Sys.setlocale(category = "LC_ALL", locale = "zh_TW.UTF-8") # For ubuntu
## [1] "zh_TW.UTF-8/zh_TW.UTF-8/zh_TW.UTF-8/C/zh_TW.UTF-8/zh_TW.UTF-8"
# Sys.setlocale("LC_CTYPE", "cht") # For windows.
packages = c("readr","tm", "data.table", "dplyr", "stringr", "jiebaR", "tidytext", "ggplot2", "tidyr", "topicmodels", "LDAvis", "webshot","purrr","ramify","RColorBrewer", "htmlwidgets","servr")
existing = as.character(installed.packages()[,1])
for(pkg in packages[!(packages %in% existing)]) install.packages(pkg)
require(readr)
require(tm)
require(data.table)
require(dplyr)
require(stringr)
require(jiebaR)
require(udpipe)
require(tidytext)
require(ggplot2)
require(tidyr)
require(topicmodels)
require(LDAvis)
require(wordcloud2)
require(webshot)
require(htmlwidgets)
require(servr)
require(purrr)
require(ramify)
require(RColorBrewer)
mycolors <- colorRampPalette(brewer.pal(8, "Set3"))(20)
news= read.csv("new_mask_articleMetaData.csv",stringsAsFactors = FALSE)
news$artDate = as.Date(news$artDate)
news %>%
group_by(artDate) %>%
summarise(count = n())%>%
ggplot(aes(artDate,count))+
geom_line(color="red")+
geom_point()
可以觀察到資料主要分佈在2月初之後
# 使用默認參數初始化一個斷詞引擎
jieba_tokenizer = worker()
news_tokenizer <- function(t) {
lapply(t, function(x) {
if(nchar(x)>1){
tokens <- segment(x, jieba_tokenizer)
# 去掉字串長度爲1的詞彙
tokens <- tokens[nchar(tokens)>1]
return(tokens)
}
})
}
tokens <- news %>%
unnest_tokens(word, sentence, token=news_tokenizer) %>%
filter(!str_detect(word, regex("[0-9a-zA-Z]"))) %>%
count(artUrl, word) %>%
rename(count=n)
tokens %>%head(20)
## # A tibble: 20 x 3
## artUrl word count
## <chr> <chr> <int>
## 1 https://news.ebc.net.tw/news/article/194992 幫助 1
## 2 https://news.ebc.net.tw/news/article/194992 爆發 1
## 3 https://news.ebc.net.tw/news/article/194992 北京 1
## 4 https://news.ebc.net.tw/news/article/194992 鼻樑 4
## 5 https://news.ebc.net.tw/news/article/194992 避免 1
## 6 https://news.ebc.net.tw/news/article/194992 並將鼻 1
## 7 https://news.ebc.net.tw/news/article/194992 病毒 1
## 8 https://news.ebc.net.tw/news/article/194992 病例 2
## 9 https://news.ebc.net.tw/news/article/194992 病原體 1
## 10 https://news.ebc.net.tw/news/article/194992 不斷擴大 1
## 11 https://news.ebc.net.tw/news/article/194992 不過 1
## 12 https://news.ebc.net.tw/news/article/194992 不明 1
## 13 https://news.ebc.net.tw/news/article/194992 不少 1
## 14 https://news.ebc.net.tw/news/article/194992 不要 1
## 15 https://news.ebc.net.tw/news/article/194992 步驟 2
## 16 https://news.ebc.net.tw/news/article/194992 朝外 1
## 17 https://news.ebc.net.tw/news/article/194992 出入 1
## 18 https://news.ebc.net.tw/news/article/194992 出現 1
## 19 https://news.ebc.net.tw/news/article/194992 處方 1
## 20 https://news.ebc.net.tw/news/article/194992 觸摸 1
news_dtm <-tokens %>% cast_dtm(artUrl, word, count)
news_dtm
## <<DocumentTermMatrix (documents: 1795, terms: 31102)>>
## Non-/sparse entries: 227677/55600413
## Sparsity : 100%
## Maximal term length: 9
## Weighting : term frequency (tf)
inspect(news_dtm[1:10,1:10])
