 127 | 38 | 72 | 444 | 470 | 2017 | 21 | 47 |
| West Virginia | 6 | 26 | NA | NA | 87 | 96 | 2017 | NA | NA |
| Wisconsin | 29 | 146 | 36 | 85 | 496 | 633 | 2017 | 13 | 62 |
| Wyoming | NA | NA | 7 | 11 | 39 | 62 | 2017 | NA | NA |
| Alabama | 25 | 103 | 11 | 31 | 329 | 338 | 2018 | 12 | 23 |
| Alaska | NA | NA | 8 | 7 | 27 | 29 | 2018 | 0 | 0 |
| Arizona | 43 | 100 | 30 | 65 | 364 | 399 | 2018 | 10 | 42 |
| Arkansas | 10 | 44 | 9 | 14 | 104 | 162 | 2018 | NA | NA |
| California | 300 | 889 | 286 | 597 | 2647 | 3427 | 2018 | 108 | 377 |
| Colorado | 60 | 160 | 59 | 122 | 478 | 574 | 2018 | 17 | 45 |
| Connecticut | 33 | 79 | 37 | 79 | 363 | 422 | 2018 | 10 | 40 |
| Delaware | 24 | 59 | 21 | 27 | 98 | 140 | 2018 | NA | NA |
| District of Columbia | 14 | 52 | 20 | 18 | 296 | 292 | 2018 | 5 | 28 |
| Florida | 87 | 327 | 96 | 180 | 1094 | 1252 | 2018 | 59 | 142 |
| Georgia | 68 | 268 | 51 | 91 | 684 | 827 | 2018 | 23 | 97 |
| Hawaii | NA | NA | 12 | 15 | 104 | 96 | 2018 | NA | NA |
| Idaho | 6 | 19 | NA | NA | 41 | 56 | 2018 | NA | NA |
| Illinois | 97 | 350 | 98 | 199 | 1107 | 1408 | 2018 | 70 | 156 |
| Indiana | 78 | 255 | 64 | 116 | 708 | 923 | 2018 | 34 | 108 |
| Iowa | 31 | 121 | 21 | 54 | 334 | 409 | 2018 | 16 | 44 |
| Kansas | 11 | 57 | 28 | 34 | 250 | 284 | 2018 | 11 | 21 |
| Kentucky | 10 | 45 | 11 | 27 | 223 | 271 | 2018 | 10 | 16 |
| Louisiana | 21 | 66 | 25 | 34 | 281 | 295 | 2018 | 13 | 27 |
| Maine | NA | NA | NA | NA | 28 | 22 | 2018 | 0 | 0 |
| Maryland | 64 | 182 | 54 | 78 | 665 | 699 | 2018 | 31 | 99 |
| Massachusetts | 178 | 428 | 139 | 258 | 1330 | 1616 | 2018 | 38 | 161 |
| Michigan | 97 | 325 | 76 | 147 | 863 | 1090 | 2018 | 34 | 115 |
| Minnesota | 41 | 114 | 27 | 51 | 795 | 642 | 2018 | 10 | 32 |
| Mississippi | 6 | 37 | 14 | 29 | 226 | 245 | 2018 | 7 | 13 |
| Missouri | 43 | 159 | 21 | 70 | 430 | 546 | 2018 | 15 | 40 |
| Montana | NA | NA | 6 | 10 | 56 | 56 | 2018 | NA | NA |
| Nebraska | 7 | 27 | 8 | 25 | 164 | 177 | 2018 | 10 | 18 |
| Nevada | 9 | 25 | 17 | 24 | 125 | 115 | 2018 | NA | NA |
| New Hampshire | 15 | 25 | 12 | 21 | 73 | 92 | 2018 | NA | NA |
| New Jersey | 57 | 153 | 38 | 89 | 529 | 595 | 2018 | 19 | 82 |
| New Mexico | 15 | 42 | 15 | 40 | 161 | 161 | 2018 | NA | NA |
