\(f(x) = e^x\) –> \(f(0) = 1\)
\(f'(x) = e^x\) –> \(f'(0) = 1\)
\(f''(x) = e^x\) –> \(f''(0) = 1\)
\(f'''(x) = e^x\) –> \(f'''(0) = 1\)
\(1 + \frac{1}{1!} x^1 + \frac{1}{2!} x^2 + \frac{1}{3!}x^3...\)
\(1 + x +x^2 + x^3 + ... + x^n\)$
\(f(x) = e^x\) –> \(f(0) = 1\)
\(f'(x) = e^x\) –> \(f'(0) = 1\)
\(f''(x) = e^x\) –> \(f''(0) = 1\)
\(f'''(x) = e^x\) –> \(f'''(0) = 1\)
\(1 + \frac{1}{1!} x^1 + \frac{1}{2!} x^2 + \frac{1}{3!}x^3...\)
\(1 + x +x^2 + x^3 + ... + x^n\)
\(\sum_{n=0}^{\infty} \frac{x^n}{n!}\)
\(f(x) = ln(1+x)\) –> \(f(0) = 0\)
\(f'(x) = \frac{1}{(1+x)}\) –> \(f'(0) = 1\)
\(f''(x) = -\frac{2}{(1+x)}\) –> \(f''(0) = -1\)
\(f'''(x) = \frac{6}{(1+x)}\) –> \(f'''(0) = 2\)
\(0 + \frac{1}{1!} x^1 - \frac{1}{2!} x^2 + \frac{2}{3!}x^3 ...\)
\(x - \frac{1}{2} x^2 + \frac{1}{4}x^3 ...\)
\((-1)^{n+1}\)
\(x - \frac{1}{2} x^2 + \frac{1}{4}x^3 ... (-1)^{n+1}\frac{1}{n}x^n\)
\(\sum_{n=0}^{\infty} (-1)^{n+1}\frac{1}{n}x^n\)