## <<DocumentTermMatrix (documents: 10, terms: 10)>>
## Non-/sparse entries: 29/71
## Sparsity : 71%
## Maximal term length: 4
## Weighting : term frequency (tf)
## Sample :
## Terms
## Docs 幫助 爆發 北京 鼻樑 避免 並將鼻
## https://news.ebc.net.tw/news/article/194992 1 1 1 4 1 1
## https://news.ebc.net.tw/news/article/195025 0 0 1 0 0 0
## https://news.ebc.net.tw/news/article/195037 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/195042 0 0 0 0 1 0
## https://news.ebc.net.tw/news/article/195044 0 0 0 0 1 0
## https://news.ebc.net.tw/news/article/195083 0 0 0 4 0 1
## https://news.ebc.net.tw/news/article/195119 0 0 0 0 1 0
## https://news.ebc.net.tw/news/article/195124 0 0 0 0 2 0
## https://news.ebc.net.tw/news/article/195189 0 1 0 0 0 0
## https://news.ebc.net.tw/news/article/195193 0 0 0 0 4 0
## Terms
## Docs 病毒 病例 病原體 不斷擴大
## https://news.ebc.net.tw/news/article/194992 1 2 1 1
## https://news.ebc.net.tw/news/article/195025 0 2 0 0
## https://news.ebc.net.tw/news/article/195037 0 0 0 0
## https://news.ebc.net.tw/news/article/195042 0 2 0 0
## https://news.ebc.net.tw/news/article/195044 0 2 0 0
## https://news.ebc.net.tw/news/article/195083 0 1 0 1
## https://news.ebc.net.tw/news/article/195119 4 0 0 0
## https://news.ebc.net.tw/news/article/195124 0 1 0 0
## https://news.ebc.net.tw/news/article/195189 0 1 0 0
## https://news.ebc.net.tw/news/article/195193 3 1 0 0
查看DTM矩陣,可以發現是個稀疏矩陣。
lda <- LDA(news_dtm, k = 2, control = list(seed = 2020))
topics <- tidy(lda, matrix = "beta") # 注意,在tidy function裡面要使用"beta"來取出Phi矩陣。
topics
## # A tibble: 62,204 x 3
## topic term beta
## <int> <chr> <dbl>
## 1 1 幫助 1.70e- 4
## 2 2 幫助 2.51e- 4
## 3 1 爆發 5.51e- 4
## 4 2 爆發 4.93e- 4
## 5 1 北京 9.38e-16
## 6 2 北京 3.36e- 5
## 7 1 鼻樑 2.05e- 5
## 8 2 鼻樑 1.72e- 4
## 9 1 避免 9.85e- 4
## 10 2 避免 1.36e- 3
## # … with 62,194 more rows
從topics中可以得到特定主題生成特定詞彙的概率。
top_terms <- topics %>%
group_by(topic) %>%
top_n(10, beta) %>%
ungroup() %>%
arrange(topic, -beta)
top_terms %>%
mutate(term = reorder(term, beta)) %>%
ggplot(aes(term, beta, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
theme(text = element_text(family = "Heiti TC Light")) +
facet_wrap(~ topic, scales = "free") +
coord_flip()
透過上方的圖,感覺兩個主題看起來差不多,沒有看出兩者的差異,嘗試看看分多一點topics
# ldas = c()
# topics = c(2,3,10,25,36)
# for(topic in topics){
# start_time <- Sys.time()
# lda <- LDA(news_dtm, k = topic, control = list(seed = 2020))
# ldas =c(ldas,lda)
# print(paste(topic ,paste("topic(s) and use time is ", Sys.time() -start_time)))
# save(ldas,file = "ldas_result")
# }
這邊要跑N個小時,已將主題結果存在lda_result
load("ldas_result")
結果存在ldas這個變數裡面,同學可以透過ldas[[x]] 來找到想要的主題數
topics = c(2,3,10,25,36)
data_frame(k = topics,
perplex = map_dbl(ldas, topicmodels::perplexity)) %>%
ggplot(aes(k, perplex)) +
geom_point() +
geom_line() +
labs(title = "Evaluating LDA topic models",
subtitle = "Optimal number of topics (smaller is better)",
x = "Number of topics",
y = "Perplexity")