| New York | 153 | 447 | 150 | 301 | 2051 | 2207 | 2018 | 72 | 266 |
| North Carolina | 74 | 235 | 67 | 111 | 843 | 890 | 2018 | 44 | 113 |
| North Dakota | 8 | 18 | 7 | 14 | 104 | 89 | 2018 | NA | NA |
| Ohio | 92 | 299 | 84 | 178 | 957 | 1094 | 2018 | 27 | 98 |
| Oklahoma | 15 | 67 | 11 | 36 | 235 | 269 | 2018 | NA | NA |
| Oregon | 20 | 70 | 28 | 62 | 237 | 300 | 2018 | 8 | 32 |
| Pennsylvania | 144 | 456 | 70 | 165 | 1165 | 1457 | 2018 | 53 | 172 |
| Puerto Rico | NA | NA | NA | NA | 88 | 59 | 2018 | NA | NA |
| Rhode Island | 9 | 30 | 20 | 33 | 140 | 186 | 2018 | 9 | 26 |
| South Carolina | 36 | 103 | 16 | 40 | 262 | 306 | 2018 | 11 | 25 |
| South Dakota | 8 | 16 | NA | NA | 51 | 63 | 2018 | NA | NA |
| Tennessee | 58 | 134 | 17 | 57 | 467 | 488 | 2018 | 11 | 39 |
| Texas | 193 | 702 | 132 | 325 | 1771 | 2297 | 2018 | 76 | 213 |
| United Statesd | 2453 | 7726 | 2118 | 4214 | 25368 | 29798 | 2018 | 983 | 3043 |
| Utah | 18 | 92 | 23 | 38 | 200 | 311 | 2018 | 15 | 27 |
| Vermont | NA | NA | NA | NA | 32 | 31 | 2018 | NA | NA |
| Virginia | 79 | 236 | 48 | 103 | 687 | 826 | 2018 | 26 | 92 |
| Washington | 31 | 104 | 50 | 68 | 463 | 501 | 2018 | 21 | 51 |
| West Virginia | 6 | 32 | 6 | 14 | 96 | 123 | 2018 | 6 | 5 |
| Wisconsin | 39 | 115 | 51 | 74 | 506 | 575 | 2018 | 13 | 57 |
| Wyoming | 6 | 16 | NA | NA | 36 | 66 | 2018 | NA | NA |
For each discipline, the differences in male and female PhD recipients were initially analyzed with respect to the total number of PhD grads in the country (proportion = Grads in Gender Category/ Total Grads for US that year). Differences and trends were not seen to be statistically signicant (p-value > 0.05) for Engineering and Math & Computer Science. After looking at the data further proportions were recalculated with respect to the total number of PhD Grads in the state (Grads in Gender Category/ Total Grads in State that Year). Linear regression and Pearson Correlation were calculated for each gender proportion and difference between gender proportions for each discipline. Based on these models, inferences were made for each catergory about the state of the “gender gap” in 2030 based on goals set by the United Nations.
