Synopsis

This analysis concludes the Coursera Reproducible Research course, part of the Data Science Specialization. The goal of the assignment is to explore the NOAA Storm Database and explore the effects of severe weather events on both population and economy.

The database covers the time period between 1950 and November 2011. In the earlier years of the database there are generally fewer events recorded, most likely due to a lack of good records. More recent years should be considered more complete.

The analysis aims to investigate which different types of sever weather events are most harmful on the populations health in respect of general injuries and fatalities. Further the economic consequences will be analyzed by exploring the financial damage done to both general property and agriculture (i.e. crops)

Data Processing

Data

The data for this assignment come in the form of a comma-separated-value file compressed via the bzip2 algorithm to reduce its size. You can download the file from the course web site:

Storm Data [47Mb] There is also some documentation of the database available. Here you will find how some of the variables are constructed/defined.

National Weather Service Storm Data Documentation

National Climatic Data Center Storm Events FAQ

The events in the database start in the year 1950 and end in November 2011. In the earlier years of the database there are generally fewer events recorded, most likely due to a lack of good records. More recent years should be considered more complete.

Assignment

The basic goal of this assignment is to explore the NOAA Storm Database and answer the following basic questions about severe weather events.

1.Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

2.Across the United States, which types of events have the greatest economic consequences? Process Loading the data

The data was downloaded from the above mentioned website and saved on local computer. Then it was loaded on the R using the following code.

storm<-read.csv("repdata_data_StormData.csv",sep=",")
str(storm)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436774 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...

Extracting the required data

This dataset consists of lot of information most of which is not required for our present study. So, here is the code to extract the required data for health and economic impact analysis against weather.

# Extracting the required data for health and economic impact analysis against weather
event <- c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", 
           "CROPDMGEXP")
data <- storm[event]

Finding property damage

Property damage exponents for each level was listed out and assigned those values for the property exponent data. Invalid data was excluded by assigning the value as ‘0’. Then property damage value was calculated by multiplying the property damage and property exponent value.The code for this process was listed below

#Finding the property damage exponent and levels
unique(data$PROPDMGEXP)
##  [1] K M   B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels:  - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
# Assigning values for the property exponent data 
data$PROPEXP[data$PROPDMGEXP == "K"] <- 1000
data$PROPEXP[data$PROPDMGEXP == "M"] <- 1e+06
data$PROPEXP[data$PROPDMGEXP == ""] <- 1
data$PROPEXP[data$PROPDMGEXP == "B"] <- 1e+09
data$PROPEXP[data$PROPDMGEXP == "m"] <- 1e+06
data$PROPEXP[data$PROPDMGEXP == "0"] <- 1
data$PROPEXP[data$PROPDMGEXP == "5"] <- 1e+05
data$PROPEXP[data$PROPDMGEXP == "6"] <- 1e+06
data$PROPEXP[data$PROPDMGEXP == "4"] <- 10000
data$PROPEXP[data$PROPDMGEXP == "2"] <- 100
data$PROPEXP[data$PROPDMGEXP == "3"] <- 1000
data$PROPEXP[data$PROPDMGEXP == "h"] <- 100
data$PROPEXP[data$PROPDMGEXP == "7"] <- 1e+07
data$PROPEXP[data$PROPDMGEXP == "H"] <- 100
data$PROPEXP[data$PROPDMGEXP == "1"] <- 10
data$PROPEXP[data$PROPDMGEXP == "8"] <- 1e+08
# Assigning '0' to invalid exponent data
data$PROPEXP[data$PROPDMGEXP == "+"] <- 0
data$PROPEXP[data$PROPDMGEXP == "-"] <- 0
data$PROPEXP[data$PROPDMGEXP == "?"] <- 0
# Calculating the property damage value
data$PROPDMGVAL <- data$PROPDMG * data$PROPEXP

Finding crop damage

Crop damage exponents for each level was listed out and assigned those values for the crop exponent data. Invalid data was excluded by assigning the value as ‘0’. Then crop damage value was calculated by multiplying the crop damage and crop exponent value.The code for this process was listed below