## Warning: `data_frame()` is deprecated, use `tibble()`.
## This warning is displayed once per session.
perplexity 越小越好,但是太小的話,主題數會分太細。通常會找一個主題數適當,且perplexity比較低的主題
Maximization: Deveaud2014、Griffiths2004
# if(!('ldatuning' %in% existing)){install.packages(ldatuning)}
# library("ldatuning")
# result <- FindTopicsNumber(
# news_dtm,
# topics = topics,
# metrics = c("Griffiths2004", "CaoJuan2009", "Arun2010", "Deveaud2014"),
# method = "Gibbs",
# control = list(seed = 2020),
# mc.cores = 2L,
# verbose = TRUE
# )
# FindTopicsNumber_plot(result)
這邊也要跑N個小時,可以參考上面的連結了解如何使用
topicmodels_json_ldavis <- function(fitted, doc_term){
require(LDAvis)
require(slam)
###以下function 用來解決,主題數多會出現NA的問題
## 參考 https://github.com/cpsievert/LDAvis/commit/c7234d71168b1e946a361bc00593bc5c4bf8e57e
ls_LDA = function (phi)
{
jensenShannon <- function(x, y) {
m <- 0.5 * (x + y)
lhs <- ifelse(x == 0, 0, x * (log(x) - log(m+1e-16)))
rhs <- ifelse(y == 0, 0, y * (log(y) - log(m+1e-16)))
0.5 * sum(lhs) + 0.5 * sum(rhs)
}
dist.mat <- proxy::dist(x = phi, method = jensenShannon)
pca.fit <- stats::cmdscale(dist.mat, k = 2)
data.frame(x = pca.fit[, 1], y = pca.fit[, 2])
}
# Find required quantities
phi <- as.matrix(posterior(fitted)$terms)
theta <- as.matrix(posterior(fitted)$topics)
vocab <- colnames(phi)
term_freq <- slam::col_sums(doc_term)
# Convert to json
json_lda <- LDAvis::createJSON(phi = phi, theta = theta,
vocab = vocab,
doc.length = as.vector(table(doc_term$i)),
term.frequency = term_freq, mds.method = ls_LDA)
return(json_lda)
}
# 設置alpha及delta參數
#devotion_lda_removed <- LDA(devotion_dtm_removed, k = 4, method = "Gibbs", control = list(seed = 1234, alpha = 2, delta= 0.1))
####### 以下用來產生ldavis的檔案,可以之後用來在local端、放在網路上打開 ##########
# for(lda in ldas){
#
# k = lda@k ## lda 主題數
# if(k==2){next}
# json_res <- topicmodels_json_ldavis(lda,news_dtm)
# # serVis(json_res,open.browser = T)
# lda_dir = paste0(k,"_ldavis")
# if(!dir.exists(lda_dir)){ dir.create("./",lda_dir)}
#
# serVis(json_res, out.dir =lda_dir, open.browser = F)
#
# writeLines(iconv(readLines(paste0(lda_dir,"/lda.json")), to = "UTF8"))
# }
topic_10 = ldas[[3]]
json_res <- topicmodels_json_ldavis(topic_10,news_dtm)
serVis(json_res,open.browser = T)
# 如果無法開啟視窗(windows用戶)可執行這段
# serVis(json_res, out.dir = "vis", open.browser = T)
# writeLines(iconv(readLines("./vis/lda.json"), to = "UTF8"))
news_lda = ldas[[3]] ## 選定topic 為10 的結果
topics <- tidy(news_lda, matrix = "beta") # 注意,在tidy function裡面要使用"beta"來取出Phi矩陣。
topics
## # A tibble: 311,020 x 3
## topic term beta
## <int> <chr> <dbl>
## 1 1 幫助 0.000164
## 2 2 幫助 0.000209
## 3 3 幫助 0.000202
## 4 4 幫助 0.0000993
## 5 5 幫助 0.000369
## 6 6 幫助 0.00000368
## 7 7 幫助 0.000167
## 8 8 幫助 0.000195
## 9 9 幫助 0.000435
## 10 10 幫助 0.000292
## # … with 311,010 more rows
top_terms <- topics %>%
group_by(topic) %>%
top_n(10, beta) %>%
ungroup() %>%
arrange(topic, -beta)
top_terms %>%
mutate(term = reorder(term, beta)) %>%