#Select Engineering and Total Data
EngStates <- select(GIANTdf, State, EngFemale, EngMale, year, TotalMale, TotalFemale) %>%
mutate(diff = EngMale - EngFemale, year = as.numeric(year), StateTotal = TotalMale + TotalFemale) %>% #Calculate differences in male and female graduates and state totals
mutate(statePropDiff = diff/StateTotal, statePropMale = EngMale/StateTotal, statePropFemale = EngFemale/StateTotal) %>% # Calculate Proportions
filter(!str_detect(State, "United")) #Filter out USA Totals
#Female
#Test the pearson correlation
cor.test(EngStates$year, EngStates$statePropFemale)
##
## Pearson's product-moment correlation
##
## data: EngStates$year and EngStates$statePropFemale
## t = 6.0092, df = 414, p-value = 4.091e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1923334 0.3693292
## sample estimates:
## cor
## 0.2832413
#Generate Linear Regression
EngFemale <- lm(statePropFemale ~ year, data = EngStates)
#Print
summary(EngFemale)
##
## Call:
## lm(formula = statePropFemale ~ year, data = EngStates)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.040848 -0.008001 -0.000170 0.007226 0.090188
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0295246 0.0014810 19.935 < 2e-16 ***
## year 0.0014155 0.0002355 6.009 4.09e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01382 on 414 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.08023, Adjusted R-squared: 0.078
## F-statistic: 36.11 on 1 and 414 DF, p-value: 4.091e-09
#Male
#Test the pearson correlation
cor.test(EngStates$year, EngStates$statePropMale)
##
## Pearson's product-moment correlation
##
## data: EngStates$year and EngStates$statePropMale
## t = 4.5958, df = 421, p-value = 5.707e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1258448 0.3075058
## sample estimates:
## cor
## 0.2185682
#Generate Linear Regression
EngMale <- lm(statePropMale ~ year, data = EngStates)
#Print
summary(EngMale)
##
## Call:
## lm(formula = statePropMale ~ year, data = EngStates)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.115639 -0.026127 0.000466 0.024087 0.110324
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1101551 0.0037358 29.487 < 2e-16 ***
## year 0.0027420 0.0005966 4.596 5.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03522 on 421 degrees of freedom
## (97 observations deleted due to missingness)
## Multiple R-squared: 0.04777, Adjusted R-squared: 0.04551
## F-statistic: 21.12 on 1 and 421 DF, p-value: 5.707e-06
EngPlot <- select(EngStates, year, State,statePropMale, statePropFemale ) %>%
gather("sex","prop",-year, -State) %>%
drop_na()
#Plot points and regression lines
ggplot(EngPlot, aes(x = year, y = prop, color = sex)) +
geom_jitter() +
geom_smooth(method='lm')+
labs(y = "Proportion", x ="Year", title = "Proportion Engineering PhD by State") +
theme(plot.title = element_text(hjust = 0.5))
#Residual Plot - Check for normal dist
ggplot(EngMale, aes(y = EngMale$residuals, x = year))+
geom_jitter(color = "green") +
geom_hline(yintercept = 0, color = "red") +
labs(y = "Residuals", x ="Year", title = "Male Proportion Engineering PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Histogram of residuals - Check for normal dist
ggplot()+
geom_histogram(aes(EngMale$residuals), fill = "green", color = "black") +
labs(y = "Residuals", title = "Male Proportion Engineering PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Residual Plot - Check for normal dist
ggplot(EngFemale, aes(y = EngFemale$residuals, x = year))+
geom_jitter(color = "yellow") +
geom_hline(yintercept = 0, color = "red") +
labs(y = "Residuals", x ="Year", title = "Female Proportion Engineering PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Histogram of residuals - Check for normal dist
ggplot()+
geom_histogram(aes(EngFemale$residuals), fill = "yellow", color = "black") +
labs(y = "Residuals", title = "Female Proportion Engineering PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Pearson Correlation and Confidence Test
cor.test(EngStates$year, EngStates$statePropDiff)
##
## Pearson's product-moment correlation
##
## data: EngStates$year and EngStates$statePropDiff
## t = 2.6855, df = 414, p-value = 0.007533
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.03514697 0.22417573
## sample estimates:
## cor
## 0.1308504
#Calculate Model
EngStates <- lm(statePropDiff ~ year, data = EngStates)
#Display
summary(EngStates)