# Exploring the crop exponent data
unique(data$CROPDMGEXP)
## [1]   M K m B ? 0 k 2
## Levels:  ? 0 2 B k K m M
# Assigning values for the crop exponent data 
data$CROPEXP[data$CROPDMGEXP == "M"] <- 1e+06
data$CROPEXP[data$CROPDMGEXP == "K"] <- 1000
data$CROPEXP[data$CROPDMGEXP == "m"] <- 1e+06
data$CROPEXP[data$CROPDMGEXP == "B"] <- 1e+09
data$CROPEXP[data$CROPDMGEXP == "0"] <- 1
data$CROPEXP[data$CROPDMGEXP == "k"] <- 1000
data$CROPEXP[data$CROPDMGEXP == "2"] <- 100
data$CROPEXP[data$CROPDMGEXP == ""] <- 1
# Assigning '0' to invalid exponent data
data$CROPEXP[data$CROPDMGEXP == "?"] <- 0
# calculating the crop damage value
data$CROPDMGVAL <- data$CROPDMG * data$CROPEXP

finding totals of each incident by event type.

It was observed that " most harmful to population health" events are fatalities and injuries.So,only those events with fatalities and injuries were selecetd.

It was observed that " most harmful to econamic problem“” events are Property and crop damages.So,only those events with property and crop damage were selecetd.

Then for each incident (Fatalities,Injuries, Property damage and Crop damage), the total values were estimated. Code for which is as follows.

# Totalling the data by event
fatal <- aggregate(FATALITIES ~ EVTYPE, data, FUN = sum)
injury <- aggregate(INJURIES ~ EVTYPE, data, FUN = sum)
propdmg <- aggregate(PROPDMGVAL ~ EVTYPE, data, FUN = sum)
cropdmg <- aggregate(CROPDMGVAL ~ EVTYPE, data, FUN = sum)

Plotting events with highest fatalities and highest injuries.

Highest fatalities and highest injuries for Top 8 events were calculated. For better understanding and comparision these values were plotted as follows.

# Listing  events with highest fatalities
fatal8 <- fatal[order(-fatal$FATALITIES), ][1:8, ]
# Listing events with highest injuries
injury8 <- injury[order(-injury$INJURIES), ][1:8, ]
par(mfrow = c(1, 2), mar = c(12, 4, 3, 2), mgp = c(3, 1, 0), cex = 0.8)
barplot(fatal8$FATALITIES, las = 3, names.arg = fatal8$EVTYPE, main = "Events with Highest Fatalities", 
        ylab = "Number of fatalities", col = "yellow")
barplot(injury8$INJURIES, las = 3, names.arg = injury8$EVTYPE, main = "Events with Highest Injuries",    ylab = "Number of injuries", col = "pink")

Property damage and highest crop damage. Highest Property damage and highest crop damage for Top 8 events were calculated. For better understanding and comparision these values were plotted as follows.

# Finding events with highest property damage
propdmg8 <- propdmg[order(-propdmg$PROPDMGVAL), ][1:8, ]
# Finding events with highest crop damage
cropdmg8 <- cropdmg[order(-cropdmg$CROPDMGVAL), ][1:8, ]
par(mfrow = c(1, 2), mar = c(12, 4, 3, 2), mgp = c(3, 1, 0), cex = 0.8)
barplot(propdmg8$PROPDMGVAL/(10^9), las = 3, names.arg = propdmg8$EVTYPE, 
        main = "Events with Highest Property Damages", ylab = "Damage Cost ($ billions)", 
        col = "yellow")
barplot(cropdmg8$CROPDMGVAL/(10^9), las = 3, names.arg = cropdmg8$EVTYPE, 
        main = "Events With Highest Crop Damages", ylab = "Damage Cost ($ billions)", 
        col = "pink")

Tornados caused the maximum number of fatalities and injuries. It was followed by Excessive Heat for fatalities and Thunderstorm wind for injuries.

Floods caused the maximum property damage where as Drought caused the maximum crop damage. Second major events that caused the maximum damage was Hurricanes/Typhoos for property damage and Floods for crop damage.