ggplot(aes(term, beta, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
scale_fill_manual(values=mycolors)+
theme(text = element_text(family = "Heiti TC Light")) +
facet_wrap(~ topic, scales = "free") +
coord_flip()
可以看到topic都被一開始所使用的搜尋關鍵字影響看不出每一群的差異。
remove_word = c("口罩","防疫","疫情","肺炎","民眾","新冠")
top_terms <- topics %>%
filter(!term %in% remove_word)%>%
group_by(topic) %>%
top_n(10, beta) %>%
ungroup() %>%
arrange(topic, -beta)
top_terms %>%
mutate(term = reorder(term, beta)) %>%
ggplot(aes(term, beta, fill = factor(topic))) +
geom_col(show.legend = FALSE) +
scale_fill_manual(values=mycolors)+
theme(text = element_text(family = "Heiti TC Light")) +
facet_wrap(~ topic, scales = "free") +
coord_flip()
可以看出每個主題主要在討論什麼了!
topic_name = c("口罩購買",'口罩需求','口罩產量','大眾運輸防疫政策','國際關係','藥局購買','學校防疫政策','台灣確診狀況','None','None2')
# for every document we have a probability distribution of its contained topics
tmResult <- posterior(news_lda)
doc_pro <- tmResult$topics
dim(doc_pro) # nDocs(DTM) distributions over K topics
## [1] 1795 10
每篇文章都有topic的分佈,所以1795筆的文章*10個主題
# get document topic proportions
document_topics <- doc_pro[news$artUrl,]
document_topics_df =data.frame(document_topics)
colnames(document_topics_df) = topic_name
rownames(document_topics_df) = NULL
news_topic = cbind(news,document_topics_df)
# news_topic %>% head(10)
現在我們看每一篇的文章分佈了!
news_topic %>%
arrange(desc(`大眾運輸防疫政策`)) %>%head(10)
可以看到大眾運輸防疫政策的主題,大都在討論政府對於大眾運輸(雙鐵、公車)的防疫政策
news_topic[,c(6:13)] =sapply(news_topic[,c(6:13)] , as.numeric)
news_topic %>%
group_by(artDate = format(artDate,'%Y%m')) %>%
summarise_if(is.numeric, sum, na.rm = TRUE) %>%
melt(id.vars = "artDate")%>%
ggplot( aes(x=artDate, y=value, fill=variable)) +
geom_bar(stat = "identity") + ylab("value") +
theme(text = element_text(family = "Heiti TC Light")) +
scale_fill_manual(values=mycolors)+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
將None、None2的主題去除
news_topic %>%
#filter( !format(artDate,'%Y%m') %>%
dplyr::select(-None, -None2)%>%
group_by(artDate = format(artDate,'%Y%m')) %>%
summarise_if(is.numeric, sum, na.rm = TRUE) %>%
melt(id.vars = "artDate")%>%
ggplot( aes(x=artDate, y=value, fill=variable)) +
geom_bar(stat = "identity") + ylab("value") +
theme(text = element_text(family = "Heiti TC Light")) +
scale_fill_manual(values=mycolors)+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
可以看出每個月的聲量,但是不能很清楚出每個月的比例
news_topic %>%
#filter( !format(artDate,'%Y%m')%>%
dplyr::select(-None, -None2)%>%
group_by(artDate = format(artDate,'%Y%m')) %>%
summarise_if(is.numeric, sum, na.rm = TRUE) %>%
melt(id.vars = "artDate")%>%
group_by(artDate)%>%
mutate(total_value =sum(value))%>%
ggplot( aes(x=artDate, y=value/total_value, fill=variable)) +
theme(text = element_text(family = "Heiti TC Light")) +
geom_bar(stat = "identity") + ylab("proportion") +
scale_fill_manual(values=mycolors)+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
現在我們可以看到每個月主題的佔比了!