##
## Call:
## lm(formula = statePropDiff ~ year, data = EngStates)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.096232 -0.020792 -0.001438 0.018808 0.123351
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0810502 0.0030883 26.244 < 2e-16 ***
## year 0.0013191 0.0004912 2.686 0.00753 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02881 on 414 degrees of freedom
## (104 observations deleted due to missingness)
## Multiple R-squared: 0.01712, Adjusted R-squared: 0.01475
## F-statistic: 7.212 on 1 and 414 DF, p-value: 0.007533
#Difference in Proportion
ggplot(EngStates, aes(x = year, y = statePropDiff)) +
geom_jitter(color = "blue") +
geom_smooth(method='lm', color = "red")+
labs(y = "Difference in Proportion", x ="Year", title = "Proportional Difference Engineering PhD") +
theme(plot.title = element_text(hjust = 0.5))
#Residual Plot
ggplot(EngStates, aes(y = EngStates$residuals, x = year))+
geom_jitter(color = "green") +
geom_hline(yintercept = 0, color = "red") +
labs(y = "Residuals", x ="Year", title = "Proportional Difference Engineering PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Histogram of residuals
ggplot()+
geom_histogram(aes(EngStates$residuals), fill = "green", color = "black") +
labs(y = "Residuals", title = "Proportional Difference Engineering PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Select Engineering and Total Data
PhysciStates <- select(GIANTdf, State, PhysciFemale,PhysciMale, year, TotalMale, TotalFemale) %>%
mutate(diff = PhysciMale - PhysciFemale, year = as.numeric(year), StateTotal = TotalMale + TotalFemale) %>% #Calculate differences in male and female graduates and state totals
mutate(statePropDiff = diff/StateTotal, statePropMale = PhysciMale/StateTotal, statePropFemale = PhysciFemale/StateTotal) %>% # Calculate Proportions
filter(!str_detect(State, "United")) #Filter out USA Totals
#Female
#Test the pearson correlation
cor.test(PhysciStates$year, PhysciStates$statePropFemale)
##
## Pearson's product-moment correlation
##
## data: PhysciStates$year and PhysciStates$statePropFemale
## t = -5.3253, df = 460, p-value = 1.58e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3250587 -0.1531130
## sample estimates:
## cor
## -0.2409759
#Generate Linear Regression
PhysciFemale <- lm(statePropFemale ~ year, data = PhysciStates)
#Print
summary(PhysciFemale)
##
## Call:
## lm(formula = statePropFemale ~ year, data = PhysciStates)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.055027 -0.011646 -0.003017 0.007216 0.168859
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0585547 0.0020474 28.600 < 2e-16 ***
## year -0.0017640 0.0003312 -5.325 1.58e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02047 on 460 degrees of freedom
## (58 observations deleted due to missingness)
## Multiple R-squared: 0.05807, Adjusted R-squared: 0.05602
## F-statistic: 28.36 on 1 and 460 DF, p-value: 1.58e-07
#Male
#Test the pearson correlation
cor.test(PhysciStates$year, PhysciStates$statePropMale)
##
## Pearson's product-moment correlation
##
## data: PhysciStates$year and PhysciStates$statePropMale
## t = -11.527, df = 461, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5408220 -0.3990757
## sample estimates:
## cor
## -0.4730039
#Generate Linear Regression
PhysciMale <- lm(statePropMale ~ year, data = PhysciStates)
#Print
summary(PhysciMale)
##
## Call:
## lm(formula = statePropMale ~ year, data = PhysciStates)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.125640 -0.020717 -0.001753 0.019082 0.144635
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1378888 0.0032804 42.03 <2e-16 ***
## year -0.0061242 0.0005313 -11.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03291 on 461 degrees of freedom
## (57 observations deleted due to missingness)
## Multiple R-squared: 0.2237, Adjusted R-squared: 0.222
## F-statistic: 132.9 on 1 and 461 DF, p-value: < 2.2e-16
PhysciPlot <- select(PhysciStates, year, State,statePropMale, statePropFemale ) %>%
gather("sex","prop",-year, -State) %>%
drop_na()
#Plot points and regression lines
ggplot(PhysciPlot, aes(x = year, y = prop, color = sex)) +
geom_jitter() +
geom_smooth(method='lm')+
labs(y = "Proportion", x ="Year", title = "Proportion Physical Science PhD by State") +
theme(plot.title = element_text(hjust = 0.5))
#Residual Plot - Check for normal dist
ggplot(PhysciMale, aes(y = PhysciMale$residuals, x = year))+
geom_jitter(color = "green") +
geom_hline(yintercept = 0, color = "red") +
labs(y = "Residuals", x ="Year", title = "Male Proportion Physical Science PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Histogram of residuals - Check for normal dist
ggplot()+
geom_histogram(aes(PhysciMale$residuals), fill = "green", color = "black") +
labs(y = "Residuals", title = "Male Proportion Physical Science PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Residual Plot - Check for normal dist
ggplot(PhysciFemale, aes(y = PhysciFemale$residuals, x = year))+
geom_jitter(color = "yellow") +
geom_hline(yintercept = 0, color = "red") +
labs(y = "Residuals", x ="Year", title = "Female Proportion Physical Science PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Histogram of residuals - Check for normal dist
ggplot()+
geom_histogram(aes(PhysciFemale$residuals), fill = "yellow", color = "black") +
labs(y = "Residuals", title = "Female Proportion Physical Science PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Pearson Correlation and Confidence Test
cor.test(PhysciStates$year, PhysciStates$statePropDiff)
##
## Pearson's product-moment correlation
##
## data: PhysciStates$year and PhysciStates$statePropDiff
## t = -10.193, df = 460, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5008705 -0.3518039
## sample estimates:
## cor
## -0.429256
#Calculate Model
PhysciStates <- lm(statePropDiff ~ year, data = PhysciStates)
#Display
summary(PhysciStates)
##
## Call:
## lm(formula = statePropDiff ~ year, data = PhysciStates)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.078540 -0.014753 -0.000071 0.015054 0.086030
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0793922 0.0026487 29.97 <2e-16 ***
## year -0.0043682 0.0004285 -10.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02648 on 460 degrees of freedom
## (58 observations deleted due to missingness)
## Multiple R-squared: 0.1843, Adjusted R-squared: 0.1825
## F-statistic: 103.9 on 1 and 460 DF, p-value: < 2.2e-16
#Difference in Proportion
ggplot(PhysciStates, aes(x = year, y = statePropDiff)) +
geom_jitter(color = "blue") +
geom_smooth(method='lm', color = "red")+
labs(y = "Difference in Proportion", x ="Year", title = "Proportional Difference Physical Science PhD") +
theme(plot.title = element_text(hjust = 0.5))
<br.
#Residual Plot
ggplot(PhysciStates, aes(y = PhysciStates$residuals, x = year))+
geom_jitter(color = "green") +
geom_hline(yintercept = 0, color = "red") +
labs(y = "Residuals", x ="Year", title = "Proportional Difference Physical Science PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Histogram of residuals
ggplot()+
geom_histogram(aes(PhysciStates$residuals), fill = "green", color = "black") +
labs(y = "Residuals", title = "Proportional Difference Physical Science PhDs") +
theme(plot.title = element_text(hjust = 0.5))
#Select Engineering and Total Data, Calculate differences in male and female graduates and state totals, Calculate Proportions
MathStates <- select(GIANTdf, State, MathFemale,MathMale, year, TotalMale, TotalFemale) %>%
drop_na() %>%
mutate(diff = MathMale - MathFemale, StateTotal = TotalMale + TotalFemale) %>%
mutate(statePropDiff = diff/StateTotal, statePropMale = MathMale/StateTotal, statePropFemale =MathFemale/StateTotal) %>%
filter(!str_detect(State, "United"))%>%
mutate(year = as.numeric(year))
#Female
#Test the pearson correlation
cor.test(MathStates$year, MathStates$statePropFemale)
##
## Pearson's product-moment correlation
##
## data: MathStates$year and MathStates$statePropFemale
## t = -0.14182, df = 150, p-value = 0.8874
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1704650 0.1478948
## sample estimates:
## cor
## -0.01157847
#Male
#Test the pearson correlation
cor.test(MathStates$year, MathStates$statePropMale)
##
## Pearson's product-moment correlation
##
## data: MathStates$year and MathStates$statePropMale
## t = -0.52297, df = 150, p-value = 0.6018
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2005003 0.1173363
## sample estimates:
## cor
## -0.04266132
MathPlot <- select(MathStates, year, State,statePropMale, statePropFemale ) %>%
gather("sex","prop",-year, -State) %>%
drop_na()
#Plot points and regression lines
ggplot(MathPlot, aes(x = year, y = prop, color = sex)) +
geom_jitter() +
geom_smooth(method='lm')+
labs(y = "Proportion", x ="Year", title = "Proportion Math & CS PhD by State") +
theme(plot.title = element_text(hjust = 0.5))
#Pearson Correlation and Confidence Test
cor.test(MathStates$year, MathStates$statePropDiff)
##
## Pearson's product-moment correlation
##
## data: MathStates$year and MathStates$statePropDiff
## t = -0.53406, df = 150, p-value = 0.5941
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2013683 0.1164442
## sample estimates:
## cor
## -0.04356413
#Difference in Proportion
ggplot(MathStates, aes(x = MathStates$year, y = statePropDiff)) +
geom_jitter(color = "blue") +
geom_smooth(method='lm', color = "red")+
labs(y = "Difference in Proportion", x ="Year", title = "Proportional Difference Physical Science PhD") +
theme(plot.title = element_text(hjust = 0.5))
As seen in the visualisations above, there still exsists a significant gender gap in dicisplines associated with STEM fields such as Engineering, Physical Science and Math & Computer Science. Trends for PhD recipients in Engineering are increasing for both male and female groups however, they are not increasing at the same rate. Thus despite the increase in popularity of PhD’s in Engineering, the gap between males and females are increasing. This may lead to further underepresentation of females and other marginalized groups in Engineering.On the other hand, we see that the number of people earning PhD’s in Physical Science is decreasing. Since the proportion of males is decreasing faster than the proportion of females, the gender gap should be closed by the goal year set by the United Nations: 2030. Last but not least, although the data for total number of people earning PhDs in Math suggest that the number of reciepnts in both groups is increasing, there is not enough data in this data set to warrant a statistically significant linear regression model.
There were many versions of this project that I worked on, which made it difficult for me to decide the best approach for using the data to make meaningful inferences. First, I had to really get to know the data and how male and female numbers compared for every discipline and every state. Once I was able to confirm that females were underrepresentred in STEM fields I began analyzing the relationship between different proportions. First I thought that it would make sense to somehow normalize the number by state and by year. I initially anlyzed the data with respect to the total number of PhD recipients in that year however, the variation in number for each state made the p-values so large (which I didn’t realize until hours into working with the data). Then I tried to normalize by comparing proportions of people by the total number of people who earned PhDs in that state. This yeilded p-values that were much lower which allowed me to rely on my model for extrapolation. I am really passionate about euity in education so the process of doing this project really helped me feel that I can contribute somehow to helping others understand the story that the data is telling. In the future I hope to read more literature about this topic and somehow explain patterns in the data that I found. For example, What happened in 2015 that Math and CS was suddenly included in the data set? Does this somehow reflect the values outlines by the United Nations in 2015? How can we measure the gender gap in higher education for Math & Computer Science? We see a general increase in both males and females recieving PhD’s, how can we accelerate the growth of females who graduate to reduce the gap? Why are some states omitted from the data and others are not?
In the future I would like to explore the question outlined in my relfection above. I would like to also research other factors that may contribute to the number of males and females who earn PhDs in STEM related fields. I would like to see if another model can be developed to predict the number of PhD recipients in each gender (for example, multiple regression?). I would also like to search for more data regarding Math and Computer Science graduate degrees to see if a statistically significant model can be achieved. Lastly, I am curious to see data about the number of females who apply and get accepted into PhD rograms in the United States. How many males and females are being denied admission? How many males and females who apply and get accepted to PhD programs in stem actually complete their degree and earn a PhD? This is truly a facinationg topic! Thank you for reading!